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Diverging fluctuations in a spatial five-species cyclic dominance game
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A five-species predator-prey model is studied on a square lattice where each species has two prey and two
predators on the analogy to the rock-paper-scissors-lizard-Spock game. The evolution of the spatial distribution of

species is governed by site exchange and invasion between the neighboring predator-prey pairs, where the cyclic
symmetry can be characterized by two different invasion rates. The mean-field analysis has indicated periodic
oscillations in the species densities with a frequency becoming zero for a specific ratio of invasion rates. When
varying the ratio of invasion rates, the appearance of this zero-eigenvalue mode is accompanied by neutrality

between the species associations. Monte Carlo simulations of the spatial system reveal diverging fluctuations at a
specific invasion rate, which can be related to the vanishing dominance between all pairs of species associations.
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I. INTRODUCTION

The analysis of competing species has a long history in
the study of ecological systems [1-4]. Even if the number
of participating species is low, the complex interactions in
an ecosystem usually create an everchanging spatial pattern
driven by the chaotic nature of the system. Cyclically dominant
interaction systems are of great importance in nature [5-9]
hence they have attracted significant interest from the scientific
community as well [10-23]. The simplest cyclic predator-
prey system contains three species and is referred to as
the rock-paper-scissors game. Its behavior has been studied
intensively and well understood even if it is placed into a
spatial environment where species are located on some kind of
spatial structure and can only interact with their local neighbors
[24-26]. Increasing the number of species in the food web,
however, makes the emerging dynamics exponentially more
complex. As it was recently shown, the topology of the
food web alone cannot determine the outcome of evolution
because the strength of the invasion processes plays a decisive
role [27,28].

In this paper, we analyze the behavior of the spatial
so-called rock-paper-scissors-lizard-Spock (RPSLS) model
[29]. This ecosystem is the generalization of the spatial
rock-paper-scissors game [30,31], containing five species,
each with two prey and two predators forming a double cyclic
dominance scenario [32]. To fully describe and understand the
general system, one would need to study all possible invasion
probabilities for the 10 interaction pairs, however, this is
beyond the actual computational capabilities. To overcome this
difficulty, we consider a food web that satisfies a higher level
of symmetry as only two invasion rates are distinguished. By
using this simplified version, we revisit the model outlined in
Ref. [33] where a site exchange mechanism is also introduced
to enhance the validity of mean-field approximations.

After introducing the spatial model, it is investigated in the
well-mixed limit using the framework of mean-field approxi-
mation. Accordingly, we discuss all the possible stationary and
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oscillating states and analyze the competitive features among
the stationary solutions. These results help to understand the
spatial version of the model where the individuals of the
species are located on a square lattice and can only interact with
their immediate neighbors. In structured population, species
can form defensive alliances [34,35], which can be considered
as additional higher level “species” occupying more space that
protect themselves from the invasion of external species or
associations. The mean-field results can serve as guidelines to
show the direction of invasion between these alliances. The
analysis of the invasion velocity between alliances having
particular spatiotemporal structures is performed by using
Monte Carlo (MC) simulations. Both types of approaches
justify that the invasion velocities vanish at a specific ratio
of invasion rates where the density fluctuations diverge for
sufficiently high value of mixing. In the absence of mixing,
the divergence of fluctuation is suppressed and the MC data
indicate only a sharp peak in the magnitude of fluctuations
when varying the invasion rates. As we show, the absence
or presence of the fluctuations’ divergence is related to the
invasion velocities between species alliances.

II. THE MODEL

Consider a model with five species cyclically dominating
each other according to two invasion routes as illustrated in
Fig. 1. To facilitate the notation, we introduce a periodic index
for the species where the index i + 1 subsequent to index
i is defined in the following cyclic way: 4 - 5 - 1 — 2 —
3 — 4. The predator-prey interactions are characterized by the
following invasion rates: Species i replaces species i 4+ 1 with
probability p; and replaces species i — 2 with probability p,.
These invasion processes are visualized in Fig. 1 in the form
of a food web where the arrows point from predator to prey. It
is important to note that a species cannot emerge again after
extinction due to the defined dynamics.

