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We have studied the evolution of strategies in spatial public goods games where both individual (peer) and
institutional (pool) punishments are present in addition to unconditional defector and cooperator strategies.
The evolution of strategy distribution is governed by imitation based on the random sequential comparison of
neighbors’ payoff for a fixed level of noise. Using numerical simulations, we evaluate the strategy frequencies
and phase diagrams when varying the synergy factor, punishment cost, and fine. Our attention is focused on two
extreme cases describing all the relevant behaviors in such a complex system. According to our numerical data
peer punishers prevail and control the system behavior in a large segments of parameters while pool punishers can
only survive in the limit of weak peer punishment when a rich variety of solutions is observed. Paradoxically, the
two types of punishment may extinguish each other’s impact, resulting in the triumph of defectors. The technical
difficulties and suggested methods are briefly discussed.
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I. INTRODUCTION

The emergence of cooperation among selfish individuals
is an important and intensively studied puzzle inspired by
systems of biology, sociology, or economics [1,2]. One of
the frequently used frameworks to study the conflict of
individual and common interests is the so-called public goods
game (PGG) in which several players decide simultaneously
whether they contribute to the common venture. The collected
income is multiplied by a factor (representing the advantage of
collective actions) and shared equally among all members of
the group independently of their personal act. Accordingly,
defectors, who deny to contribute but enjoy the common
benefit (due to the cooperators), collect higher individual
payoffs and are favored, leading to the “tragedy of the
commons” state [3].

In the last decade several mechanisms have already been
identified that help resolve this dilemma by ensuring com-
petitive payoff for altruistic (cooperative) players [4–19]. A
plausible idea is to punish defectors by lowering their income,
which decreases their popularity [20–23]. Punishing cheaters,
however, can be executed in two significantly different ways.

First, players can retaliate individually by paying an extra
cost of punishment as often as they face with defectors.
Naturally, this so-called peer punisher strategy fares equally
well with pure cooperators in the absence of cheaters. The
pure cooperators, however, who do not contribute to the
sanctions but utilize the advantage of punishment, can be
considered “second-order free-riders” [24]. As a conclusion,
the generally less favored peer punisher strategy will become
extinct gradually and the original problem emerges again.
Without introducing further complexity this problem cannot be
solved in a well-mixed population. In a structured population,
however, an adequate solution may be achieved by utilizing
spatial effects [2,5]. Here the pure cooperators and peer
punishers are able to separate from each other and fight
independently against defectors. Since punishers do it more
successfully, they eventually displace the pure cooperators via
an indirect territorial fight [25,26].

The alternative way to impose sanctions is when players
invest a permanent cost into a punishment pool and punish
defectors “institutionally.” In this case, if there is punishment
in the group, the fine imposed on defectors may not necessarily
depend on the actual number of punishers in the group, and
the cost of punishers can also be independent of the number
of cheaters among group members. In this way the cost is
always charged independently of the necessity or efficiency
of punishment. In a well-mixed population, pool punishment
can only prevail if “second-order punishment” is allowed;
i.e., pure cooperators, who do not invest extra cost into the
punishment pool, are also fined [27,28]. In the absence of
the latter possibility defectors will spread if the participation
in PGG is compulsory. In agreement with expectations, the
spatial models offer another type of solution where the pool
punisher strategy can survive without assuming additional
punishment of pure cooperators. In the latter case a self-
organizing spatiotemporal pattern can be observed [29]. The
emergence of spatial patterns, maintained by cyclic dominance
among three strategies, is a general phenomenon and occurs
for a wide variety of systems including PGG [4,30,31] and
different variants of the prisoner’s dilemma game [32–36].

We note that many aspects of punishment were already
investigated in human experiments [21,37–43], as well as
by means of mathematical models with three [4,44,45], four
[46,47], and even more strategies [48,49].

The seminal work of Sigmund et al. has revealed that pool
punishers always lose and peer punishers prevail for well-
mixed populations in the absence of second-order punishment
[27,28]. In the present paper we study the competition of
punishing strategies by assuming a structured population. It
is demonstrated that the stable solution depends sensitively on
the relative cost that punishing strategies bear. Accordingly, we
studied two extreme cases illustrating the possible relations
of pool and peer punisher players. It should be stressed
that in our model additional strategies, such as voluntary
optional participation in PGG or second-order punishment
of pure cooperators, are not allowed. Despite its simplicity
the spatial model exhibits really complex behavior, including
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different space and time scales in connection to the emerging
solutions.

The remainder of this paper is organized as follows. In
the next section we describe the studied models by supplying
motivations to the suggested extreme cases termed as “hard”
and “weak” peer punishment limits. In Sec. III we present
the solutions obtained by Monte Carlo (MC) simulations for
an expensive peer strategy. The results of the other extreme
case are presented in Sec. IV. Finally, we summarize our
observations and discuss their potential implications.

