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Phase diagrams for the spatial public goods game with pool punishment
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The efficiency of institutionalized punishment is studied by evaluating the stationary states in the spatial
public goods game comprising unconditional defectors, cooperators, and cooperating pool punishers as the three
competing strategies. Fines and costs of pool punishment are considered as the two main parameters determining
the stationary distributions of strategies on the square lattice. Each player collects a payoff from five five-person
public goods games, and the evolution of strategies is subsequently governed by imitation based on pairwise
comparisons at a low level of noise. The impact of pool punishment on the evolution of cooperation in structured
populations is significantly different from that reported previously for peer punishment. Representative phase
diagrams reveal remarkably rich behavior, depending also on the value of the synergy factor that characterizes
the efficiency of investments payed into the common pool. Besides traditional single- and two-strategy stationary

states, a rock-paper-scissors type of cyclic dominance can emerge in strikingly different ways.
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I. INTRODUCTION

The importance of punishment for the maintenance of
cooperative behavior in human societies can be quantified
by studying spatial public goods games (PGGs) with players
forming overlapping groups. For the simple two-strategy case,
players (within all the groups) decide simultaneously whether
they wish to contribute to the common pool (cooperate) or
not (defect). Subsequently, the multiplied total investment is
divided equally among all the group members irrespective of
their initial decision. In this situation, the rational (selfish)
players should decline to contribute if the investment costs
exceed the return of the game [1,2]. As a result, selfish
players fail to benefit from mutual cooperation, and the
society evolves toward the “tragedy of the commons” [3].
Human experiments and mathematical models alike have
shown, however, that cooperative behavior can be promoted
by punishing defectors for a wide class of social dilemmas,
including the prisoner’s dilemma game. In fact, it can be stated
that some elements of punishment can be recognized within
all the relevant mechanisms [4] supporting cooperation among
selfish individuals [5-8].

Traditionally, the sanctions foreseen by punishment are
considered to be costly. While those that are punished bear
a fine, the punishers must bear the cost of punishment. Both
the fine and cost may substantially reduce the overall income
of the corresponding players. There are, however, different
ways of how income reduction is executed that depend on the
governing evolutionary rules and set of strategies, as well as
on the network structure and group formation, among others.
Many aspects of punishment were already investigated by
experiments [9-17], as well as by means of mathematical
models with three [18-21], four [22,23], and even more
strategies [24,25].

Here we study the effects of pool punishment in the spatial
PGG and contrast the results with those reported previously
for peer punishment [26-28]. Pool punishment is synonymous
with institutionalized punishment, where the contributions of
punishers are meant to cover the costs of institutions like the
police or other elements of the justice system independently
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of their necessity or efficiency [29]. On the contrary, by peer
punishment [10,30] the punishers pay the cost of punishment
only if it is necessary, i.e., when the defectors are identified
and sanctioned. In the absence of defectors, the income of peer
punishers is therefore equivalent to that of pure cooperators,
who refuse to bear the cost of punishment and are thus
frequently referred to as the “second-order free riders.” On
the other hand, because of their permanent contributions to
the punishment pool, the income of pool punishers is always
smaller than that of cooperators. A preceding study on pool
punishment in well-mixed populations [29] concluded that
pool punishers can prevail over peer punishers only if the
second-order free riders are punished as well. We will show
that in structured populations, self-organizing spatiotemporal
structures can maintain pool punishment viable without such
an assumption. Indeed, the phase diagrams for three repre-
sentative values of the multiplication parameter at a low level
of noise indicate surprisingly rich behavior depending on the
punishment fine and cost.

II. SPATIAL PUBLIC GOODS GAME
WITH POOL PUNISHMENT

The PGG is staged on a square lattice with periodic
boundary conditions. The players are arranged into over-
lapping five-person (G = 5) groups in a way such that the
focal players are surrounded by their four nearest neighbors
each. Accordingly, each individual belongs to G = 5 different
groups. All the players thus play five five-person PGGs by
following the same strategy in every group they are affiliated
with. Initially each player on site x is designated either as a pool
punisher (s, = O), cooperator (s, = C), or defector (s, = D)
with equal probability. Using standard parametrization, the
two cooperating strategies O and C contribute a fixed amount
(here considered being equal to 1 without loss of generality) to
the public good while defectors contribute nothing. The sum
of all contributions in each group is multiplied by the factor
1 < r < G, reflecting the synergetic effects of cooperation,
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and the resulting amount is then equally divided among all the
group members irrespective of their strategies.