In the spatial scenario, the individuals of the species are
placed on a square lattice of linear size L with periodic
boundary condition. The interaction neighborhood of an
individual is defined by the four nearest neighbors on the
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FIG. 1. (Color online) Food web of cyclic predator-prey system
with five species. The directed dashed (blue) and solid (black) lines
represent possible invasions.

lattice. The size of the lattice is varied between L = 400 and
2000 depending on the required accuracy of the given MC
simulation. In addition to the invasion process, neighboring
species may exchange their sites with a probability p,,
characterizing the strength of mixing. In an elementary MC
step a pair of neighboring individuals is selected randomly
from the population that can exchange their position with
probability p,,, otherwise an invasion takes place between the
two individuals with probability p; or p, as described above.
The simulations are started from a random initial state and the
stationary distributions are calculated as long time averages
of 5 x 10° MC steps after an initial transitional period of
2 x 10° MC steps. All presented results are averaged over
10-30 independent runs. For the determination of the average
invasion velocity between two alliances, however, we used
special prepared initial states as detailed later in the paper.

III. MEAN-FIELD ANALYSIS

To have a deeper understanding about the behavior of
the system, we studied what happens without the spatial
constraints in effect. In the well-mixed limit the system can
be described by the mean-field approximation. Accordingly,
the time dependence of density x; of species j can be given
by the following differential equation system independently of
the value of p,,:

Xj =xj(p1Xj41 — P2Xjy2 + PaXji3 — piXja), (1)

where j runs from 1 to 5 in a cyclic manner.

The sum of all species’ densities is 1 by definition and due to
the defined dynamics this quantity is conserved. In the general
case, when p; and p; are positive, the equations can be divided
by p», thus reducing the number of tunable parameters on the
right-hand side to one: p/p, = g, while the left-hand side can
be kept formally unchanged if we incorporate the factor p, into
the time variable by a rescaling transformation " = p,t. The
differential equation system can be most effectively analyzed
by combining the densities into a vector X = (x1,X2,X3,X4,X5).
Using this form, the set of equations can be written as x; =
x;j(Mx);, where M is the mean-field interaction matrix given
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by
0 g -1 1 —q
—q 0 qg -1 1
M= I —¢q 0 g —-1]. 2)

—1 1 —q 0 ¢
qg -1 1 —q 0

The antisymmetric structure of the matrix automatically
ensures the Z?zlxj(t) =1 relation. Another constant of

motion is H§=1 xj, which is a consequence of the fact that the
sum of the elements in each column of M is zero. The analysis
of the matrix’s eigenvalue problem [Mv(k) = A(k)v(k)] helps
understand both the dynamic and the stationary behaviors
of the system. Solving the eigenvalue problem results in the
following eigenvectors with complex elements:

v(0) = (1,1,1,1,1),
V(l) — (ei(p’eiZ(p’eB(p’eM(p’ 1)’

v(—1) = (£, ¢,1) = v¥(1), 3)
V(2) — (ei2¢’ei4go’ei<p’ei3<p’1)’

v(=2) = (£3%,e% 6% e 1) = v¥(2),

where ¢ = 27 /5, i is the imaginary unit and asterisk stands
for the complex conjugate of the given vector. The numbering
of the vectors refers to the wave number of the Fourier
components and makes the notation more compact. It is
worth noting that the eigenvectors are independent of g. In
the compact form, element j of the kth eigenvector can be
given as v;(k) = ' where k =0, £1, £2. Accordingly,
vi(—k) = v_’}‘(k). Using this notation, the eigenvalues are given
as

Ak) = iw(k) = 2i[sin(2pk) — g sin(pk)]. 4)

One of the eigenvalues is always zero (A(0) = 0), while
the others are purely imaginary and satisfy the condition
AM—k) = —A(k) for k # 0. In agreement with the expectation,
the zero-eigenvalue eigenvector v(0) = (1,1,1,1,1) defines the
symmetric stationary solution of Eq. (1) as x(¢) = v\!23%) =
v(0).

