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We studied spatial Prisoner’s Dilemma and Stag Hunt games where both the strategy distribution and the
players’ individual noise level could evolve to reach higher individual payoff. Players are located on the sites
of different two-dimensional lattices and gain their payoff from games with their neighbors by choosing
unconditional cooperation or defection. The way of strategy adoption can be characterized by a single K
�temperaturelike� parameter describing how strongly adoptions depend on the payoff difference. If we start the
system from a random strategy distribution with many different player specific K parameters, the simultaneous
evolution of strategies and K parameters drives the system to a final stationary state where only one K value
remains. In the coexistence phase of cooperator and defector strategies the surviving K parameter is in good
agreement with the noise level that ensures the highest cooperation level if uniform K is supposed for all
players. In this paper we give a thorough overview about the properties of this evolutionary process.
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I. INTRODUCTION

Evolutionary game theory has attracted great interest re-
cently from many scientific fields �1–5�. Physicists, biolo-
gists, economists, and many other scientists have found it
challenging to study multiagent evolutionary systems.

The Prisoner’s Dilemma �PD� game �4,6� is an excellent
toy model to describe the sharpest conflict situation between
individual and common interest as it contains all the basic
features of such interactions. The original PD game is a two-
person one-shot game where players can choose between two
types of behavior, to cooperate or to defect. They earn pay-
offs according to the simultaneous decisions of both partici-
pants. A cooperator gets the ’sucker’s payoff �S� against a
defector, while successful defection yields the temptation to
defect �T� for the defector. Mutual cooperation is rewarded
by R for each player, while two defectors �receiving payoff
P� punish each other with the defective behavior. The game
is a classical PD game if the payoffs accomplish the relation
T�R� P�S. This inequality causes two selfish �rational�
players to defect independently of the other players decision,
thus they get the second worst payoff instead of the second
best one for mutual cooperation resulting in a dilemma situ-
ation. If R�T, the social dilemma is weakened because the
unilateral deviation from the mutual cooperation is not ben-
eficial �7�. In the latter so-called Stag Hunt �SH� game to act
identically to the partner’s strategy would result the highest
payoff similarly to the coordination game.

The introduction of spatiality �8� revealed fundamentally
new solutions of the game, which cannot be detected in the
well-mixed situation. In spatial evolutionary models, players
are located on the sites of a network where the links of the
network define their possible connections. Players gain their
accumulated payoff from games with their immediate neigh-
bors and sometimes—according to the evolutionary
dynamics—they can adopt the strategy of a neighbor. Usu-
ally the strategy adoption probability depends on the payoff
difference and in accordance with the Darwinian principle,
individuals with higher payoff �fitness� have a greater chance

to supersede the less successful ones. Due to the spatial sce-
nario, cooperation can survive in the system even if only the
simplest strategies are allowed, i.e., unconditional coopera-
tion and defection. Here, cooperators form clusters and sup-
port each other through the short range local interactions
while defectors punish each other with mutual defection. The
invasion processes along the borders of the clusters depend
on the irregularity of the interface, the underlying net-
work�s�, and the evolutionary dynamical rule.

The PD game was studied on many types of networks
�different lattices �9–11�, scale-free graphs �12�, small world
networks �13�, etc.�, investigating the effect of basic topo-
logical features on the measure of cooperation. To reduce the
number of degrees of freedom, evolving networks �14� were
examined, too. In these models, players have the opportunity
to change their neighbors during the evolutionary process to
attempt to increase their income, i.e., the strategy distribution
and the connectivity graph coevolve. As a result of this evo-
lution, highly cooperative communities could be established.

