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Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs
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We have studied an evolutionary prisoner’s dilemma game with players located on two types of random
regular graphs with a degree of 4. The analysis is focused on the effects of payoffs and noise (temperature) on
the maintenance of cooperation. When varying the noise level and/or the highest payoff, the system exhibits a
second-order phase transition from a mixed state of cooperators and defectors to an absorbing state where only
defectors remain alive. For the random regular graph (and Bethe lattice) the behavior of the system is similar
to those found previously on the square lattice with nearest neighbor interactions, although the measure of
cooperation is enhanced by the absence of loops in the connectivity structure. For low noise the optimal
connectivity structure is built up from randomly connected triangles.
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One of the central questions in evolutionary game theory
is to find necessary conditions and mechanisms that result in
cooperation among selfish individuals. Naturally, several
mechanisms have already been explored such as kin selec-
tion [1], retaliating behavior [2], voluntary participation [3],
or development of reputation [4].

A widely studied toy model, which illustrates the conflict
between cooperation and selfish behavior, is the prisoner’s
dilemma game (PDG). In the (two-player and one-shot) PDG
[5,6], the players simultaneously decide whether to cooperate
or defect in order to maximize their individual payoff. The
dilemma is based on the fact that defection brings higher
income independently of the other player’s decision. But if
both players defect they receive significantly lower payoff
than in the case of mutual cooperation.

The introduction of short-range interaction between the
spatially distributed players can explain the formation of co-
operation for iterated evolutionary PDGs [7,8], even for the
case when players can follow one of the two simplest strat-
egies “always cooperate” (C) and “always defect” (D). In
multiagent evolutionary PDGs, the players gain their income
from games with their neighbors. According to the Darwin-
ian selection principle, the less successful strategy is re-
placed by a more successful strategy adopted from their
neighborhood [9,10].

Several studies followed the pioneering work of Nowak et
al. [7,8] in the field of evolutionary PDGs analyzing many
types of connectivity structures (lattices [ 11-13], diluted lat-
tices [8], social networks [14—17], hierarchical graphs [18],
scale-free networks [19], preferential selection of a neighbor
[20]) to clarify the possible role of the topology. In Ref. [21],
self-organizing networks controlled by proper dynamics
were applied to find the most advantageous structure for co-
operation. Our previous study [22] reveals the importance of
clique percolation [23,24].

In the present Brief Report, as a continuation of our pre-
vious work [22], we explore the effect of noise parameter on
the PDG by extending the connectivity structures to random
graphs. Our observations suggest that the effects of noise
(temperature) on the stationary concentration of cooperators
are greatly affected by the underlying structure.
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To investigate the influence of the noise and connectivity
structures, we have considered an evolutionary PDG with
players located on the sites of a regular graph with a connec-
tivity of four (z=4). The restriction to regular random graph
serves to make the comparison easier and to avoid undesired
effects due to the various degrees of nodes (different sizes of
neighborhoods) [8,19,25,26].

The players can follow one of the above mentioned two
strategies whose distribution is described by the formalism
of the two-state Potts model: the possible state of the site x is
s,=C or D (cooperator or defector). The strategy adoption
mechanism [22] is based on the rescaled version of the pay-
off matrix introduced by Nowak et al. [7]:

(
A_

During the evolutionary process the randomly chosen player
at site x can adopt the strategy of one of the (randomly cho-
sen) coplayers (at site y) with a probability depending on the
payoff difference (U,-U,),

b
1>, 1<b<2. (1)

1
~ 1+exp[(U,- U)IK]’

Wis, —s,] (2)
where K characterizes the magnitude of noise involving
many different effects (fluctuations in payoffs, errors in de-
cision, individual trials, etc.) [13,27].

The present analysis is focused on two connectivity struc-
tures displayed in Fig. 1. Henceforth, we will refer to the

RRG1 RRG2

FIG. 1. Two types of random regular graphs (RRGs) on which
an evolutionary prisoner’s dilemma game is studied.
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FIG. 2. Monte Carlo results for the concentration of cooperators
vs b for three different noise values: K=0.1 (pluses), 0.3 (dia-
monds), and 1.2 (squares) on RRGI.

structures as RRG1 and RRG2, respectively. The RRG1 ran-
dom regular graph is the simulated version of the Bethe lat-
tice, because RRG1 is locally similar to a tree in the large-
size limit (when the number of sites goes to infinity). For a
finite number N of sites, however, RRG1 has loops. This
influence seems to be negligible when choosing sufficiently
large systems. To avoid confusion and for better visualiza-
tion, Fig. 1 represents an “ideal” (free of loops) part of
RRGI.