The other four eigenvectors and eigenvalues determine the
system’s dynamical behavior if the deviation from the above
solution is small, i.e., when the system is started from the
close proximity of the symmetric stationary state. In the latter
case the solution can be written as the composition of harmonic
oscillations around the stationary state:

x(t) = V12 13 "o Br g kyv(k). 5)
k0

The solution becomes real if a(—k) = a*(k). The reader can
easily check that in linear approximation (|a(k)| < 1) the
equation of motion becomes an eigenvalue problem solved
by the above expressions. When increasing the deviation from
the stationary solution, the harmonic oscillations (composed
of two angular frequencies, |w(1)| and |w(2)|) are distorted
and shifted in a way satisfying both laws of conservation as
illustrated in the top panel of Fig. 2.
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FIG. 2. (Color online) Time evolution of the species’ densities
for different invasion rates and initial conditions. (Top panel)
General time evolution; the invasion rates are not at the golden
section; the curves are determined by the product of two oscillating
periodic functions. (Middle panel) The invasion rates are fixed to
the golden section point but for general initial conditions the time
evolution is described by a periodic function determined by the
nonzero eigenvalues of the mean-field matrix. (Bottom panel) The
concentrations stay constant when the invasion rates are at the golden
section and the initial condition is the linear combination of the zero
eigenvalue eigenvectors of the mean-field matrix. For clarity, we have
marked one of the curves by thick (black) line.

Besides the above-described five-species solutions, the
present system has five trivial solutions when only one species
remains alive:

x(t) = v, (6)
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with v;") =34, (j,n=1,...,5)and § denotes the Kronecker’s

delta function. Two spemes cannot coexist in the system
because the predator prevails over its prey and the whole
population terminates in a homogeneous one-species solution.
On the other hand, three species can stably coexist if their
indices are consecutive and in this case, the dynamics is
equivalent to a rock-paper-scissors system. (If there is a gap
between the indices, then one of the species has no predator but
only two prey and the system evolves into a one-species final
state.) Staying at the nontrivial case, the stationary solution
for, e.g., species 1, 2, and 3 is given by

x(t) = v = 1 : 1
2 +172g+1"2g+1

,0,0) .

Moreover, there exist time-dependent solutions for the three
species exhibiting periodic oscillations around the stationary
solution while two laws of conservation are satisfied, namely,
x1(t) + x(t) + x3(t) = 1 and xl(t)xg(t)xg(t) = constant, as
detailed in Refs. [36,37]. Evidently, four other equivalent
three-species solutions can be derived from Eq. (7) by shifting
the indices cyclically.

The eigenvalues depend on g as defined by Eq. (4). The
system’s behavior changes gradually when two of these eigen-
values vanish. This happens when w(1) = w(—1) =0at g =

G =2cos & = fz 1 —0.618034 (golden ratio). The other
possibility [w(2) = w(—2) = 0 at ¢ = —1/4] corresponds to
the case when the invasion cycle in the interior of the food
web is of reversed direction. This topology can, however,
be transformed into the topology of Fig. 1 by a suitable
rearranging of nodes hence this case is equivalent to the first
one.

For g = g, the finite number of the stationary solutions
of Eq. (1) is extended by a continuous two-dimensional
set of solutions derived from the additional zero-eigenvalue
eigenvectors v(—1) and v(1). To simplify the analysis, it
is possible to choose two purely real eigenvectors from
the two-dimensional subset: a1 [v(l) + V( 1)1/2, a2
[v(l) — v(=1)]/(2i). Any x(t) = 5V(O) —i—oeal + ,Ba linear
combination (0 < x; < 1) of the above vectors results in a
stationary distribution (bottom panel of Fig. 2). Note that the
(eigen)vectors reported in Ref. [33] are probably mistyped
and consequently not correct. The mentioned stationary states
form a continuous subset and are asymptotically stable. It is
interesting to note that the set contains stationary solutions
where only three or four species are present in the population.
If the initial population composition is not a pure linear
combination of these vectors, then the concentrations oscillate
periodically according to the nonzero eigenvalues (see the
middle panel of Fig. 2). The amplitudes of the oscillations
for the different species depend on the actual initial densities.
Moreover, there exists a particular set of solutions when the
amplitudes are equal for all species.

To complete the mean-field analysis, we examine what
happens when the population is started from a state where
only one of the species is absent (x; = 0 for one of the
1 < k <5 species). In this case, the course of evolution
depends sensitively on the value of gq. For ¢ < § (¢ > ¢),
Xr+1 (xxk—1) goes to zero in an oscillating way. The closer ¢
to g is, the slower the decrease of the given concentration
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is. If g is exactly at the golden section point then according
to the results of the previous paragraph the concentrations of
species oscillate periodically or stay constant depending on
the composition of the system.