The simultaneous change in strategy and a player-specific
parameter has been extended to other quantities, too. For
example, Fort �15� studied models where the elements of
payoff matrix were inherited in parallel with the strategy
adoption. The evolution of the strategy pass capability �16�
or the interaction range of players �17� is also discussed.
Moyano and Sanchez �18� studied the competition between
several pairs of dynamical rules controlling the strategy
adoption in the system. The latter results have motivated us
to study the evolution of a noise-related parameter �19�,
which frequently characterizes the uncertainty in the adop-
tion process �11�. Many things can cause this uncertainty,
such as temporal or spatial fluctuations in the payoff values,
errors in decision or in perception, emotions, individual point
of view �free will�, etc. The role of the noise parameter at
different underlying graphs was studied thoroughly in sev-
eral studies �20–22�. It turned out that on structures that can
be fully perambulated by stepping only on overlapping tri-
angles �i.e., on structures with triangle percolation�, coopera-
tion could be maintained in the widest parameter range when
the measure of noise was minimal �20�. While on structures
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without triangle percolation, the optimal measure of noise for
cooperation is shifted to positive values.

In this paper, we study the simultaneous evolutions of
noise parameter—as the quantity characterizing the adoption
rule—and strategy distributions on different relevant struc-
tures. Square lattice and the kagome lattice will be analyzed
as good examples for graphs with and without triangle per-
colation. In our model, players can apply different noise pa-
rameter and during the evolutionary process, they can adopt
not only the strategy of another neighboring player but also
the individual noise parameter. In other words, a player can
learn not only a more successful strategy but also the way
how successful player reacts to the payoff differences, i.e.,
his adoption rule. The two elementary evolutionary steps are
independent. We will show that as a result of this dynamics,
only one noise level remains in the final state even if several
strategies can coexist in the coexistence region and the re-
maining noise level is close to the one providing the highest
cooperation for systems with homogeneous noise distribu-
tion. In a previous paper �19� we have considered only the
case of weak PD. Now the latter investigation is extended to
the parameters over the limits of the weak PD and SH games
by revealing the connection of cooperation density surface
and the location of fixed noise level. Finally we briefly dis-
cuss what happens if not only the strategies and the way of
strategy adoption but also the payoff matrix are allowed to
adopt throughout the same imitation mechanism. We used
Monte Carlo �MC� simulations and an extended version of
the dynamical mean-field approximation �detailed here� to
perform the investigations.

II. MODEL

In our model, players are located on the sites x of a square
�consisting of L�L sites with periodic boundary conditions�
or a kagome lattice �3�L�L sites�. These interaction
graphs can be used as the two representatives of the charac-
teristic features of two-dimensional lattices, i.e., lattices with
and without triangle percolation. Players can follow one of
the simplest strategies that is unconditional cooperation �sx
=C� or unconditional defection �sx=D�. They gain their cu-
mulated payoffs from one-shot PD games with their four
nearest neighbors. To reduce the necessary parameters we are
using a re-scaled payoff matrix suggested by Nowak and
May �23� where the reward of mutual cooperation is R=1
while mutual defection yields P=0 income. A cooperator
gains S=0 payoff when facing a defector while a successful
defector gets the temptation to defect �T=b�. We investigate
an extended parameter space 0�b�2 to explore the SH
region, too, while S=0 refers to the so-called weak PD for
1�b�2.

For the MC simulations, we use random initial strategy
distribution where both C and D strategies are present with
the same frequency. Beside the strategy, each player pos-
sesses another parameter describing his willingness to make
rational decision: having individual adoption rule �Kx�. This
parameter can be interpreted as a personal noise parameter as
it contains the possible uncertainty factors in the strategy
adoption. Such factors can emerge from the fluctuation of

payoff parameters, changing of environment, errors in deci-
sion, individual freedom to risk a given amount of income,
etc. depending on the situation which is modeled. In our
model, initially, we associate an adoption parameter Kx to
every player from a finite set, that is, Kx� �K1 ,K2 , . . . ,Kn�,
where n denotes the number of different K values.