II. SPATIAL PUBLIC GOODS GAME
WITH PUNISHING STRATEGIES

To preserve comparability with previous works [26,29] the
public goods game is staged on a square lattice using periodic
boundary conditions. We should emphasize, however, that the
observed results are robust and are valid in a wider class of two-
dimensional lattices. The players are arranged into overlapping
five-person (G = 5) groups in a way that each player at site
x serves as a focal player in the group formed together with
his or her four nearest neighbors [50–54]. Consequently, each
individual belongs to G = 5 different groups and plays five
five-person games by following the same strategy in every
group he or she is affiliated with.

According to the four possible strategies, a player on site x

is designated as a defector (sx = D), pure cooperator (sx = C),
peer (sx = E), or pool punisher (sx = O). For the last three
strategies the player contributes a fixed amount (equal to 1
without loss of generality) to the public goods while defectors
contribute nothing. The sum of all contributions in each
group is multiplied by the factor r (1 < r < G), reflecting
the synergetic effects of cooperation, and the multiplied
investment is divided equally among the group members
irrespective of their strategies.

In addition to the basic game, defectors may be punished
if there are pool or peer punisher players in the group. Pool
punishment requires precursory allocation of resources; that is,
each punisher contributes a fixed amount γ to the punishment
pool irrespective of the strategies in its neighborhood. Further-
more, because of the institutional character of this sanction, the
resulting β fine of defectors is independent on the frequency
of pool punishers: the only criterion is the presence of at least
one pool punisher in the group.

The characteristics of peer and pool punishments differ
significantly. Namely, the cost of peer punishment is charged
only if a peer punisher faces a defector but this cost is
multiplied by the number of defectors (Ng

D) in the given group
g (g = 1, . . . ,G). The latter fact reflects that a peer punisher
should penalize each defector individually. In addition, the fine
of a defector originating from peer punishment is accumulated
and is proportional to the number of peer punishers, N

g

E ,
in the group. Denoting the number of cooperators and pool
punishers by N

g

C and N
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where the steplike function f (Z) is 1 if Z > 0 and 0 otherwise.
The total payoff of a player at site x is accumulated from
five public goods games; consequently, Psx

= ∑
g P

g
sx

(g =
1, . . . ,G).

The parameter m in Eqs. (1) allows us to quantify two
relevant limits in the relation of pool and peer punisher
strategies. At the “hard” limit of peer punishment (m = 1)
the pool punisher pays a lump cost γ while the peer punisher
is charged the same cost γ for each action of punishment; that
is, their corresponding income is reduced by γN

g

D . Notice that
in spite of their high cost the peer punisher may overcome pool
punishers in the absence of defectors. The latter constellations
may become relevant in the spatial systems if defectors are
present rarely. On the other hand, the hard peer punishment
reduces the income of defectors more efficiently if several
neighbors apply this strategy against a defector.

The “weak” limit of the peer punishment is studied at the
parameter value m = 1/(G − 1). In this case the cost of a
pool punisher always exceeds the cost of a peer punisher,
except in the case when every group member chooses defection
around the E player. Now we consider only the case when
the efficiency (i.e., corresponding fine) of peer punishment
is also reduced by the factor m. The above situations raise
many questions about the competition and coexistence of the
basically different types of punishment.

Following the traditional concept of evolutionary game
theory, the population of the more successful individual
strategies expands at the disadvantage of others having lower
income (fitness). For a networked population this strategy
update is usually performed via a stochastic imitation of the
more successful neighbors. Accordingly, during an elementary
step of Monte Carlo simulation a randomly selected player
x plays public goods games with all her co-players in G

groups and collects Psx
total payoff as described in Eqs. (1).

Next, player x chooses one of its four nearest neighbors
at random, and the chosen co-player y also acquires its
payoff Psy

in the same way. Finally, player x imitates the
strategy of player y with a probability w(sx → sy) = 1/{1 +
exp[(Psx

− Psy
)/K]}, where K quantifies the uncertainty in

strategy adoptions [2,55]. Generally, the possibility of error in
a strategy update prevents the system from being trapped in
a frozen, metastable state. For the sake of direct comparison
with previous results [26,29] we set K = 0.5. It is emphasized
that the found solutions are robust and remain valid at other
(low) values of noise parameter.