IV. INVASION RATES BETWEEN ASSOCIATIONS
OF SPECIES

In the previous section we have outlined all possible
solutions of the equation of motion. In most of the cases
Eq. (1) has 11 stationary solutions. The mean-field analysis
has indicated that deviation from the three- and five-species
stationary solutions induces oscillations when we modify the
densities of species in the initial state. We have to emphasize
that the actual spatial systems do not exhibit all the features
of the mean-field results. The global oscillations in the species
densities cannot be observed here because the short-range
interactions are not capable of synchronizing the oscillations
that are present locally throughout the whole system. Instead,
a self-organizing pattern with moving interfaces and rotating
spiral arms can be observed on the two-dimensional lattices.
On the contrary, the analysis of the rock-paper-scissors game
indicates that global oscillations can be maintained when
long-range interactions are introduced in the spatial systems
[38,39].

Now we discuss what happens when the stationary solutions
are considered as associations with the respective composition
(or in the case of the spatial model, spatiotemporal structure
on the lattice) that compete against each other. For example,
the five one-species solutions [given by Eq. (6)] are not
stable because they can be invaded by the offspring of a
single individual of their predators. Within the framework
of mean-field analysis, the competition between the different
associations can be quantified by an average invasion rate
measuring the direction of the invasion processes. More
precisely, we assume two populations with compositions
denoted by x’ and X" representing two stationary solutions
of the equation of motion. The members of these species
associations compete in pairs chosen at random from both
associations. The mean-field approximation can predict the
average invasion rate of association X' at the expense of x”
with the following vector product:

IX - x")=x -Mx". (8)
Evidently I(x’ — x") = —I(x" — x’) as M is antisymmetric
(M = —M7). If the competing associations are one-species

solutions given by Eq. (6) then I(v¢) — v) = M;,. One
can easily check that I(x’ — x”) = 0 if x” is a one-species
solution with the species included in the stationary solu-
tion x'. Consequently, I(v{1?3> — vy = 0 for arbitrary n.
Similarly, I(v{'?® — v®) = 0if n = 1,2 or 3 and additional
relations can be derived by cyclic permutations. Nonvanishing
invasion rates occur when a three-species association competes
with another one having one or two common species or with
distinct one-species solutions. For example, straightforward
calculations give that

—q(1—q—q*

[(v12) s y@3) P
q

, 9)
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FIG. 3. (Color online) Difference in species densities x;(¢) —
x4(¢) for different ¢ values as a function of time when the three-species
solutions v\!>¥ and v\>*¥ compete along vertical interfaces on a square
lattice at p,, = 0.7. Every curve is an average of 100 independent runs
at L = 2000 system size.
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and similar expressions can be derived by cyclic permutation
of the indices. Notice that all quantities become zero at the
golden ratio (g = §).

Using more sophisticated equations, one can even evaluate
the actual evolution of the composition for both competing
associations. Instead of performing such a calculation, we
emphasize that /(x’ — x”) characterizes the initial speed of
invasion and the meaning of this quantity can be interpreted
for the spatial systems, too. For example, when the whole
battlefield of the two-dimensional spatial system is divided
into two regions and each region is occupied by a mix of
species according to the composition of the stationary states x’
and x” then I(x’ — x”) is proportional to the initial invasion
speed as the dynamical process is controlled by short-range
interactions.

At the same time, for the lattice systems, the invasion
process can be investigated by MC simulations as well. In this
case, the velocity of invasion can be evaluated conveniently
by recording the time dependence of species densities as
illustrated in Fig. 3. In the MC simulations, the populations
in the two regions are thermalized first: They are started from
a state where the individuals are placed on both halves of
the lattice according to the densities present in x' and x”
and are allowed to evolve until they reach the corresponding
stationary states. At this point, the separating interface is
removed and the invasion events are monitored. (A similar
technique was already applied in Refs. [40,41].) The invasion
velocity between the phases v{'?® and v(>3¥ can be estimated
from the change in x4(¢) — x(¢) averaged over several runs on
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FIG. 4. (Color online) MC results for the average invasion
velocities between the phases v(?® versus v®** (squares) and
VU234 versus v(12¥ (circles) as a function of ¢ at p,, = 0.7. Lines
illustrate the mean-field predictions between two stationary solutions
as indicated in the legend.

a sufficiently large lattice. The results obtained for different
q values are compared with the theoretical mean-field results
in Fig. 4 illustrating the g dependence of the invasion rates.
The figure shows that the mean-field approximation predicts
the invasion velocity function qualitatively well, namely, the
general trend of the curve is in good agreement with the MC
data, moreover, it predicts the value of the critical point even
quantitatively well. According to the simulations the average
invasion velocity becomes zero at g = g, = 0.596(2), a value
that is slightly smaller than §. The zero value of the average
invasion velocity can be interpreted as a type of neutrality
between the given phases. In this case, the motion of the
interface becomes random.