Pool punishment requires precursive allocation of resources
and therefore each punisher contributes an amount y to
the punishment pool irrespective of the strategies in its
neighborhood. Defectors, on the other hand, must bear the
punishment fine 8, but only if there is at least one pool punisher
present in the group. Denoting the number of cooperators C,
pool punishers O, and defectors D in a given group g by NZ,
N?, and N}, respectively, the payoffs

PE = r(NE+N3)/G —1
PS=PE—v, (1)
Pj =r(Né+Ng)/G = Bf(NG)

are obtained by each player x depending on its strategy
sy, where the step-like function f(Z) is 1 if Z > 0 and 0
otherwise.

By Monte Carlo (MC) simulations the system is started
from a random initial strategy distribution, and its evolution
is subsequently controlled by the more realistic random
sequential strategy updates [31]. During these elementary
processes a randomly selected player x plays the public
goods game with its interaction partners as a member of all
the g =1,...,G groups, whereby its overall payoff is thus

Z Pyx Next, player x chooses one of its four nearest
nelghbors at random, and the chosen co-player y also acquires
its payoff P, in the same way. Finally, player x imitates the
strategy of player y with a probability w(s, — sy)=1/{1+
expl(Ps, — Ps,)/ K1}, where K quantifies the uncertainty in
strategy adoptions [32]. Without loss of generality we set K =
0.5, thereby allowing also direct comparisons with previous
results obtained for the same level of noise [26,27]. Each
Monte Carlo step (MCS) (interpreted as a unit of time) gives
a chance for the players to adopt a strategy from one of their
neighbors once on average. The average frequencies of pool
punishers po, cooperators pc, and defectors pp on the square
lattice are determined in the stationary state after a sufficiently
long relaxation time #.. Depending on the actual conditions
(proximity to phase transition points and the typical size of
emerging spatial patterns) the linear system size is varied from
L =200 to 5000, and both the relaxation time ¢, and the
sampling time #; are varied from ¢, >~ t, = 10* to 107 MCS
to ensure that the statistical error is comparable with the line
thickness in the plots.

The first study of the spatial two-strategy (D and C)
evolutionary prisoner’s dilemma games (PDGs) indicated that
the survival of cooperators is supported if they form compact
clusters [33]. Similar phenomena were subsequently reported
for spatial evolutionary PGGs [19,34]. On the contrary, the
survival of defectors is enhanced if they are distributed
sparsely. Quantitative analyses have revealed that cooperators
and defectors coexist in the stationary state if r.; <7 < re
(henceforth this state will be denoted as DC), where the
two threshold values depend on the connectivity structure
(including the group size G) and the noise level. Below
(above) the borders of the coexistence phase only defectors
(cooperators) remain alive, while within the DC region, p¢
increases monotonously from 0 to 1. It turns out, furthermore,
that for the spatial PGG, the extension of the coexistence region
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(rep — re1) remains finite in the zero noise limit for all the
previously studied connectivity structures [35]. This is in sharp
contrast with the results obtained for spatial PDGs, where
rep —rep — 0 in the K — O limit for several connectivity
structures (e.g., on the square lattice) [36,37]. Consequently,
in our simulations the noise level K = 0.5 yields a typical
low-noise behavior with a sufficiently fast relaxation toward
the final stationary state.

Evidently, if only pure cooperators and pool punishers are
initially present in the system, then all the pool punishers will
eventually die out because of their lower payoff. At the same
time, analogous with the coexistence of the D and C strategies,
the D and O players can also coexist in the so-called DO
phase that is bounded to a synergy factor regionr,, < r < r.,,
where the two threshold values are affected not only by the
connectivity structure and the noise level, but also by the values
of the punishment fine 8 and cost y.