During the evolutionary process, we choose two neigh-
boring players �x and y� randomly, and we calculate their
accumulated payoffs �Px and Py� gained from PD games with
their neighbors. In an elementary evolutionary step, player x
can adopt the strategy sy and/or the noise value Ky of player
y with the probability

W =
1

1 + exp��Px − Py�/Kx�
. �1�

The possible adoption of the strategy and the noise value
happens independently of each other, i.e., it is possible that
only one of them is adopted in an elementary step. As the
Darwinian principle dictates, for Py − Px�Kx, both the strat-
egy and the adoption rule of player y is very likely to be
adopted.

According to the proposed protocol, the adoption rule of
player y�Ky� can still be adopted even if the strategies are the
same �sx=sy�. As a consequence, the adoptions of strategies
and rules can end independently arriving to one of the ab-
sorbing states formed by identical strategies and/or uniform
adoption rules. In the absence of mutation the system cannot
leave these states.

In general, the existence of many absorbing states can
cause technical difficulties in the interpretation of numerical
results achieved on small systems. For small sizes the system
evolve quickly into one of the absorbing states despite the
existence �“long-time stability”� of a mixed state in the limit
L→�. These difficulties can be avoided by using sufficiently
large system sizes that increases the duration of simulations.
We will show, however, that the significantly faster simula-
tions on small systems can also be utilized to extract accurate
quantities characterizing the behavior of the present evolu-
tionary games.

As we stressed, we used the same adoption probability for
both evolving quantities determined by Eq. �1�. However, the
time scales of evolutions can be distinguished, namely, the
strategy or the noise parameter may evolve faster or slower.
Such a time scale separation of coevolving quantities was
already studied in several earlier works �14,24�. An interest-
ing observation was the shift of effective payoff elements if
the link of players, as an evolving quantity, change much
faster than their strategies. In our case the time separation
can be easily done by adding a multiplicative 0�Q�1 pref-
actor to the transition rate of evolving quantity resulting a
slower evolution comparing to the other one. Simulations
show the fixed K� noise value is robust: the system arrives
into the same state independently on the time scale separa-
tion of evolving quantities. The fixation time, however, de-
pends strongly on the applied Q parameter. Accordingly, the
results presented in the next sections are corresponding to the
Q=1 case.

Starting the system from a random distribution of strate-
gies and noise parameters the iteration of the above elemen-
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tary processes governs an evolutionary process that can be
quantified by recording the fraction �C�t� of cooperators as
well as the portion �Ki

�t� of players following the dynamical
rule Ki. In one time unit �called MC step, in short, MCS�
each player has a chance once on average to adopt a strategy
and/or noise value of a neighbor.

Finally we mention that for homogeneous dynamical rule
�Kx=K , ∀x� the present model is identical to a previously
studied spatial model �20� as discussed briefly below. Fur-
thermore, for homogeneous strategy distribution �sx=C �or
D�, ∀x� all the players receive the same payoff �Px=4 �or 0�,
∀x� and the adoption probability �Eq. �1�� becomes uniform,
i.e., W=1 /2 and the evolution of the Kx distribution becomes
identical to the process described by the n-state voter model
�25�.

III. SELECTION OF NOISE LEVEL ON SQUARE
LATTICE

First we briefly outline the outcome if all players have the
same adoption parameter �Kx=K , ∀x�, i.e., if only the strat-
egy distribution can evolve �20–22�. In this case, on lattices
as underlying graphs, we can usually distinguish three re-
gions when increasing b for a fixed K parameter. Only coop-
erators remain in the final state after a transient time if b
�bc1�K�. On the contrary, for bc2�K��b, defectors prevail.
While the C and D strategies coexist in the region bc1�K�
�b�bc2�K� where the concentration of cooperators de-
creases continuously from 1 to 0 when increasing b from
bc1�K� to bc2�K�. The continuous phase transitions at the two
threshold values belong to the directed percolation universal-
ity class �11,26�. For uniform K values the major feature of
this system can be summarized in a b−K phase diagram �20�
where the curves bc1�K� and bc2�K� denote the phase bound-
aries separating the homogeneous D, the coexisting C+D,
and the homogeneous C phases as it is partly illustrated in
the inset of Fig. 1 or Fig. 6�b�.