Contrary to the mean-field predictions, the MC simulations
indicated a completely different behavior when the phases
v(129 and v34 are confronted in the same way. More precisely,
the five-species state (v(123*9) is formed along the interface and
spreads with an average velocity that can be quantified, too.
Finally it takes over the whole spatial system independently
of the value of g. Evidently, the average invasion velocity can
be well described by the one obtained from the competition
of phases v(123*9 and v(123)_ Here, it is worth emphasizing the
technical difficulties caused by the diverging fluctuations in the
vicinity of g, where the invasion velocities vanish. Due to these
difficulties, henceforth our numerical analysis is restricted to
two values of mixing (p,, = 0.7 and 0) representing different
behaviors.

The spatial effects cause similar phenomenon when a three-
species phase (e.g., v(!??) is confronted with a homogeneous
one (v?). If n =1, 2, or 3 then the homogeneous state is
invaded by the corresponding predator, that is invaded by its
predator along a second invasion front, and the latter one
is also invaded by the third member of the three-species
association. After a short period, phase v{'?¥ will dominate the
invaded territory completely. Similar transient phenomena can
be observed for n = 4 (or 5). However, in this case, additional
three-species associations are formed (v\>3¥ or v©!?)) that can
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(1,2,3.4,5)

FIG. 5. (Color online) Flow diagram without the five homo-
geneous states for ¢ > ¢.. The invasion processes between the
three-species solutions (nodes with three colors) are indicated by
directed solid lines. Dashed (blue) lines refer to transitions when the
confrontation of two three-species solutions leads to the emergence
of the symmetric five-species phase. Note that arrows point towards
the winning associations.

spread over the territory of the homogeneous phase while
it competes with the original three-species phase. The final
stationary state is determined by the competition between
the two three-species phases as described above. Similar
phenomena were already reported for other types of spatial
predator-prey models [42].

All the above-mentioned phenomena can be summarized
in a flow diagram where the nodes represent the possible
11 stationary solutions. In comparison to the food web
(see Fig. 1), the resultant flow diagram involves transitions
where the confrontation of two states results in a third one.
The mentioned transitions are displayed in Fig. 5 where the
homogeneous states are omitted to avoid confusion. Notice
that the direction of the arrows along the pentacle refers to
the cases when g > ¢q.(p,, = 0.7) = 0.596(2). In the opposite
case (¢ < q.(pn = 0.7)) the directions of invasion between
the three-component associations, marked by solid (black)
lines in Fig. 5, are reversed as shown in Fig. 4. We should
stress that the direction of invasions between associations can
change without changing the direction of invasions between
the single species (summarized in Fig. 1). In other words,
this system gives another example when the topology of the
food web cannot unambiguously determine the outcome of the
evolutionary process.

The curious feature of the present system is that the
average invasion velocity between the five-species solution
(v\12349)) and any other three-species solution becomes zero at
q = q. within the statistical error for p,, = 0.7 as illustrated in
Fig. 6. On the contrary, for p,, = 0 the same invasion velocity
remains positive and exhibits a minimum in the vicinity of
q = 0.648(4).