We emphasize that the homogeneous one-strategy solu-
tions, denoted henceforth as C, D, and O phases, are absorbing
states because the applied dynamical rule leaves these states
unchanged once the system arrives there. Due to the analogy
between the presently applied imitation rule and the spreading
of infections, simplified by the contact process [38], it is
expected that upon varying one of the parameters the above-
mentioned continuous phase transitions from a two-strategy
state to one of the homogeneous phases will belong to the
directed percolation universality class. Up to now this was
confirmed only for the spatial PDGs [32,39] (for further
references, see [40]). In the following sections the power-law
behavior of the extinction process is verified only for a few
cases because of the huge computational capacity that is re-
quired for this. Similar critical transitions can also be observed
when a three-strategy state transforms into a two-strategy
state by varying a control parameter. Such behavior was
already observed previously in a spatial evolutionary PGG with
volunteering [19].

In the majority of spatial systems the three-strategy states
are maintained by cyclic dominance among the three strategies.
Examples include the PGG [18,19] and the PDG with
voluntary participation [41], as well as other three-strategy
(e.g., cooperation, defection, and tit-for-tat) variants of the
PDG [42—45]. In the spatial PGG with pool punishment,
the cooperators can invade the territory of punishers, the
punishers can occupy the sites of neighboring defectors, while
defectors may outperform cooperators within a wide range
of parameters. We find that this rock-paper-scissors type of
cyclic dominance yields a self-organizing pattern, which we
will henceforth denote by (D + C 4 O).. We emphasize that
an analogous three-strategy phase governed by cyclic domi-
nance cannot be observed if peer punishment is considered,
because there, in the spatial mixture of cooperators and peer
punishers, both types of players receive the same payoff;
and furthermore, due to random imitation, the evolution
of the system becomes equivalent to that of the voter
model [38]. Interestingly though, the extinction of free-rider
pure cooperators can be catalyzed efficiently by adding
defectors via rare random mutations [28]. The description
and notation of additional phases including the governing
phase transitions will be given below at the place of their
occurrence.
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As a general comment, for the simulation difficulties of a
spatial system of cyclic dominant species, we must highlight
the potential problem originated from small system size. If
the system size is not large enough, then the simulations can
result in one- and/or two-strategy solutions that are unstable
against the introduction of a group of mutants. For example,
the homogeneous C or O phases can be invaded completely
by the offspring of a single defector inserted into the system
at sufficiently low values of r. On the contrary, the D phase
can be fully occupied by a single group of pool punishers
(or cooperators) if initially they form a sufficiently large
compact cluster (e.g., a rectangular box). In such cases
the competition between two homogeneous phases can be
characterized by the average velocity of the invasion fronts
separating the two spatial solutions characterized by a proper
composition and spatiotemporal structure. Generally, the same
method can also be used to determine the winner between any
two possible spatial solutions.

For the considered imitation rule, a system with three
(or more) strategies has a large number of possible solutions
because all the solutions of each subsystem (comprising only
a subset of all the original strategies) are also solutions of
the whole system [40]. In such situations, the most stable
solution can be deduced by performing a systematic check of
stability (direction of invasion) between all the possible pairs
of subsystem solutions that are separated by an interface in
the spatial system. Fortunately, this analysis can be performed
simultaneously if we choose a suitable patchy structure of
subsystem solutions where all the possible interfaces are
present. The whole grid is then divided into several large
rectangular boxes with different initial strategy distributions
(containing one, two, or three strategies), and the strategy
adoptions across the interfaces are initially forbidden for a
sufficiently long initialization period. By using this approach,
one can avoid the difficulties associated either with the fast
transients from a random initial state or with the different time
scales that characterize the formation of possible subsystem
solutions. On the contrary, it is easy to see that a random initial
state may not necessarily offer equal chances for every solution
to emerge. Evidently, if the system size is large enough then
these solutions can form locally, and the most stable one can
subsequently invade the whole system. At small system sizes,
however, only those solutions can evolve whose characteristic
formation times are short enough.

To illustrate the possible problem of random initial states
when using small system sizes, we compare the time evolution
of strategy distributions for different initial states in Fig. 1.
For appropriate comparisons, naturally, we have used identical
model parameters for all cases, namely, synergy factorr = 2.0,
the cost of punishment y = 0.1, and the fine 8 = 0.79 at
system size L = 390. The upper three snapshots demonstrate
that the system arrives at the O phase when the strategies
are initially distributed randomly (snapshots are given at
t =0, 100, and 1000 MCS). The middle panel demonstrates
what happens if the initial state (left side) contains all the
possible interfaces and vertices of homogeneous domains of
the three strategies (snapshots are given at t+ = 0, 200, and
3750 MCS). Here, the right plot illustrates the (D + C + O),
stationary state in which all three strategies are present due to
cyclic dominance. The bottom panel shows the competition
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of O and (D + C+ O), states where the latter is the winner
(snapshots are given at r = 0,100, and 1600 MCS). As we
already mentioned, the most stable (D + C+ O), state can
also emerge and spread from a random initial state, but only if
the system size is large enough [in the case of random initial
conditions the system size should exceed L = 1500 for these
(r,y,pB) parameter values to obtain a reliable solution].

