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Maintenance of cooperation was studied for a two-strategy evolutionary prisoner’s dilemma game where the
players are located on a one-dimensional chain and their payoff comes from games with the nearest- and
next-nearest-neighbor interactions. The applied host geometry makes it possible to study the impacts of two
conflicting topological features. The evolutionary rule involves some noise affecting the strategy adoptions
between the interacting players. Using Monte Carlo simulations and the extended versions of dynamical
mean-field theory we determined the phase diagram as a function of noise level and a payoff parameter. The
peculiar feature of the diagram is changed significantly when the connectivity structure is extended by extra
links as suggested by Newman and Watts.
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Maintenance of cooperative behavior among selfish indi-
viduals in biological and social systems is a progressively
studied and challenging problem �1�. The celebrated prison-
er’s dilemma �PD� game �2� is a widely applied mathemati-
cal model illustrating the conflict between the individually
rational �selfish� and globally useful �cooperative� behavior.

In the original two-person �one-shot� game the players
can follow one of the two strategies called cooperation �C�
and defection �D�. The player’s payoff �or fitness� depends
on their choice that is determined by the elements of a payoff
matrix. To be more specific, for mutual cooperation each
player receives the reward R, two defectors receive the pun-
ishment P, while a cooperator and defector receive the suck-
ers payoff S and the temptation T �to choose defection�, re-
spectively. For the PD game the payoffs satisfy the ranking:
T�R� P�S. According to the assumption of the traditional
game theory, players make a rational decision to maximize
their own income. Consequently, they should choose
defection independently from the other player’s decision. For
the iterated PD game an additional constraint �namely
2R�T+ P� is assumed to provide the highest total income
for mutual cooperation.

In the spatial evolutionary PD games N players are dis-
tributed on a lattice with periodic boundary conditions. Fol-
lowing one of the above-mentioned pure strategies each
player plays a game with her neighbors. These games are
repeated, meanwhile the players are allowed to modify their
strategies in a way defined by the strategy update rule. For
example, in the model suggested by Nowak and May �3� the
players were located on the sites of a square lattice, they
played a PD game with all neighbors for discrete times
t=1,2 , . . ., and before the next time step each player has
adopted the strategy of those players who received the high-
est accumulated payoff in the neighborhood �including their
own�. In these cellular automaton-type models the coexist-
ence of the C and D strategies is provided by a frozen or
oscillating pattern due to the dynamical balance between the
opposite invasion processes affected by the payoffs. For syn-
chronized strategy updates C invasion can occur along the
horizontal or vertical interfaces separating the domains of the
C and D strategies. On the contrary, D invasions are favored

along the irregular interfaces where defectors can exploit
many neighboring cooperators. The average density of coop-
erators is reduced drastically for asynchronous strategy up-
dates �4� as well as for the introduction of additional noise
including irrational strategy adoptions �5� �for a recent sur-
vey see Ref. �6��.

In the last years the spatial models were generalized by
locating players on the sites of a network �graph� whose
edges connect each player with the co-players �neighbors�
�7–11�. Investigations were also extended to different ver-
sions of small-world structures created from a one- or two-
dimensional lattice by rewiring some portion of connections
�12–16� or by adding extra links to the spatial structure
�8,17–19�. The systematic comparison of the cited results is
difficult because of the wide variety of dynamical rules used
in the mentioned studies. Nevertheless, it is concluded gen-
erally that the introduction of inhomogeneities supports the
maintenance of cooperation among selfish individuals
�18,20�. An important progress has been made by Santos
et al., who described a mechanism that provides relevant
advantage for cooperators in the presence of connected hubs
�players with a large number of neighbors� �10�.