The frequencies of pool and peer punishers (ρO and ρE),
cooperators (ρC), and defectors (ρD) [satisfying the condition
ρD + ρC + ρO + ρE = 1] are determined by averaging over
a sampling time ts after a sufficiently long relaxation time
tr . The time is measured in the units of Monte Carlo step
(MCS), giving a chance once on average for the players to
adopt one of the neighboring strategies. Depending on the
values of the parameters γ , β, and r the emerging spatial
patterns exhibit a large variety in the characteristic length
and time scales. In order to achieve an adequate accuracy
(typically the line thickness) we need to vary the linear system
size from L = 400 to 7200 for sufficiently long sampling and
relaxation times (in some crucial cases tr = ts > 106 MCS).
As we describe in detail in the subsequent sections the usual
choice of random distribution of strategies as an initial state
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was not always appropriate to find the solution that is valid
in the large system size limit. At some parameter values even
the largest attainable system size (L = 7200) was not large
enough to reach the most stable solution from a random
initial state. This problem is related to the fact that the
formation of some solutions is characterized by different time
scales and the fast relaxation from a random state toward
an intermediate (unstable) state prevents the more complex
solutions from emerging. In the latter cases we had to use a
prepared (artificial) initial state (e.g., a patchworklike pattern),
combining solutions of subsystems where several strategies
are missing.

III. HARD PEER PUNISHMENT

First we discuss the case of hard peer punishment because
it yields simpler phase diagrams. In this case the cost of peer
punishers exceeds the cost of pool punishers when several
defectors are present in their neighborhood. At the same time
the peer punishers can help each other if they form compact
colonies in the spatial system and these collaborations multiply
the fine, reducing the income of neighboring defectors. To
reveal the possible stable solutions, we have studied different
values of the synergy factor r exhibiting significantly different
results in simpler models studied previously [26,29]. The
applied values (r = 3.8, 3.5, and 2) represent three different
classes in the stationary behavior.

The highest synergy factor (r = 3.8) allows pure coopera-
tors to survive even in the absence of punishment. At a slightly
lower synergy value (r = 3.5) defectors would prevail without
punishment; however, both types of punishment (as a possible
third strategy) can boost cooperation, as was already shown
[26,29]. In the case of the lowest synergy factor (r = 2), the
simpler three-strategy models predict significantly different
behaviors when applying only peer or pool punishment. For
low cost values cooperators were unable to survive for the
case of peer punishment in the presence of a weak noise,
allowing additional rare creation of defectors. On the contrary,
for pool punishment, the D, C, and O strategies formed a self-
organizing spatial pattern maintained by cyclic dominance.
Now the numerical analysis is extended for higher values of β

and γ . As a result, we have observed the coexistence of D, C,
and E strategies via a curious mechanism within a region of
parameters (not previously investigated).

MC simulations were performed to determine the stationary
frequency of strategies when varying the value of fine β

for different values of cost γ and r . The numerical data
indicated discontinuous (first-order) or continuous (second-
order) phase transition(s) between phases characterized by
basically different compositions and/or spatiotemporal struc-
tures as illustrated in Fig. 1 for the lowest value of r we first
study.

If the system is started from a random initial state with four
strategies then the system evolves into the homogeneous (ab-
sorbing) state D, where only defectors remain alive (ρD = 1)
if the fine is smaller than a threshold value βth(γ = 0.8,

r = 2,K = 0.5) = 0.997(4) [indicated by an arrow in Fig. 1].
The simulations show clearly that defectors invade the ter-
ritories of peer punishers if β < βth. For βth < β < βc1 the
superiority of defectors (ρD = 1) is due to a mechanism

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0.5  1  1.5  2  2.5

st
ra

te
gy

 fr
eq

ue
nc

ie
s

fine

D
C
E

D Dh(E) (D+C+E) E

FIG. 1. (Color online) Average strategy frequencies vs fine in
the final stationary state for hard peer punishment limit (m = 1) at
γ = 0.8 and r = 2. The corresponding phases are denoted at the top.
Lines are just a guide for the eye. The arrow points to the value of
the fine separating the phases D and Dh where the average invasion
velocity between the domains of D and E strategies becomes zero.

that can be understood by considering first the curious
coexistence of the D, C, and E strategies occurring for
βc1 < β < βc2 [βc1(γ = 0.8,r = 2,K = 0.5) = 1.48(1) and
βc2(γ = 0.8,r = 2,K = 0.5) = 2.10(1)]. The corresponding
phase is denoted as (D + C + E). Within this phase strategy E

can invade the territories of Ds along the interfaces separating
them as illustrated in the snapshot in Fig. 2. For sufficiently
high values of β and γ , however, the expensive action of
punishment reduces the income of both defectors and peer
punishers along the interface where players can increase their

FIG. 2. (Color online) Typical arrangement of cooperators
(white), defectors (black), and peer punishers (orange or light gray)
for the (D + C + E) phase within a 200 × 200 part of a larger system
at r = 2, γ = 1, and β = 2.5 in the hard peer punishment limit.
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payoff by choosing cooperation. As a result cooperators can
spread along these interfaces by forming a “monolayer.” At the
same time the interfacial cooperators serve as a “cooperator
reservoir” from where cooperation can spread into phase E via
the mechanism described by the voter model [56–58]. Rarely
the cooperators aggregate in the vicinity of the interface and
the given territory becomes unprotected against the invasion
of defectors. Consequently, the presence of cooperators along
the D-E interfaces reverses the direction of invasion. In Fig. 2
one can observe both types of invasions balanced in the
(D + C + E) phases.