The systematic analysis of the proposed evolutionary pro-
cess has justified the existence of a distinguished noise level
K��b� within the �C+D� coexistence region for any fixed b
�on square lattice the corresponding region is bmin
=0.940�3��b�bmax=1.078�1� where the borders are the
minimum and maximum values of bc1�K� and bc2�K� func-
tions�. Figure 1�a� shows what happens if K�

� �K1 ,K2 , . . . ,Kn� for n=5. In this case the final state with
players using the same K� rule is reached after about 1000
MCS independent of L if L	500.

The speed of relaxation toward the homogeneous Kx
=K� state is strongly influenced by the initial set of possible
Ki values. The lower plot of Fig. 1 illustrates a situation
where the four additional Ki values are very close to the
distinguished K� value. Although the evolution of adoption
rules is still straightforward, but the relevant increase in the
relaxation time may be related to the smaller difference in
driving force favoring Kx=K� at the expense of others. Simi-
lar slowing down can be observed if n is increased while the
maximal value of Ki is limited. Anyway, the upper limitation
of the range of possible Ki values �assuming that max�Ki�
�K�� does not influence the final results because the strategy

adoption using the largest Ki value dies out first �see Fig. 1�.
The above results raise the question: what happens if the

initial set of dynamical rules is out of the range of �C+D�
coexistence phase? �It also happens if b�bmin or b�bmax.�
In this case the cooperators �or defectors� die out soon and
the adoption of noise levels becomes random as it is de-
scribed by the voter model predicting a behavior dependent
on the spatial dimension d. Namely, algebraically growing
domains of the same Ki values occur on the one-dimensional
lattice �d=1�, the typical size of homogeneous domains in-
creases with ln�t� if d=2, and the system remains inhomoge-
neous for d
3 �25,27�. According to the above theoretical
prediction a very slow �logarithmic� coarsening will be ob-
served. This case is demonstrated in Fig. 2, where the initial
Ki values are in the all D phase. For the given simulation the
cooperators have died out at t= text=2600 MCS resulting the
conditions of voter model. Afterwards a coarsening without
surface tension starts represented by huge fluctuations in �Ki
functions. The semilogarithmic scale demonstrates clearly
that the absorbing state is reached after a long coarsening
time. �To drive the eye we have plotted a log t function, too.�
In the final state all the players use the same noise level. In
principle, any of the persistent rules �Ki� can invade the
whole finite system with a probability �Ki

�text� due to the
fluctuations.

Several simulations were performed to study the cases
where the initial Ki values are positioned in both sides of the
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FIG. 1. �Color online� The time dependence of the fraction of
initial Ki values ��K� demonstrate the selection of the distinguished
adoption rule K� �indicated by arrow in the inset� if four other rules
�Ki� are permitted in the initial state on the square lattice at b
=1.05 �upper panel�. The inset, as part of the b−K phase diagram,
shows the initial K values chosen from the coexistence �C+D� and
absorbing �D� region as well. Lower panel illustrates the same evo-
lution if the additional four dynamical rules are closer to K�,
namely, Ki=K�+0.05�i−2� for i=1, . . . ,n=5. For both cases the
linear system size was L=1000.
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range of �C+D� coexistence. The results indicated a qualita-
tively similar behavior plotted in Fig. 2.

Beside the large fluctuations for t� text Fig. 2 shows a
smooth and deterministic variation in �Ki

�t� within the period
where both C and D strategies exist. This feature has inspired
us to study the effect of strategy mutation on the Darwinian
selection of noise levels in the regions where only coopera-
tors �b�bmin� or defectors �b�bmax� would remain alive if
the evolution was controlled by only imitations. For this pur-
pose, in a few simulations, the above-mentioned evolution-
ary rule is extended by allowing each player to change her
strategy �from C to D or conversely� with a small probability
�. Figure 3 shows that slightly above bmax the Darwinian
selection favors also a distinguished rule K��b=1.1��0.25
�in the presence of rare mutations� that can be considered as
the analytical continuation of K��b� obtained within the co-
existence region. Evidently, the favored rule depends on both
b and �. As the spreading of the distinguished noise level is
catalyzed by the mutants, the speed of this process vanishes
with �.