III. RESULTS OF MONTE CARLO SIMULATIONS

Systematic MC simulations are performed to reveal phase
diagrams for three representative values of the multiplicative
factor r. In each case we have determined the stationary
frequencies of strategies when varying the fine 8 for many
fixed values of cost y (B,y > 0). The transition points and the
type of phase transitions are identified from MC data collected
with a sufficiently high accuracy (and frequency) in the close
vicinity of the transition points. Finally, the phase boundaries,
separating different stable solutions, are plotted in the full
fine-cost phase diagrams.

The three values of r give rise to fundamentally different
behaviors when increasing the value of the fine. In the first
two cases (r =2 and 3.5) the cooperators die out in the
absence of pool punishment [35]. The third value of the
synergy factor (r = 3.8) is chosen to illustrate the impact
of punishment when C and D coexist in the absence of O.
Evidently, the consideration of punishment becomes futile
when the cooperators beat defectors in the absence of punishers
(r > re2). Whenr increases toward r; the effect of punishment
decreases with pp (within the DC phase). The obtained
quantitative results are discussed in detail in the following
three subsections.

A. Results for the synergy factor r = 2.0

First, we illustrate the variation of strategy frequencies
and also the phase transitions obtained by means of MC
simulations as a function of the fine for a low value of cost.
Figure 2 shows consecutive transitions from the pure D phase
to the final (D + C + O), phase described above.

When increasing the fine B at a low value of cost (y =
0.01) one can observe three continuous phase transitions.
First, the homogeneous defector state (D) transforms into
the coexistence of defectors and pool punishers (DO). In
this phase, pool punishers form compact clusters to survive
in the sea of defectors. This mechanism is identical to the
previously identified network reciprocity that enables pure
cooperators to coexist with defectors [33]. Cooperators who
refuse to bear the cost of punishment, however, are unable
to survive due to the low value of . Within the DO phase
the frequency of pool punishers increases continuously until
the homogeneous O phase is reached. Surprisingly, further
increasing B induces an additional phase transformation from
the O phase into the (D + C+ O), phase, where the self-
organizing pattern is maintained by cyclic dominance and the
nonzero frequencies for all strategies remain valid in the large
fine limit.

Within the (D+C+0), phase, po decreases
monotonously with B in agreement with the anomalous
behavior referred to frequently as the “survival of the
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FIG. 1. (Color online) Evolution of strategy distribution for three different initial states. Upper row shows the evolution from random initial
state, while middle row shows the evolution from a prepared state. The bottom row demonstrates the time evolution when the final states of
upper evolutions meet. We used identical parameters for all cases, namely, L = 390, r = 2.0, y = 0.1, 8 = 0.79, and K = 0.5. Black, white,
and blue (grey) denotes players with defector, pure cooperator, and pool punisher strategies, respectively.

weakest” [46]. In the present case, the increase of the fine
reduces the income of the punished defectors, which allows
pure cooperators to survive. The latter strategy behaves as
the “predator” of pool punishers, resulting in the decay of
po despite the increasing fine. The same cyclic dominance
mediated complex interaction is able to increase pp when y
is increased (in this case the less effective punishment does
not allow C players, who are the “prey” of D, to survive).
Similar effects were already reported in several three-strategy
models, including the simpler spatial rock-paper-scissors
game, and the main features were justified by mean-field
approximations and pair approximations (for a brief survey,
see the review [40] and further references therein). The
robustness of this behavior can be demonstrated effectively
by a snapshot (see Fig. 3), illustrating significantly different
interfaces between the coexisting phases.