The spreading of cooperators along the D-E interfaces is
influenced by the values of γ and β and it may become
so efficient that C monolayers are formed throughout these
interfaces. In that case the E domains are invaded by defectors
with the assistance of cooperators. Having the last peer
punishers removed, the defectors sweep out cooperators, too.
This process resembles a real life situation described as
“the Moor has done his duty, the Moor may go.” Such a
scenario occurs within the phase Dh where subscript h refers
to homoclinic instability. The mentioned transient process to
D is confirmed by MC simulations for most of the runs in
small systems (e.g., L < 400). The present system, however,
can evolve into the homogeneous state E (ρE = 1) with a
probability increasing with L. The phase E can conquer D (via
a nucleation mechanism) if a small colony of E players survive
the extinction of cooperators and the colony size exceeds a
critical value during the stochastic evolutionary steps. It is
emphasized that the E invasion can be reversed by the offspring
of a single cooperator substituted for one of the players along
the D-E interface and finally the system evolves into a state
prevailed by defectors. Notice that pool punishers die out for
all the cases plotted in Fig. 1. Furthermore, the (D + C + E)
phases transform into E with a continuous extinction of
both the D and C strategies when approaching βc2. Similar
numerical investigations are made for many other values of
cost γ and the results are summarized in a phase diagram
plotted in Fig. 3.
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FIG. 3. (Color online) Cost-fine phase diagram in the hard peer
punishment limit (m = 1) for a low synergy factor (r = 2). The
dashed (red) and solid (blue) lines represent first- and second-order
phase transitions; the dotted (black) line separates the homogeneous
phases of defectors (D) with different stabilities.

The simulations indicate that both defectors and pool
punishers die out within a transient time for sufficiently high
values of β if γ < γc(r = 2) = 0.59(1). Because the surviving
cooperators and peer punishers receive the same payoff, the re-
sultant two-strategy evolutionary process becomes equivalent
to those described by the voter model. The two-dimensional
voter model exhibits an extremely (logarithmically) slow
evolution toward one of the (homogeneous) absorbing states
[59]. The coexistence of C and E strategies, however, can
be destroyed by introducing defectors (as mutants even for
arbitrarily small rates) favoring and accelerating the fixation
in the homogeneous state of strategy E [60]. This is the reason
why the final stationary state is denoted by E in the phase
diagrams throughout the whole paper (see, e.g., Figs. 1 and 3).
Finally we mention that the dotted line in Fig. 3 is the analytical
continuation of the dashed (red) one separating phases D and
E. Along these lines the average velocity of invasion between
the phases E and D becomes zero.

As expected, the increase of r supports the maintenance
of cooperation. Consequently, a smaller fine is capable of
suppressing defection. As well as for r = 2, pool punishers
die out quickly if r = 3.5. For high values of β and γ the
cooperators prefer to stay along the interfaces separating
domains of D and E phases (as described above) and yield
a slower tendency toward the final stationary state. The
undesired technical difficulty is reduced significantly for
lower values of cost and fine, where Fig. 4 illustrates a
discontinuous (first-order) phase transition between phases D
and E at a threshold value of fine increasing with the cost
of peer punishment if these quantities exceed the suitable
critical values (βc = 0.13(1) and γc = 0.19(1) for r = 3.5
and K = 0.5). When increasing β for γ < γc the first-order
phase transition from the homogeneous state D to state E
is separated by a coexistence region of D and E strategies.
Within this phase the frequency of peer punishers varies con-
tinuously from 0 to 1 and both transitions exhibit the general
features of directed percolation universality class in agree-
ment with previous results obtained for imitation dynamics
[32,55,61].
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FIG. 4. (Color online) Cost-fine phase diagram at m = 1 for
r = 3.5. Solid (blue) and dashed (red) lines represent second- and
first-order phase transitions, respectively. D + E denotes a phase with
coexisting D and E strategies.
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FIG. 5. (Color online) Cost-fine phase diagram at m = 1 for r =
3.8. Phases and phase boundaries are denoted as in Fig. 4.

For higher synergy factors (e.g., r = 3.8) the cooperators
survive in the absence of punishment (γ = 0). Consequently,
the homogeneous D phase is missing in the phase diagram. In
Fig. 5 the phase D + C refers to the coexistence of cooperators
and defectors in the final stationary states. The increase of
fine yields a discontinuous transition from D + C to D + E
if γ < 0.21(1) for the given parameters; otherwise one can
observe a first-order transition from D + C to E (within the
region of γ and β plotted in Fig. 5). Within the D + E phase the
density of defectors vanishes continuously when approaching
the phase boundary separating the phases D + E and E.