RRG@G?2 is a random regular graph of triangles with three
neighboring triangles. The triangles of RRG2 are the nodes
of the underlying random regular graph (with z=3), and be-
tween these nodes, the bonds are the common sites of the
overlapping triangles. Locally, it resembles to the Kagomé
lattice, but—as will be seen later—it has some characteristics
of a random regular graph, too. Despite the similar coordi-
nation number (z=4) the topology of the two random net-
works differs significantly. In the limit N — o, the concentra-
tion of triangles (three-site cliques) vanishes in RRGI, i.e.,
this structure has a clustering coefficient C=0, whereas the
overlapping triangles percolate on RRG2, and the clustering
coefficient is C=1/3.

Since the classical mean-field theory is insensible to the
topology, the equation of motion for the concentration of
cooperators is identical with the equation of the model on
lattices presented in our previous work [22]. The solution of
the differential equation suggests that cooperators die out and
defection is the only successful strategy for arbitrary values
of K and b>1.

As was mentioned in our previous paper [22] the neces-
sary condition for cooperators to survive is the possibility to
form clusters where cooperators can assist each other. This
may happen on lattices in higher dimensions at certain range
of parameter b. The present paper surveys the area of the
b-K parameter plane where cooperation can survive.

Figure 2 shows the stationary concentration p of coopera-
tors on RRG1 as a function of b for different temperature
values. This plot indicates that the variation of p on RRG1 is
qualitatively similar to those found on the square lattice [22].
These numerical data are obtained from Monte Carlo (MC)
simulations performed on large systems (the size varied from
N=4X10* to 4x 10, and the stationary values are deter-
mined by averaging over a sampling time 7, (varied from z;
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FIG. 3. Critical value of b vs K on RRG1. Symbols come from
Monte Carlo simulations, the solid, dashed, dotted, and dash-dotted
lines represent the predictions of the dynamical cluster approxima-
tion for the 2-, 5-, 8-, and 11-site clusters shown at the top.

=10* to 10°® Monte Carlo steps per sites). The larger N and ¢,
are used in the close vicinity of the extinction of cooperators
because the variance diverges approximately as yop~2 for
small concentration and low K. Further difficulties were
caused by the size dependence at low K values. The reason
for this phenomenon can be related to the existence of small
loops whose effect will be discussed later on.

The transition from a fluctuating (C+D) phase into the
absorbing state frequently belongs to the directed percolation
universality class. The critical exponent characterizing the
power law decrease of concentration was reproduced when
the evolutionary PDG was simulated on different two-
dimensional lattices [13,22]. As expected, the change of host
lattice to a random graph results in a mean-field type of
behavior in p(K) as demonstrated in Fig. 2. The stationary
concentration of cooperators is independent of the initial
state and decreases linearly with b.—b. As b exceeds a
threshold value (b,,), cooperation cannot be maintained and
the evolution always ends in the homogeneous D state.

We have determined the critical values of b for different
noise levels and the results are summarized in Fig. 3. The
b.(K) curve has a maximum at K=0.37, and goes to 1 if K
goes either to zero or to infinity. This figure can be consid-
ered as a phase diagram because the solid line connecting the
Monte Carlo data separates the area where cooperators and
defectors can coexist from the pure defector area.

The possibility of a similar stochastic resonance was re-
ported by Traulsen et al. [28], who considered another evo-
lutionary rule based on the application of the “win-stay-lose-
shift” strategies. The appearance of stochastic resonance was
directly demonstrated on the square lattice by Perc in a simi-
lar PDG by adding random perturbations to the payoffs [29].
A similar type of noise-induced phenomenon, called coher-
ence resonance, has also been observed for excitable dy-
namical systems [30,31].

The analytical reproduction of this behavior proved to be
a very time-consuming task. In contrast to the Monte Carlo
results, as detailed in the previous paper [22], the traditional
mean-field approximation suggests a sudden change between
the homogeneous D and C states at b(C'r”ﬂ (K)=1. The pair
approximation is capable of describing the coexistence of the
C and D strategies but it gives a rough estimation for critical
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FIG. 4. Phase diagram on RRG2. Symbols denote the MC data.
The dashed and dotted lines illustrate the phase boundary between
the D and (C+D) phases predicted by the three- and five-site ap-
proximations on the clusters shown at the top.

b values, especially in the zero-temperature limit. To elimi-
nate these discrepancies we have to extend the dynamical
cluster approximations (considered as generalized mean-field
methods) on the Bethe lattice [32]. When applying these
techniques we derive equations of motion for all possible
configurational probabilities on large clusters and search nu-
merically for the stationary concentrations by integrating the
equations of motion with respect to time (further details on
these methods will be given elsewhere). Figure 3 shows that
both the five- and eight-site approximations predict incorrect
results in the zero-temperature limit although their predic-
tions become more and more accurate in the high-
temperature region. Besides, one can observe relevant im-
provement when comparing the results of the five- and eight-
site approximations at the limit K— 0. This fact inspired us
to extend this method to the level of 11-site approximations.
As shown in Fig. 3 this level is already capable of describing
the disappearance of cooperation as K goes to 0. The above
series of results emphasize the importance of long-range cor-
relations and/or the absence of loops in the connectivity
structures for the limit K— 0.