At such a low punishment cost the cooperators can invade
the sites of pool punishers, albeit very slowly and only within
the territories they have in common. It is emphasized that
within these two-strategy territories in the y — O limit the

strategy evolution reproduces the behavior of the voter model
with equivalent strategies exhibiting rough interfaces and
extremely slow coarsening [47]. For low but finite values
of y the two-strategy system evolves slowly toward the
homogeneous C state, while the interfaces remain irregular as
demonstrated in Fig. 3. Notice that the interfaces separating the
domains of defectors from cooperators or defectors from pool
punishers are less irregular, thus signaling the more obvious
dominance between these strategy pairs.

The increase of the punishment cost y reduces the net
income of pool punishers, consequently yielding fundamen-
tally different variations in the strategy frequencies upon
increasing the fine §, as demonstrated in Fig. 4. The upper plot
illustrates the disappearance of the pure O phase if y = 0.1.
The extension (along B) of the DO phase decreases linearly
with y and vanishes at y = 0.212. At the same time, the
homogeneous O phase can also be observed between the
phases D and (D + C+ O)., but only if the cost exceeds a
threshold value [here y > yu1(r = 2) = 0.113] that depends
also on the multiplication factor r.
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FIG. 2. (Color online) Strategy frequencies vs fine B for the
punishment cost y = 0.0l atr =2.0and K = 0.5.

Notice that for both values of the punishment cost y the
(D + C+ DO), phase occurs via a first-order (discontinuous)
phase transition when f increases, as can be inferred from the
two panels of Fig. 4. Furthermore, the transition from D — O
also becomes discontinuous in the absence of the DO phase.

The above numerical investigations were repeated for many
other values of y, and the results are summarized in the
full fine-cost phase diagram presented in Fig. 5, where the
lower plot magnifies the most complex (small-cost) region.
The lower (magnified) phase diagram refers to an additional
new phase [(D 4 C + DO), marked with an arrow], which we
will, however, address in the following section because it has
more obvious consequences at higher values of r.

In general, the presented fine-cost phase diagram shows
clearly that in this low-r region only defectors remain alive
if the fine does not exceeds a threshold value that increases
approximately linearly with the cost of punishment. More

FIG. 3. (Color online) Typical distribution of strategies on a
400 x 400 portion of a larger square lattice for r = 2.0, g = 0.01,
and y = 1.0. The color code is the same as used in Fig. 1 and for
symbols in Fig. 2.
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FIG. 4. (Color online) Strategy frequencies vs fine B for the
punishment cost y = 0.1 (top) and y = 0.2 (bottom) at r = 2.0 and
K =0.5.

precisely, in the low-noise limit the phase boundary separating
the D and O phases approaches the straight line with a slope
of 4/5, and this boundary moves left if r is increased.

B. Results for the synergy factor r = 3.5

Here for the low-cost limit, the system behavior is similar
to the one described in the previous section. The relevant
difference is the absence of the O phase in the series
of transitions upon increasing the fine 8, as demonstrated
in Fig. 6. Notice that both transitions are continuous.
The quantitative analysis supports the conjecture [48] that
the continuous extinction of either the pool punishers or the
cooperators belongs to the directed percolation universality
class.

Figure 7 shows relevant differences in the fine dependence
of the strategy frequencies for higher values of y. In this case
our simulations indicate four intermediate phases between the
phases D and (D + C + O), if the fine is increased at a fixed
cost and noise level. The five critical points for the consecutive
transitions will be denoted as f.; < --- < B.s. For example,
the first transition at 8 = . refers to a continuous transition
from phase D to DO in agreement with the cases discussed
above.

We first emphasize a striking novel feature in the fine de-
pendence of the strategy frequencies within the (D 4+ C 4+ O),
phase [ > B.s(r = 0.4) = 1.30(1)]. In this case pp — 1 (and
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FIG. 5. Full fine-cost phase diagram for r = 2.0 and K = 0.5.
Bottom panel features the enlargement of the small-cost area. Solid
(dashed) lines indicate continuous (discontinuous) phase transitions.
The dotted line represents the analytic continuation of the phase
boundary separating the pure D and O phases in the absence of
cooperators (C).

evidently, both pc and pp converge to zero) if § approaches
Bcs from higher values, contrary to all the previous cases
demonstrated in Figs. 2,4, and 6. This behavior is accompanied
by a drastic change in the governing spatial patterns, as
demonstrated in Fig. 8.
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FIG. 6. (Color online) Strategy frequencies vs fine B for the
punishment cost y = 0.01 atr = 3.5and K = 0.5.
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FIG. 7. (Color online) Strategy frequencies vs fine B for the
punishment cost y = 0.4 atr =3.5and K = 0.5.