IV. WEAK PEER PUNISHMENT

In this section we focus on the opposite limit where, during
the sanction of punishment, peer punishers have less cost
and enforce lower fines in comparison with those of pool
punishers. Using m = 1/(G − 1) as a parameter value, their
costs are equal only if a peer punisher is surrounded only by
defectors (Ng

D = G − 1). According to a naive argument, the
peer punishers might benefit from the powerful fine of pool
punishers which strengthens their position, further comparing
to the latter strategy. This is expected especially after the
experience that we observed in the previous section where
peer punisher players prevail in the system despite their large
extra cost. Following the established protocol, we explore the
possible solutions at three representative synergy factors.

At high synergy factor (r = 3.8) the phase diagram, plotted
in Fig. 6, partly supports our expectation. Namely, at high cost
(γ > 0.0253) the solutions become identical to those obtained
in the absence of O strategies. At low values of cost, however,
the aforementioned belief is broken because pool punishers can
survive despite that they are charged by a larger permanent
cost of punishment. Notice, furthermore, that they can fully
displace not only pure cooperators but also peer punishers
who both can be considered second-order free-riders.

Figure 7 shows the variation of strategy frequencies
and illustrates five consecutive phase transitions (at βc1,
βc2, . . . ,βc5) when the fine is increased at γ = 0.005.

The visualization of the time dependence of spatial strategy
distribution has helped us understand what happens and the
characteristic mechanisms can be summarized as follows. If
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FIG. 6. (Color online) Phase diagram for the weak peer punish-
ment limit [m = 1/(G − 1)] at r = 3.8. Solid (blue) and dashed (red)
lines represent second- and first-order phase transitions, respectively.

the system is started from a random initial state then after a
short relaxation process we can observe a sea of defectors with
homogeneous islands of cooperative strategies (C, O, and E)
for low values of β. Due to the stochastic dynamics the islands
grow and shrink at random and sometimes they can disappear,
unite, or split into two. In the late stage of the evolutionary
process the pattern formation can be considered a competition
among three two-strategy associations (denoted as D + C,
D + O, and D + E) representing the corresponding stationary
solutions of subsystems where only two strategies take place
[2]. Evidently, the D + C solution can invade the other two
associations for infinitesimally small values of fine, because
Cs are not charged by the cost of punishment. The increase of
fine, however, favors the survival of the O and E strategies.
As a result, the average frequency of the punishing strategies
(ρO and ρE) increases with the fine in the corresponding
two-strategy phases (D + O and D + E) while ρC remains
constant in the phase D + C. The mentioned variations modify
the relationship among the three two-strategy solutions. The
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FIG. 7. (Color online) Strategy frequencies as a function of
fine in the weak peer punishment limit [m = 1/(G − 1)] for a
low punishment cost (γ = 0.005) and r = 3.8. Inset features the
enlargement of the small-fine area.

046106-5
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FIG. 8. (Color online) Phase diagram for the weak peer punish-
ment limit [m = 1/(G − 1)] at r = 3.5.

MC simulations indicate that the D + E phase conquers the
whole system if βc1 < β < βc2 and the D + O phase can be
observed in the final state if βc2 < β < βc3. In the latter two
phases the frequency of defectors decreases monotonously
with the fine and the punisher islands are simultaneously
separated by channels becoming narrower. In parallel with this
process the punishing islands unite more frequently, enforcing
the relevance of direct competition between E and O that
boosts the spreading of E. The latter effect helps peer punishers
to survive in the three-strategy phase D + O + E within the
region βc3 < β < βc4. In the range of fine βc4 < β < βc5,
the direct E invasion sweeps out all the pool punishers and
the system develops into the phase D + E where the defector
frequency approaches 0 at βc5. If β > βc5 then the system
evolves into the phase E as detailed above.

The general behavior of the four-strategy system at r = 3.5
is similar to those described above except for the missing
D + C phase in the low-fine limit. Figure 8 shows that pool
punishers can survive with defectors in either the absence or
presence of peer punishers at a sufficiently low cost. Otherwise
the phase diagram is identical to the result achieved in the
absence of a pool punisher.

Significantly different and more complex solutions are
found at low synergy factor r offering a modest efficiency of
investment paid into the common pool. The phase diagram for
r = 2 is plotted in Fig. 9. In agreement with the previous results
some parts of the corresponding phase diagram are identical
with those one can obtain if only one type of punishment
is allowed. For example, at high fine values, the E strategy
conquers not only D but O strategies as well, and the solution
reproduces the cases when the player can choose only D, C,
or E strategies. This feature is related to an earlier observation
indicating that the increase of fine would not necessarily
help the invasion of strategy O; meanwhile, peer punishers
are unequivocally supported and conquer the system if β is
enhanced.