Now we discuss the consequences of the situations when
all the average invasion velocities (between the species
associations) vanish simultaneously. In the spatial systems the
concept of species associations becomes relevant at a coarse-
grained level when the lattice is divided into cells containing
a sufficiently large number of lattice points providing the
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FIG. 6. (Color online) Average invasion velocities between the
five- (v(12349) and three-species states (v(1?®) for p,, = 0.7 (blue open
circles) and p,, = 0 (green solid circles).

maintenance of the three-species states for a long time
(e.g., 50 x 50 or 100 x 100 used in previous simulations
[33]). Within such small isolated cells, the system develops
fast into states where some of the species are absent. Due
to the microscopic interactions (mixing and invasion) the
neighboring cells influence each other in a way described
above. However, if all the average invasion velocities are
zero then the system’s behavior can be well approximated
by a voter model [43]. Accordingly, the two-dimensional
system is expected to evolve very slowly towards one of
the homogeneous states [44] or one of the three-species
associations as reported by Kang et al. [33]. This slow ordering
process is blocked by the presence of cyclic dominance among
the species associations as it was observed for some other
systems [42,45]. In the latter cases, rotating spiral arms can be
observed between the states dominating each other cyclically
independently of the fact that they are composed of a single or
several species [37]. The rotating spiral arms become striking
when the interfacial regularities are reduced by taking the Potts
energy into consideration [46] or by dividing the invasions into
two consecutive elementary processes with the introduction of
empty sites [16,17,26,47-51].

The simplest model to study the transition between the
mentioned behaviors was suggested by Tainaka and Itoh [52]
who modified a three-state voter model with introducing an
additional cyclic dominance. This model is equivalent to
a three-species cyclic predator-prey (or rock-paper-scissors)
model where both directions of invasion are allowed with
probabilities p and (1 — p). For p = 1/2, this model becomes
equivalent to the voter model; otherwise all three species
remain alive and the resultant self-organizing spatiotemporal
pattern can be characterized by the density of the rotating
spirals (called vortices). The numerical investigations of this
model indicated that the density of vortices goes to zero
algebraically when p — 1/2 [25,52]. At the same time both
the correlation length (or the average distance between the
rotating vortices) and the magnitude of fluctuations diverge
when approaching the critical point known exactly here (p =
1/2). In the present system the investigation of the fluctuations
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FIG. 7. (Color online) Fluctuation x in dependence of ¢ at
Ppm = 0.7 migration rate. Data obtained for different linear size
are indicated by colored symbols as explained in the legend. The
fluctuations diverge at critical point g. = 0.5957(3). Inset shows
power-law behavior with an exponent y = 1.0(1), marked by dotted
line. In the inset, open (solid) symbols represent x values obtained
below (above) the critical point.

seems to be the most convenient way to check the validity of
the above picture.

V. FLUCTUATIONS

The fluctuation of species densities is measured by the
quantity,

N 1\?
x=x ;<<xj(r> —~ g) > (13)

where (...) denotes averaging over a sufficiently long period
of time. This quantity becomes independent of the players’
number N = L? if the linear size of the system is significantly
larger than the longest correlation length in the spatial distri-
bution. Similar quantity is widely used for the classification of
the critical phase transitions [53].

We have measured y at different values of ¢ at a fixed
pm = 0.7 migration rate. The presented results, summarized
in Fig. 7, were obtained as an average of 20 independent runs
up to 5 x 10° MC steps at every ¢ value for linear sizes of
L = 500, 1000, and 2000. Figure 7 illustrates that there are two
peaks at two different values of g. While scaled fluctuations
remain finite at the smaller ¢, x will diverge in an infinite
system at a critical point of g, = 0.5957(3). This is confirmed
by the inset where the MC data are fitted to the

X xlg—qcl™” (14)

scaling law. The fitted critical exponent is y = 1.0(1). Nat-
urally, in the vicinity of the critical point the amplitude of
oscillations can be so large in a finite system that some species
become extinct resulting in a three-species final state, as it was
observed in Ref. [33]. In fact there exists a natural upper limit

for the fluctuation as x, = % Zj((v5123) —1)?) ~0.03N
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FIG. 8. (Color online) Monte Carlo data for x versus ¢ in the
absence of migration.

characterizing x when the system evolves into one of the
three-species stationary solutions. Consequently in Fig. 7 we
have plotted only those Monte Carlo data that satisfy the
conditions y <« y, ensuring the survival of all the five species
in the system during the simulations.

Additionally, we have tested the divergence of fluctuations
in a voter model-like five-species predator-prey model where
along the outer edges of the food web (see Fig. 1) both the
forward and backward invasions are allowed with probabilities
1/2 £ r while a mixing with p,, = 1/2 is also allowed as
above. The preliminary results support the above-mentioned
picture but the detailed analysis goes beyond the scope of the
present work.