Namely, in the close vicinity of the transition point, smaller
or larger islands of cooperators and/or pool punishers are dis-
persed in the sea of defectors. Due to the cyclic dominance the
islands of pool punisher are blowing up while the cooperator
islands are shrinking and disappear in most of the cases for the
given r. The survival of cooperators is ensured by approaching
a growing O island (such a situation is shown in the center
of Fig. 8) that is occupied quickly by the offspring of the
lucky cooperator. The resultant cooperator island is attacked
simultaneously by defectors whose success is enhanced by
a guerilla-type warfare fragmenting the cooperator’s territory
into a cluster of small shrinking islands as demonstrated in the
same snapshot. This process is repeated forever if the defectors
take pool punishers off cooperator’s bands with a sufficiently
high probability.

The above-mentioned evolutionary process implies the
risk of extinction for the strategies that occur with only a

FIG. 8. (Color online) Typical distribution of strategies on a
400 x 400 portion of a larger square lattice for r = 3.5, 8 = 0.2, and
y = 0.78. The color code is the same as in Fig. 1 and for symbols in
Figs. 6 and 7.
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low frequency. Within the region .4 < B < B.s the fixation
of pool punisher will occur if the cooperators die out first
during the stochastic extinction process. In the opposite case,
if pool punishers become extinct first, the cooperators have
no chance of surviving. Consequently, within this parameter
region the system can evolve toward one of the homogeneous
states where only defectors or pool punishers are present.
Henceforth, the corresponding behavior (phase) will be de-
noted by F, referring to fixation.

During the transient process the strategy frequencies os-
cillate with a growing amplitude and oscillation period, and
simultaneously, the trajectory spirals out on the simplex [49].
Similar phenomena were already reported for many other
systems (for references, see [1,40,49]).

Figure 7 shows that the F phase is surrounded by phases
exhibiting opposite behaviors when approaching the region
of fixation. When approaching from the left-hand side the
system tends toward the O phase while from the opposite side
the emergence of the D phase is favored.

Another novel feature is the appearance of an additional
three-strategy phase within a narrow range of S values
[namely, B, < B < B3 where Bo(r = 0.4) = 0.607(1) and
Bea(r =0.4) = 0.660(1)]. This phase will be denoted as
(D+C+DO), because the corresponding snapshot (see
Fig. 9) illustrates clearly that here the cyclic invasions occur
between the D, C, and DO phases. This spatiotemporal
structure can be reproduced very rarely because of the fast
extinction of cooperators if the system is started from a random
initial state even for L > 5000. In such a case the system
evolves into the DO phase, which is, however, unstable against
the invasion of a cooperator block with a sufficiently large
size (e.g., 10 x 10). It is worth mentioning that the resultant
(D+ C+DO), phase will appear only after a long transient
process.

The cyclic dominance of alliances has already been ob-
served in spatial ecological models [50]. The present model,
however, offers an interesting new example when one strategy
(one species) fights continuously against a group of strategies
(species), resulting in a stable stationary solution. Notice,
furthermore, that the effective invasion rates between the
three phases are strongly influenced by the composition
and the spatiotemporal structure of the DO phase. This is
one of the reasons why the fine dependence of strategy
frequencies deviates from the standard behavior discussed for
the (D 4+ C + O). phase. The other reason is related to the effect
of the pattern topology itself.

The MC simulations have confirmed clearly that the transi-
tion (at B = B.») from DO to (D + C 4 DO),. is continuous
while the subsequent transition (at 8 = f.3) is a weakly
first-order one. The latter behavior might be related to the
different time scales (characterizing the average formation and
lifetimes of the competing phases) that depended on 8 and y
as well as on the synergy factor r.

As for the r = 2.0 case, for r = 3.5 the effects of different
values of the punishment cost y on the stationary states were
also studied systematically by means of MC simulations, and
the results are summarized in the full fine-cost phase diagram
presented in Fig. 10.