Further exploring the possible effects of the interaction
topology on the cooperation level we study a simple host
structure where two conflicting topological features can be
detected. It is well known that cooperators die out in one-
dimensional structure �z=2� for all stochastic dynamical
rules favoring the adoption of the more successful strategies
�10,12,13�. Similar result is predicted by the mean-field
analysis �6� describing a system where the co-players are
chosen randomly for both playing games and learning strat-
egies. The former results explain why the Monte Carlo �MC�
simulations have indicated the extinction of cooperators for a
sufficiently large z dependent on the evolutionary rule�s� and
payoffs �10,21�. In contrast, the systematic investigations
have elucidated that the cooperation can be maintained for
random sequential updates because the one-site overlapping
triangles �in regular connectivity structure at z=4� support
the spreading of cooperation in the low noise limit �22�.
According to the MC simulations �performed on many dif-
ferent two- and three-dimensional lattices and other regular
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networks� this feature remains valid for the investigated spa-
tial and nonspatial connectivity structures if the overlapping
triangles span the whole graph. Following this avenue, a
more rigorous analysis of this feature requires to study those
regular structures which cannot be spanned completely by
the overlapping triangles or on which the overlapping tri-
angles form a one-dimensional structure favoring an evolu-
tion toward homogeneous states via a domain growing pro-
cess. Now our attention is focused on the latter case by
considering a simple connectivity structure combining the
mentioned conflicting topological features that become rel-
evant in the low noise limit.

For this purpose we study a two-strategy evolutionary PD
game on a one-dimensional lattice where the sites are con-
nected to z=4 neighbors. The systematic investigation of the
effect of noise and payoffs on the density of cooperators in
the stationary states requires accurate knowledge about what
happens on a host graph where the overlapping triangles
span the whole system but the one-dimensional feature is
preserved. Due to this curiosity the resultant phase diagram
differs significantly from those studied previously as detailed
below. Furthermore we show that the mentioned unique be-
havior is modified significantly when the small-world effect
is switched on by adopting the construction suggested by
Newman and Watts �23�.

In our model N players are located on the nodes x of a
network and they can follow the C or the D strategies. The
spatial strategy distribution is described by a set of two-state
site variables, i.e., sx=C or D. For later convenience the local
states are denoted by two-dimensional unit vectors

C = �1

0
� and D = �0

1
� , �1�

and in this notation the payoffs can be expressed with the aid
of simple matrix algebra. The normalized income of the
player at the site x obeys the following form:

Ux =
4

��x�
�

y��x

sx
+A · sy , �2�

where sx
+ is the transpose of the state vector sx, and the sum-

mation runs over all the neighbors ��x� of player x ���x�
refers to the number of neighbors surrounding the site x�.
The prefactor in Eq. �2� is applied to help the comparison of
the resultant phase diagrams with other systems analyzed in
previous studies �22,24,25�. Due to its simplicity we use the
rescaled payoff matrix suggested by Nowak et al. �3�, i.e.,

A = �1 0

b 0
�, 1 � b � 2. �3�

In this notation 1�b�2 denotes the strength of temptation
to exploit the neighboring cooperator�s�.

The time evolution of the strategy distribution is modeled
by the so-called pairwise comparison dynamics when a ran-
domly chosen player x adopts the strategy of her randomly
chosen neighbors �y� with a probability depending on the
payoff difference as

W�sx ← sy� =
1

1 + exp��Ux − Uy�/K�
, �4�

where K characterizes the strength of noise in the strategy
adoption process allowing the players to make irrational de-
cisions too �26–28�. In other words x player can adopt the
strategy of y player even if Ux�Uy. Starting from a random
initial state the above strategy adoption process is repeated
until the system reaches a stationary states characterized by
the average density � of cooperators dependent on the noise
K, temptation b, and connectivity structure. Three different
stationary states can be distinguished when the number of
sites tends to infinity. In the first case cooperators dominate
the whole system ��=1� if b�bc1. On the contrary, for suf-
ficiently high temptation �b�bc2� only the defectors can sur-
vive. In general, there exists a coexistence region �0���1
for bc1�b�bc2� where both C and D survive in the station-
ary state. In order to quantify both critical values of b our
analysis is extended to the region of b�1 belonging to the
so-called Stag Hunt games representing another social di-
lemma �29�.