On the other hand, one can observe striking similarity
with the previous results of a simpler model [29] obtained
in the absence of peer punishers. This happens in the low-fine
region where Es cannot fight efficiently against D and die out
within a transient period. Accordingly, in this region of the
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FIG. 9. (Color online) Cost-fine phase diagram for the weak peer
punishment limit [m = 1/(G − 1)] at r = 2.0.

β-γ plane, D + O, (D + C + DO)c, and (D + C + O)c phases
are identified (as detailed in [29]) where the subscript c refers
to self-organizing spatial strategy distribution maintained by
cyclic dominance on the analogy of evolutionary rock-paper-
scissors games.

The coexistence of both types of punishments occurs in the
phases (D + O + E)c and D + C + O + E indicated in the β-γ
phase diagram (see Fig. 9). Within the phase (D + O + E)c
three strategies cyclically dominate each other (namely, D

beats E beats O beats D) and form a self-organizing spatial
pattern. At these parameter values the (D + C + O)c phase is
also a possible solution.

A. Stability analyses

In the present four-strategy model, however, the (D + O +
E)c coalition (with proper spatiotemporal pattern) is more
stable and capable of invading the territory of other solutions
as demonstrated by consecutive snapshots in Fig. 10. For this
goal the whole system is divided into large rectangular regions
with proper periodic boundary conditions (PBCs) for each box
during a relaxation time. Within each box only three strategies
(D + C + O or D + O + E) are placed randomly in the initial
state. After a suitable relaxation time the proper PBCs are
removed and simultaneously the usual PBC is switched on.
This trick has allowed us to visualize the spatial competition
between the solutions (D + C + O)c (left) and (D + O + E)c
(right).

If the system size is large enough then there is always
a chance that all the possible solutions can emerge locally
somewhere in the system and the most stable solution can
finally prevail throughout an invasion process in the whole
system. The latter expectation is not necessarily satisfied,
particularly if the system size is small (such as L < 2000 for
c ≈ 0.02, r = 2). In addition, the “small” size of the system
also limits the characteristic size of patterns and prevents the
formation of phases including significantly larger correlation
lengths. These are the reasons why one cannot achieve reliable
MC results in small systems when analyzing the system
behavior in the vicinity of a critical point where the correlation
length diverges [62]. Further difficulties arise from the fact
that the present spatiotemporal patterns can be characterized
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O

D

C E

FIG. 10. (Color online) Spatial competition between two solu-
tions of three-strategy subsystems in the weak peer punishment
limit [m = 1/(G − 1)] for r = 2.0, β = 0.7, and γ = 0.025. Before
invasions are allowed at t = 0 MCS along the vertical interfaces,
both stationary solutions [(D + C + O)c (left) and (D + O + E)c
(right)] have been developed without disturbing each other in the
corresponding regions. Snapshots of the L = 400 × 400 part of an
L = 800 × 800 system are taken at (a) t = 0 MCS, (b) t = 200 MCS,
and (c) t = 1000 MCS, and (d) from the stationary state. Bottom
diagram shows the colors of strategies and their relations at these
parameters (indicated by an arrow toward the one who is invaded by
the other). These are black for D, white for C, blue (dark gray) for
O, and orange (light gray) for E.

by two or more length scales preventing the straightfor-
ward application of methods (e.g., finite-size scaling) devel-
oped in statistical physics for the investigation of simpler
systems [63].

In addition, the small size decreases the probability of the
emergence of phases requiring longer relaxation throughout
a complex evolutionary process. Figure 11 demonstrates the
related difficulties of numerical simulations we faced when
studying this system for sizes as large as L = 5000. Despite
the large system size the final state is still ambiguous if the
system is started from a random initial state. In most cases the
system evolves to either state D or state O, as demonstrated
by the top two plots of Fig. 11. Only very few runs result in
a third type, the (D + C + O)c phase. In order to justify the
stability of the (D + C + O)c phase we have performed further
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FIG. 11. (Color online) (top, middle) Evolutionary processes
within the region of the (D + C + O)c phase when the system is
started from a random initial state for L = 5000, using identical
r = 2.0, β = 0.78, γ = 0.1, and m = 1/(G − 1) parameter values.
(bottom) The stability of the (D + C + O)c phase if we insert a large
E domain into the given state at t = 0 MCS (here L = 1200).

stability analyses. Namely, by starting from a three-strategy
initial state the stochastic evolution of the (D + C + O)c phase
is interrupted at a time (indicated by an arrow in the bottom
plot of Fig. 11) and half of the system is replaced by a large
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domain of phase E and afterward the simulation is continued.
The time dependence of the strategy frequencies quantify how
the original solution is restored. Similar analysis can be done
to justify the superiority of the (D + C + O)c phase over the
O phase. It is worth mentioning that this ineludible analysis
is not time consuming due to the smaller system size used
in simulations. Furthermore, such a conclusive test cannot be
avoided when the model contains more than three competing
strategies.