As in the previous phase diagram (Fig. 5), here the
dotted line [separating the territories of the (D + C+ DO),
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FIG. 9. (Color online) Typical distribution of strategies within the
(D4 C+DO). phase on a400 x 400 portion of a larger square lattice
(L =2000) forr = 3.5, 8 =0.2,and y = 0.5. The color code is the
same as in Fig. 8.

and (D + C 4 O),. phases] indicates the transition from phase
DO to O in the absence of cooperators. Notice that this
dotted line is the analytic continuation of the phase boundary
separating the territory of the DO phase and the fixa-
tion phase. In fact, the transition from (D + C+ DO), to
(D+C+0), is made smoother by the absence of long
thermalization (between the domains of D and DO), which
is due to the cyclic dominance emerging in the pres-
ence of cooperators. As a result, the transition cannot be
clearly identified by exclusively considering the frequen-
cies of strategies and/or nearest-neighbor pair correlations.
The difference between these phases, however, is well recog-
nizable visually in the snapshots (compare Figs. 8 and 9). The
same arguments are valid in the case of » = 2.0 above, where
the (D + C + DO), phase was also mentioned (see the bottom
panel of Fig. 5).

Despite the many striking differences, there also exist some
qualitative similarities between the fine-cost phase diagrams
obtained for r =2 and 3.5. Namely, for both cases only
defectors remain alive if the cost y exceeds a threshold
value (which in both cases increases fairly linearly with the
increasing of the fine B). Furthermore, the system evolves
into the (D 4+ C + DO),. phase for sufficiently high fines if the
cost is less than another fine-dependent threshold value. Upon
decreasing of the fine a smooth transition from (D + C + O),
to (D + C+ DO), occurs when the coexistence of the D and
O strategies is favored in the corresponding two-strategy
(sub)system. The comparison of the two phase diagrams
(Figs. 5 and 10) illustrates how the (D4 C+ DO),. phase
expands together with the DO phase when r increases.

The most relevant difference between the two phase
diagrams is represented by the fixation allowing the formation
of either the pure O or pure D phase for r = 3.5, while only the
pure O phase can occur for r = 2.0. The mentioned difference
implies significant deviation in the variation of strategy
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FIG. 10. Full fine-cost phase diagram for r =3.5 and K =
0.5. Solid (dashed) lines indicate continuous (discontinuous) phase
transitions. The dotted line represents the analytic continuation of the
phase boundary separating the pure D and O phases in the absence of
cooperators (C).

frequencies if the cost is increased for a sufficiently large fine.
Namely, p¢ and po vanish continuously when approaching the
boundary of fixation for » = 3.5, while the (D + C + O), phase
transform into the O phase via a first-order (discontinuous)
transition if » = 2.0. The corresponding territories (F and O
phases on the fine-cost parameter plane) separate the D and
(D + C+ O), phases.

C. Results for the synergy factor r = 3.8

In contrast with the values of the synergy factor r considered
above, here the magnitude is large enough that even in the
absence of pool punishers pure cooperators can survive in
the presence of defectors. Accordingly, the enhancement of
r reduces the temptation to choose defection in the PGG,
which ultimately yields a continuous increase in the cooperator
frequency for the two-strategy (D and C) system. For the
present interaction graph (the square lattice) r > ry,; = 3.744.
In this situation the efficiency of punishment decreases along
with the frequency of defectors who are negatively affected
by the sanctions. We therefore consider the efficiency of in-
stitutionalized punishment in the case when pp/pc = 2 in the
absence of pool punishers (pp = 0). For this value of pp/pc
we can extract quantitative results giving a sufficiently accurate
and general picture about the impact of pool punishment.

First, we demonstrate the variations in the strategy fre-
quencies upon increasing the fine 8 for two (low) values of
the cost y characterizing the relevant processes. Figure 11
shows that the pool punishers disappear (pp = 0) if the fine
does not exceeds a threshold value increasing with the cost y.
Evidently, pp and pc remain unchanged in the absence of pool
punishers. For both low values of the cost there exists a region
of fine where cooperators die out and pool punishers maintain
cooperation at a level that increases with the fine.

The replacement of the DC phase by the DO phase happens
via a first-order (discontinuous) phase transition, which is
a manifestation of a more general phenomenon. Namely,
the cooperative C and O strategies fight separately against
defectors (D players) and the final output depends on the
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FIG. 11. (Color online) Strategy frequencies vs fine B for the
punishment cost y = 0.05 (top) and y = 0.1 (bottom) at » = 3.8 and
K =0.5.

success of these D-C and D-O struggles. Accordingly, the
“indirect territorial battle” between O and C strategies will
determine the final output of the game. This mechanism has
already been observed for peer punishment [27] and in the
spatial public goods game with reward [51].