Now our analysis is restricted to two types of connectivity
structures illustrated in Fig. 1. The first structure is a linear
chain for nearest and next-nearest interactions with periodic
boundary conditions. The second structure is created from
the first one by adding new links to the chain according to
the Newman-Watts construction �23� with some minor
changes. It means that links are added without removing any
of the original ones and each site has a maximum of five
neighbors. The modified structure is characterized by the ra-
tio p of the added and original links. The limitation of the
maximum number of neighbors prevents the formation of
large hubs and can help the �future� extension of the gener-
alized mean-field techniques for inhomogeneous structures.

The MC simulations are performed on systems containing
N=105–106 sites. In many cases the simulations are started
from a random initial state and after a suitable transient time
we have determined the average density � of cooperators by
averaging over a sampling time �with duration comparable to
the transient time�. The transient time varied from 2�104 to
106 MC steps depending on the parameters �during 1 MC
step each player has a chance once on average to modify her
strategy�. Besides this traditional method we used another
�more efficient� technique to determine the critical point for
the transitions M→C and D→C. In the so-called growing

(a) (b)

FIG. 1. Different connectivity structures for which the evolu-
tionary PD game is studied. �a� One-dimensional chain with
nearest- and next-nearest-neighbor interactions �z=4�. The second
�equivalent� graph below illustrates the overlapping triangle struc-
ture. �b� One-dimensional chain with Newman-Watts small-world
modification.
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seed method the simulations are started from a state where
only one defector was present in the sea of cooperators and
the survival probability of defectors is measured �by averag-
ing over several thousand independent runs� at different b
values for a fixed K �for details see Ref. �30��.

Beside the MC simulations, the above model is investi-
gated also by the application of the generalized mean-field
�GMF� method. Within this approach the translation invari-
ant system is characterized by a set of configuration prob-
abilities on a compact cluster of n neighboring sites. This
approximation involves the derivation of the hierarchy of
equations of motion for the configuration probabilities on
clusters of n sites �for details see the Appendix in Ref. �6��.
Clearly, the accuracy of this method can be improved by
increasing the values of n. In the present model we have
found that the qualitative prediction of GMF for the phase
diagram does not change if n�5. The most accurate approxi-
mation is achieved for n=10. The corresponding predictions
are compared with MC data in Fig. 2.

Figure 2 illustrates that both techniques show a steplike
transition from C to D phase at b=1, that is bc1=bc2=1, in
the limit K→0. A similar behavior can be concluded if
K→�, that is resembling the mean-field prediction men-
tioned above. First-order transition from C to D is found
�i.e., bc1=bc2�1� when varying the value of temptation b for
fixed noise level if its value exceeds a threshold value
�K�Ktric

�MC�	0.15�. For lower noise level the first-order tran-
sition splits into two continuous critical transitions belonging
to the directed percolation universality class �30� as detailed
below. For this threshold value of noise �K=Ktric� one can
observe a tricritical point �b=btric

�MC�	1.05� where all the
mentioned three phases can coexist.

The continuous extinction process of both the C and D
strategies exhibits universal behavior belonging to the di-
rected percolation universality class �31�. This means that the
variation of b or K �as a control parameter� yields a power
law decrease of order parameter �here the density of C or D
strategies� when approaching the critical point. The algebraic
behavior is accompanied by a power-law divergence in the

correlation length, relaxation time, and fluctuation of order
parameter that makes the numerical analysis time consuming
�30�. In the critical point the order parameter decays algebra-
ically as

��t� 	 t−
 �5�

for sufficiently long times. The value of 
 and other critical
exponents are universal �independent of the details of dy-
namical rules� while their values are related to each other and
depend on the spatial dimension. For a one-dimensional sto-
chastic cellular automaton 
=0.159 464�6� is found �32�. In
order to demonstrate the same universal behavior, the quan-
tity �t
 is plotted as a function of time in Fig. 3 where 30
independent runs of N=2�106 system size are averaged.