Besides the power-law divergence, the readers can observe
a smaller peak in x at g ~ 0.177(3). This mysterious peak
also appears in the x vs g function for other values of mixing
and both its position and its height depend on p,,. It is worth
mentioning that the choice of p,, = 0.7 was motivated by the
demand of quantifying this peak as accurately as possible. For
higher values of p,,, x increases in the vicinity of this peak and
this fact causes technical difficulties in its accurate analysis. In
the opposite case (p,, — 0) the peak vanishes (see Fig. 8).
It is conjectured that the emergence of this peak can be
related to the formation of a spatiotemporal pattern where
the cyclic dominance among the three-species association
leads to the formation of a more complicated structure
that can be characterized by another (longer) correlation
length.

In the absence of mixing (p,, = 0) the MC simulations
indicate a significantly different behavior in the fluctuations.
Instead of the power-law divergence, a sharp but finite peak
canbe observedin x atq.(p,, = 0) = 0.675(3) asillustrated in
Fig. 8. In this case, the two relevant invasion velocities do not
vanish simultaneously invalidating the analogy to the voter
model at the level of competition between the three-species
associations. The low values of invasion velocities, however,
support the formation of large domains of three-species
associations and it is usually accompanied by an enhancement
in x, too [53].
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VI. SUMMARY

We have reinvestigated the spatial rock-paper-scissors-
lizard-Spock model independently studied by Hawick [54]
and Kang et al. [33] where the latter group distinguished
only two types of invasion rates (p; and p,) while the
neighboring species were allowed to exchange their position
with a probability p,, on the square lattice. Varying the
ratio of the invasion rates (g = p;/p) we have analyzed the
behavior of this model by using mean-field approximations and
performing MC simulations. Within the framework of mean-
field approximation, this system has 11 stationary solutions
that can be considered as species associations playing relevant
roles in the behavior of the spatial system. The analysis of
the time-dependent solutions of the mean-field equations has
indicated the presence of two harmonic oscillations in the
vicinity of the symmetric five-species stationary solution. The
frequencies of the harmonic oscillations are directly related
to the eigenvalues of the matrix M defining the bilinear
equations of motion. The analytical calculations indicate that
these eigenvalues depend on ¢ and two of them vanish at the
golden ratio (¢ = § = (v/5 — 1)/2). The corresponding zero-
frequency mode expands the set of the stationary solutions at
q = ¢ and is responsible for the observed anomalies. Here it
is worth mentioning that very recently similar zero-eigenvalue
strategies were described by Press and Dyson [55], who studied
the evolutionary prisoner’s dilemma game with stochastic
reactive strategies [56,57], that can be utilized for different
purposes.

In the present system it is found that the competition
(dominance) between the mentioned species associations can
be characterized by a simple quantity related to M and the pos-
sible solutions of the mean-field approximations. This analysis
indicates vanishing dominance between any pair of mean-field
solutions at the golden ratio. At this point, the direction of
invasions between associations is reversed showing that the
topology of the food web does not always determine the final
state of the evolution. Although the spatial effects modify
the dominance between the structured species associations,
some relations remain valid if the site exchange mechanism
(mixing) is sufficiently intensive. Namely, dominance between
relevant species associations can vanish simultaneously when
tuning the value of ¢ and this event is accompanied by a
divergence in the species density fluctuations quantified by x.
According to the MC simulations, the latter effect occurs at
q = q. # ¢ depending on p,,. In the absence of mixing, the
dominance between the pairs of species associations does not
vanish simultaneously and only a sharp peak can be observed in
x instead of its power-law divergence. The mentioned features
can be well approximated by simple models based on the voter
model combined with cyclic dominance.

It is emphasized that for sufficiently large fluctuations, two
of the five species can become extinct within a short transient
time and the system evolves into one of the three-species
solutions if the linear size is not large enough. The latter
finite-size effect, observed in Ref. [33], can even occur in
the absence of the divergence of x.

At the microscopic level, the spatiotemporal evolution of
the species distribution is controlled by elementary invasions
and site exchange between the neighboring lattice sites. For
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larger length scales, the behavior of these systems can be
described via introducing similar interactions between species
associations consisting of one or more species. In this case,
we can introduce a generalized “food web” displaying the
new invasion processes. Evidently, this approach implies
the possibility for the emergence of a hierarchy of species
associations as it occurs in nature.
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