If we take b�bmin value, being in the SH region, the
introduction of small mutations will result a fixation value
that can be also considered as an analytical continuation of
fixed K� values from the b�bmin interval. Namely, only

small K�0 values survive and the fixation time increases
drastically as b decreases. Instead of the further analysis of
the effect of mutations henceforth our attention will be fo-
cused on the behavior of K��b� in the �C+D� coexistence
phase in the absence of mutation.

The above-mentioned features of the selection of dynami-
cal rules refer to serious technical difficulties �related to the
long runs on large lattice� in the determination of K��b� with
an adequate accuracy. It turned out, however, that this quan-
tity can be evaluated more efficiently by repeating simula-
tions with only two possible Ki values on small systems. In
this case �n=2� we choose a simple notation, namely K1
=K−�K /2 and K2=K+�K /2. For small sizes the random
initial state evolves rapidly into one of the absorbing phases
where all the players use uniformly the value K1 or K2. Start-
ing from different �random� initial states these simulations
are repeated many times �typically Nr=2000� and the prefer-
ence of the second rule �K2� is measured by the quantity f
=g�K2�−g�K1�, where g�Ki� is the probability that the evo-
lution ends up in the absorbing state with players using uni-
formly the rule Ki. As the simulations hold until reaching one
of the absorbing states therefore g�K1�+g�K2�=1 and f var-
ies from −1 to +1. Similar quantities are used frequently for
the investigations of finite systems within the framework of
Moran process �28�.

Figure 4 demonstrates the results of these investigations
when varying the value of K and �K for a fixed system size
L and b. According to MC data the position of K�, where the
sign of f changes, is independent of the value of �K within
the statistical error. f varies linearly with K in the close vi-
cinity of K=K� �more precisely, f 	�K�−K��. Naturally,
larger �K involves larger difference in the “driving force”
favoring one of them. This fact can be demonstrated by the
data collapse when choosing a more suitable scale for the
vertical axes.

Figure 4 shows that f decreases smoothly if K is increased
for L=40. Evidently, this transition becomes sharper if we
choose larger systems as demonstrated in Fig. 5. According
to these data the system size influences only the absolute
value of f and the functions f�K� becomes zero at K=K�

independently of the system size if it is large enough. In the
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FIG. 2. �Color online� Time dependence of the fraction of the
three Ki values on square lattice at b=1.05 and L=1000. The inset
shows the position of the initial Ki values in the homogeneous D
region. The arrow points to the time text when the C strategy be-
came extinct. Solid line shows a log t function illustrating logarith-
mic coarsening in the final period.
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limit L→� a steplike transition �from 1 to −1 at K�� is
expected. To sum up, the position of K� can be determined
by using only one �K value at small system size, which
reduces the necessary fixation time drastically.

The positive �negative� value of f indicates the parameter
region where the system can evolve toward larger �smaller�
Kx values through weak mutations in Kx during the adoption
processes. Within this context K� in Fig. 4 can be considered
as an attractor.

The above features are utilized in the accurate determina-
tion of K� for a given value of b. In our previous work �19�
these calculations are repeated to determine the distinguished
rule �K�� for different b values within the range of weak
Prisoner’s Dilemma. Now this analysis is extended to the
whole range of b �i.e., bmin�b�bmax� and the results are
summarized in Fig. 6�b�.