Notice that in Fig. 2 the MC results are reproduced quali-
tatively well by the GMF approximation. Quantitatively
good agreement is found in the function bc2�K� for arbitrary
value of K while for the lower phase boundary the reproduc-
tion is not satisfactory �if K�Ktric�. The relevance of long-
range correlations in the extinction process of D strategies
can explain the difference in the prediction of GMF and MC
results.

The b-K phase diagram demonstrates another striking fea-
ture of the evolutionary PD game for this connectivity struc-
ture. Namely, Fig. 2 refers to the existence of an optimum
noise level providing the best condition for the cooperators
to survive. At the same time, when increasing K for
b=1.03 one can observe three consecutive phase transitions,
namely, D→M→C→D. The smoothed version of this be-
havior was reported for those connectivity structures that
cannot be spanned by overlapping triangles supporting the
spreading of cooperation in the low noise limit for the pair-
wise comparison dynamical rule �22�.

Interestingly, one can observe another reentrance transi-
tion along the boundary separating the C and M phases in
Fig. 2 that is similar to previously observed coherence reso-
nance phenomenon for the PD game �27� or even for other
games �33�.

As mentioned above the cooperation can be maintained
even at the low noise limit �if b�1� for many other connec-
tivity structures spanned by overlapping triangles. The
present study has demonstrated that this general trend is de-
feated by the additional one-dimensional constraint provid-
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FIG. 2. Phase boundaries on the b-K plane for the one-
dimensional connectivity structure with z=4. Solid lines indicate
the prediction of the generalized mean-field technique for n=10
while connected symbols stand for MC results. The phase bound-
aries separate the homogeneous phases of cooperators �C� or defec-
tors �D�, and the mixed state M where cooperators and defectors
coexist. The tricritical points are indicated by arrows and also by
full circles for the MC results and the GMF method.
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FIG. 3. Density decay of cooperators at b=1.03 for three differ-
ent noise levels �K=0.0791, 0.0790, and 0.0789 from top to bot-
tom�. The middle curve illustrates the typical behavior in the critical
point �
=0.159�.
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ing that propagating fronts cannot avoid each other on this
structure. However, the latter feature is destroyed when new
links are added to the connectivity structure as demonstrated
in Fig. 1.

The effect of new links on the b-K phase diagram is illus-
trated in Fig. 4 for different values of p characterizing the
portion of added links. From the present numerical results
one can conclude that the region of the M state becomes
wider as p increases and persists in the whole range of K we
studied. Simultaneously the tricritical point disappears im-

mediately and the lower phase boundary bc1�K� remains less
than 1 if K→0 as we introduce the additional links. The
gradual variations are related to the emergence of the small-
world character and simultaneously to the destruction of the
strict one-dimensional properties when p is increased. On the
contrary, the upper phase boundary �between the D and M
phases� tends to b=1 as K goes to 0 if p does not exceed a
threshold value ptr=0.04�2�. Unfortunately, the more accu-
rate determination of ptr is prevented by the long relaxation
time diverging if K→0.

To sum up, we have systematically studied the effect of
noise K and temptation b �to choose defection� on the mea-
sure of cooperation for an evolutionary prisoner’s dilemma
game on a one-dimensional chain with nearest- and next-
nearest-neighbor interactions. The application of this connec-
tivity structure is motivated by the claim to clarify the pos-
sible impacts of elementary topological properties. Here the
conflicting topological features result in a curious b-K phase
diagram where three phases can exist at special values of
parameters. It is also demonstrated that the basic features of
the phase diagram are modified drastically when new links
are added to the connectivity structure according to the
Newman-Watts construction.
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