Now we discuss two (perpendicular) cross sections of the
cost-fine phase diagram at r = 2 (Fig. 9) where the competition
between the two punishing strategies plays a relevant role. The
upper plot of Fig. 12 shows the variation of strategy frequencies
in the stationary state when the fine is varied from β = 0.8
to β = 1.0 at a fixed cost. The reader can observe that the
four-strategy D + C + O + E phase occurs via a continuous
transition from the phase (D + C + O)c when increasing the
fine and subsequently it transforms abruptly into the phase
Dh(O) where only defectors are present in the final stationary
state. As well as previously, the subscript of the notation
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FIG. 12. (Color online) Strategy frequencies vs fine if γ = 0.1
(top) and vs cost if β = 0.8 (bottom) for m = 1/(G − 1) and r = 2.0.
Notation of phases is indicated at the top.

Dh(O) refers to homoclinic instability being different from
those discussed in the previous section. In the present case
the homogeneous D phase can be invaded by the offspring of
pool punishers if they help each other by forming a sufficiently
large domain. At the same time the growing domain of pool
punishers can be eliminated by the offspring of either a single
cooperator or a peer punisher who is inserted into the territory
of pool punishers as a mutant created with an arbitrarily small
rate. For both cases defectors play the role of tertius gaudens
and prevail over the whole population. For the given cost the
peer punishers can beat defectors (with or without the presence
of others) if β > 0.978(2) when the system evolves into
phase E.

The lower plot of Fig. 12 illustrates three consecutive
phase transitions when increasing γ from 0 to 0.1 for a fixed
value of fine (β = 0.8). Notice that within the four-strategy
phase the frequency of cooperators is low (ρC < 0.1). Despite
the low values of ρC the presence of cooperators influences the
efficiency of punishing strategies in a complex way, indicated
by Fig. 12.

V. CONCLUSIONS

In this work we have compared the efficiency of pool
(institutional) and peer (individual) punishments within the
framework of a spatial public goods game when the strategy
evolution is controlled by stochastic imitation (resembling
Darwinian selection). This study is considered an initial
effort to understand why some societies rely mainly on
peer punishment and others prefer pool punishments. As a
general conclusion, the output in a structured population may
depend sensitively on the parameter values that characterize
the relation of punishment strategies.

Both types of punishment are applied by cooperative
players in different ways. The present four-strategy model
exhibits a wide variety in the final stationary behavior in the
limit of infinitely large system size when tuning the model
parameters (synergy factor, cost, and fine of punishment) for a
fixed level of noise. In many cases the peer punisher strategy
seems to be more efficient in the elimination of the “tragedy
of the commons” when all players choose defection. The
numerical analysis allowed us to identify phases where both
types of punishments coexist, sometimes together with the
(pure) cooperators weakening the efficiency of punishment.
We have found regions in the plane of parameters where
the competition between the different punishments helped
defectors to prevail over the whole system.

Finally we emphasize some additional and general conclu-
sions extracted during the numerical analysis of the present
four-strategy evolutionary game on a square lattice. Namely,
we have observed an interesting phase where the spreading
of one of the strategies (here cooperation) is favored along an
interface and the resultant monolayer can reverse the direction
of invasion between the homogeneous domains separated. We
think that the structure of the present interactions (namely,
the players’ incomes are accumulated from five five-person
games) provides convenient conditions for studying these
types of self-organizing patterns. Furthermore, we should
stress the technical difficulties in the evaluation of phase
diagrams describing the boundary between distinguishable
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stationary behaviors in the limit L → ∞. It turned out that
using the concepts of competing associations [2] we should
check the direction of invasions between most of the pairs
of solutions characterizing the spatiotemporal patterns for all
possible subsystems if we wish to avoid artifacts related to the
complex finite-size effects. At the same time the application
of this approach may enhance the accuracy and efficiency
of the numerical investigations when quantifying the phase
boundaries in the large-size limit. Evidently, the systematic
investigation of the finite-size effect and also the expansion

of a solution in another subsystem solution are inevitable in
similar complex systems.
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[55] G. Szabó and C. Tőke, Phys. Rev. E 58, 69 (1998).
[56] P. Clifford and A. Sudbury, Biometrika 60, 581 (1973).