Basically different behavior is found on the RRG2 struc-
ture as demonstrated in Fig. 4. It is conjectured previously
that the function b.(K) decreases monotonically to 1 if K is
increased for those connectivity structures where the over-
lapping triangles span the whole system. The present data
support this conjecture.

In Fig. 4 we compare the MC data with the predictions of
three- and five-site approximations. It is worth mentioning
that qualitatively similar results are obtained when the con-
nectivity structure is given by the Kagomé lattice [22]. The
RRG2 and Kagomé lattices are locally similar: the overlap-
ping triangles have only one common site. This is the main
reason why the three- and five-site approximations predict
the same results on the RRG2 and Kagomé lattices. In fact,
the structure of RRG?2 fits well to the conditions of the five-
site approximations, overestimating both p and b, for the
Kagomé lattice. At the same time, the results of this ap-
proach agree very well with the MC data on RRG?2 (see Fig.
4). We have to emphasize that this is the connectivity struc-
ture providing the highest measure of cooperation among
regular structures (if z=4) for low K values (for a compari-
son see Fig. 5). At the first glance it is a surprising result
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FIG. 5. Phase boundaries between the D and (C+D) phases on
RRGI1 (pluses), RRG2 (double-triangle symbols), square lattice
(squares), and Kagomé lattice (triangles).

because the introduction of spatial connectivity structures
was motivated by the possibility of the formation of C colo-
nies [2,7].

The above results have helped us to deduce a simple ex-
planation justifying the importance of the one-site overlap-
ping triangles in the connectivity structures. Let us assume
that one of the triangles is occupied by cooperators in the sea
of defectors. Within this triangle, the cooperator’s income is
2, the neighboring defectors receive b, and all the other D’s
get nothing. In this situation the most probable evolutionary
process is that one of the neighboring defectors adopts the
strategy of the more successful cooperators (for low K). The
state of this new cooperator is not stable and it can be
switched into a defector again within a short time. During the
lifetime of the new cooperator, however, the other neighbor-
ing defector adopts the C strategy very probably from the
cooperator in the original triangle (if 5<<3/2), and they will
form a neighboring (stable) triplet of cooperators. The itera-
tion of these processes yields a growing tree of cooperator
triplets. The growing process is stopped at the sites that sepa-
rate two branches of the growing tree, because the corre-
sponding defector(s) can exploit two or more cooperators
simultaneously. The blocking events occur frequently for the
spatial structures and are excluded for treelike structures.
Thus, the absence of loops (formed by the one-site overlap-
ping triangles) sustains the spreading of cooperation in
RRG2. This picture is valid if only one tree of cooperator
triplets exists in the initial state. For a random initial state,
however, the system will have many (trees of) cooperator
triplets which will check each other in the growing process at
the sites where their branches are separated even on the
RRG?2 structure. In the final stationary state the spreading
and blocking effects are balanced in a way that takes the
noise into account. Evidently, the noisy effects can break up
the triplets of cooperators. As a result, one can observe
monotonic decrease in the function p(K) when increasing K
for any b<b,,.

Disregarding the triangles, the presence of loops in the
connectivity structure reduces the measure of cooperation for
high noise level too. Figure 5 clearly demonstrates that
RRG?2 is more advantageous than the Kagomé lattice in the
maintenance of cooperation. Similar conclusion can be de-
duced when we compare the results obtained on the RRG1
and square lattices (see Fig. 5). In these cases the stable
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triplets of cooperators cannot be observed because of the
absence of triangles in the connectivity structure. For both
structures the maintenance of cooperation is supported by
noisy events resembling coherence resonance [29]. At finite
noise level the occasional (irrational) adoption of the neigh-
boring C strategy increases the tree of cooperators, and this
effect is weakened by the presence of loops as described
above.

It is more surprising that the disadvantageous presence of
loops is so relevant that RRG1 becomes the most efficient
structure to sustain the cooperation if K exceeds a threshold
value (K> K,,=0.4) for z=4. In other words, in the mainte-
nance of cooperation the advantageous effect of the
quenched (regular) neighborhood is weakened by the spatial
characteristics of the connectivity structure.

To summarize, we have systematically studied the effect
of noise K and temptation b to choose defection on the mea-
sure of cooperation in an evolutionary PD game for two
types of random regular connectivity structures with z=4.
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For this purpose we have determined the critical value b,,(K)
of temptation until the cooperators can remain alive. For suf-
ficiently high noise levels the comparison of different con-
nectivity structures indicates that the highest b..(K) can be
achieved by minimizing the number of loops in the connec-
tivity structure. On the contrary, at low noise levels, the pre-
ferred structure is built up randomly from overlapping tri-
angles in a way that the overlapping triangles have only one
common site. Evidently, the analysis becomes more compli-
cated for those connectivity structures which involve varia-
tion in degree, z>4, and more complex connections at the
overlapping triangles.
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