Paradoxically, the further increase of punishment fine g
enhances the chance of cooperators to survive. Consequently,
the system behavior transforms into the cyclic-dominance-
governed (D + C+ DO), phase. For sufficiently high values
of B, however, the defectors are not capable of surviving
within the domains of pool punishers, and accordingly, the
(D + C + DO), phase evolves into the (D + C + O), phase as
described above. On the contrary, for higher values of the
punishment cost y, the (D 4+ C 4+ DO), phase transforms into
the DC phase via a continuous transition, as illustrated in
the lower panel of Fig. 11. The MC simulations indicate that
within a narrow range of cost values the (D 4+ C 4 O),. phase
can occur and vanish again continuously if the fine is further
increased.

From systematic numerical investigations for several differ-
ent values of y, we obtain the full fine-cost phase diagram that
is presented in Fig. 12. In agreement with our expectations, the
pool punishers cannot support the cooperation (and die out) if
the cost of punishment exceeds a threshold value, The latter,
of course, depends on the punishment fine §. In other words,
at such high values of r and y the pool punishers become
inefficient in their main task of facilitating the evolution of
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cooperation. This behavior is in sharp contrast with the impact
of peer punishment, which can always eliminate defectors for
sufficiently high values of fine independent of the value of . In
the case of pool punishment the most efficient suppression of
defection is achieved at the right border of the DO phase, which
is formed only within a limited range of fine values. As we have
emphasized, for higher fines the self-organizing patterns with
cyclic invasion of D, C, and DO domains (the latter domains
are replaced by D domains if the DO phase becomes unstable)
emerge, which in the case of the stable (D 4 C + DO). phase,
manifest a new form of cyclical dominance that forms not
just between individual strategies but also between strategy
alliances.

IV. SUMMARY

The impact of pool punishment was studied in a spatial
public goods games with cooperators, defectors, and pool
punishers as the three competing strategies. In particular,
the efficiency of pool punishment in maintaining socially
advantageous states was contrasted with that of peer pun-
ishment [26-28]. For easier comparisons, in both cases the
players were located on the sites of a square lattice, the
collected income resulted from five five-person public good
games, and the strategy evolution was governed by the same
stochastic imitation rule. Monte Carlo simulations, performed

PHYSICAL REVIEW E 83, 036101 (2011)

for different combinations of the fine and cost of punishment
at three typical values of the multiplication factor, reveal
relevant differences if compared with previous results where
the peer punishers were able to dominate if the fine exceeded
a threshold value that increased with the cost. Here, on the
contrary, the institutional sanctions are less effective because
cooperators always invade the territories of pool punishers,
even for marginally positive values of the punishment cost.
On the other hand, in contrast with the well-mixed case,
maintaining pool punishment is generally viable without the
necessity of sanctioning the second-order free riders [29].

It turns out that pool punishers can dominate the system
only within a strongly limited cooperator-unfriendly region
of parameters. Meanwhile, for high fines the system paradox-
ically evolves into a self-organizing spatiotemporal pattern
where the rock-paper-scissors type of cyclic dominance helps
the coexistence of all three strategies. In fact, we could
distinguish two different cyclic phases, namely, (D + C + O),
and (D4 C+DO).. The latter phase represents a new type
of cyclic dominance when single strategies (D and C) fight
against an alliance (D + O). The possibility of these two
phases governed by cyclic dominance is accompanied with
an unusual sensitivity to the topological features of the
self-organizing patterns. As a result, in some cases we have
observed the fixation to either the homogeneous defector or
the homogeneous pool punisher phase. Based on earlier works
examining the spatial PGG and its variants, the reported impact
of pool punishment is expected to be robust against using
different interaction graphs and group sizes.

The accurate determination of presented phase diagrams
(for the large size limit) required a careful stability analysis
based on the concept of competing associations [40]. In light
of our results we can strongly recommend the application of
this method for other multi-strategy systems where a complex
phase diagram is likely to be encountered. A potential example
is given by the present evolutionary PGG with four rather
than three strategies (besides cooperators, defectors, and pool
punishers containing also peer punishers), which we wish to
study in the near future.
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