046106-9

http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1126/science.1070582
http://dx.doi.org/10.1126/science.1070582
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1126/science.1141588
http://dx.doi.org/10.1162/biot.2008.3.2.114
http://dx.doi.org/10.1073/pnas.0812644106
http://dx.doi.org/10.1073/pnas.0812644106
http://dx.doi.org/10.1016/j.physa.2009.11.044
http://dx.doi.org/10.1016/j.physa.2009.11.044
http://dx.doi.org/10.1016/j.physa.2010.06.005
http://dx.doi.org/10.1016/j.physa.2010.06.005
http://dx.doi.org/10.1103/PhysRevE.82.026101
http://dx.doi.org/10.1103/PhysRevE.82.026101
http://dx.doi.org/10.1088/1367-2630/12/12/123014
http://dx.doi.org/10.1088/1367-2630/12/12/123014
http://dx.doi.org/10.1371/journal.pone.0015117
http://dx.doi.org/10.1016/j.physa.2010.07.034
http://dx.doi.org/10.1016/j.physa.2010.07.034
http://dx.doi.org/10.1088/1367-2630/13/4/043032
http://dx.doi.org/10.1088/1367-2630/13/4/043032
http://dx.doi.org/10.1140/epjb/e2010-00008-7
http://dx.doi.org/10.1007/s13235-011-0015-6
http://dx.doi.org/10.1504/IJBIC.2011.040313
http://dx.doi.org/10.1504/IJBIC.2011.040313
http://dx.doi.org/10.1142/S0219525911002962
http://dx.doi.org/10.1257/aer.90.4.980
http://dx.doi.org/10.1038/415137a
http://dx.doi.org/10.1016/j.tree.2007.06.012
http://dx.doi.org/10.1038/nature02978
http://dx.doi.org/10.1371/journal.pcbi.1000758
http://dx.doi.org/10.1371/journal.pcbi.1000758
http://dx.doi.org/10.1088/1367-2630/12/8/083005
http://dx.doi.org/10.1088/1367-2630/12/8/083005
http://dx.doi.org/10.1038/nature09203
http://dx.doi.org/10.1038/nature09203
http://dx.doi.org/10.1007/s13235-010-0001-4
http://dx.doi.org/10.1007/s13235-010-0001-4
http://dx.doi.org/10.1103/PhysRevE.83.036101
http://dx.doi.org/10.1103/PhysRevE.83.036101
http://dx.doi.org/10.1103/PhysRevLett.89.118101
http://dx.doi.org/10.1209/0295-5075/92/38003
http://dx.doi.org/10.1103/PhysRevE.66.062903
http://dx.doi.org/10.1098/rstb.1995.0077
http://dx.doi.org/10.1098/rstb.1995.0077
http://dx.doi.org/10.1016/j.jtbi.2008.05.014
http://dx.doi.org/10.1016/j.jtbi.2008.05.014
http://dx.doi.org/10.1016/j.physa.2010.02.047
http://dx.doi.org/10.1103/PhysRevE.82.036110
http://dx.doi.org/10.1103/PhysRevE.82.036110
http://dx.doi.org/10.1038/373209a0
http://dx.doi.org/10.1038/373209a0
http://dx.doi.org/10.1038/nature01474
http://dx.doi.org/10.1038/nature01986
http://dx.doi.org/10.1038/nature01986
http://dx.doi.org/10.1126/science.1100735
http://dx.doi.org/10.1126/science.1126398
http://dx.doi.org/10.1098/rspb.2007.0673
http://dx.doi.org/10.1098/rspb.2007.0673
http://dx.doi.org/10.1098/rspb.2007.1558
http://dx.doi.org/10.1098/rspb.2007.1558
http://dx.doi.org/10.1016/j.tpb.2003.07.001
http://dx.doi.org/10.1073/pnas.0407370102
http://dx.doi.org/10.1073/pnas.0407370102
http://dx.doi.org/10.1073/pnas.161155698
http://dx.doi.org/10.1073/pnas.161155698
http://dx.doi.org/10.1038/nature07601
http://dx.doi.org/10.1038/nature07601
http://dx.doi.org/10.1006/jtbi.2000.2202
http://dx.doi.org/10.1038/nature06723
http://dx.doi.org/10.1038/nature06723
http://dx.doi.org/10.1103/PhysRevE.80.056109
http://dx.doi.org/10.1103/PhysRevE.80.056109
http://dx.doi.org/10.1016/j.physa.2009.07.031
http://dx.doi.org/10.1016/j.physa.2010.08.043
http://dx.doi.org/10.1016/j.physa.2010.08.043
http://dx.doi.org/10.1209/0295-5075/90/58003
http://dx.doi.org/10.1209/0295-5075/90/58003
http://dx.doi.org/10.1209/0295-5075/90/38003
http://dx.doi.org/10.1103/PhysRevE.58.69
http://dx.doi.org/10.1093/biomet/60.3.581
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