In order to get deeper understanding about the fixation of
noise levels, the cooperator density ���K�� profiles are illus-
trated above the whole b−K plane �see Fig. 6�a��. The plot-
ted ��K� curves are obtained for fixed b. In the simulations
we used the following system parameters: system sizes of
105–106 players, relaxation time of 5�105–106 MCS and
105–2�105 more MCS for averaging to get the steady-state
cooperator density values. Larger system sizes and longer
simulation times were needed in the vicinity of the critical
points. The statistical errors of the plotted data are compa-
rable with the line thickness.

Each plotted ��K� curve �for fixed b� shows a local maxi-
mum in the range of weak PD �b�1�. The plot of Fig. 6�b�
demonstrates clearly that the values of K��b� are close to the
site where the cooperator density � has a local maximum for
the given b. Although the position of the local maxima in the
average payoff and � �for fixed b� are distinguishable, the
difference between these positions is small and comparable
with the size of symbols as discussed in �19�.

Within the region of SH game �b�1� Fig. 6 shows a
significantly different behavior. First we emphasize that the
surface ��K ,b� exhibits a valley within the coexistence re-
gion, otherwise �=1. More precisely, for fixed b the curve
��K� differs from 1 within the coexistence region �namely, if
Kc1�b��K�Kc2�b� assuming that b�bmin� and has a local
minimum. It turned out that within this region the Darwinian
selection of noise values prefers also a distinguished rule that

is positioned at the left edge of the “valley,” that is, K��b�
=Kc1�b�. This means that if we study a system with only two
initial rules �K1 and K2 both within the coexistence region�
then the smaller one will spread in the whole system in the
final state.

For uniform dynamical rule �Kx=K� on the square lattice
with nearest-neighbor interactions both bc1�K� and bc2�K�
�the phase boundaries in Fig. 6�b�� go to 1 if K tends to either
0 or � in such a way that one can observe an optimal noise
level for the cooperators in the PD region and another one
for the defectors in the SH games. In other words ��K�
curves have a local maximum �minimum� in the PD �SH�
region. As it was shown by a previous study �21� the local
maximum of cooperation level is related to the absence of
overlapping triangles �three-site cliques� of interaction graph.
The comparison of the mentioned surface and the fixation
values of Ki for both games in Fig. 6 suggest that the pos-
sible evolution of strategy adoption rule will drive the system
into a state that ensures closely the optimal cooperation level
independently of the studied dilemma game. In the subse-
quent section we will consider another type of connectivity
structure exhibiting a slightly different behavior.

IV. RESULTS ON KAGOME LATTICE

In real human connectivity structures a relevant portion of
the neighbors of a player x is also connected to each other
�that is, the so-called clustering coefficient is sufficiently
large� �29�. The main effect of this topological feature can be
well investigated if the players are distributed on the sites of
the two-dimensional kagome lattice where each player has
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also four neighbors. The latter feature makes possible to ex-
clude the additional impact by changing coordination num-
ber. The systematic investigation of the evolutionary PD
game on this connectivity structure has explored a basically
different phase diagram in comparison with that observed on
the square lattice �20�. It turned out that the upper threshold
value of temptation �bc2�K�� decreases monotonously from
3/2 to 1 if K is increased from 0 to �. Due to the different
limit of bc2�K� threshold values, one can also expect basi-
cally different behavior in the Darwinian selection of noise
levels for the PD.

The monotonous K dependence of � in the low noise limit
is related to presence of the overlapping triangles that sup-
port the spreading of cooperators through the lattice �21�. In
fact, the MC simulations indicate similar behavior for many
other regular connectivity structures �including two- and
three-dimensional lattices and some other regular networks�
where the overlapping triangles span the whole system. Thus
the kagome lattice can be considered as a sample represent-
ing the latter type of interaction graphs.

Here it is worth mentioning that the low Ki �or K� values
lead to diverging simulation times and cause technical diffi-
culties in the quantification of the low noise behavior. The
subsequent results were extracted from a set of simulations
where Ki
Kmin=0.002 is chosen for all i.

As we observed in case of square lattice topology, the
fixation of evolving K values is in close connection to the
surface of maximal cooperation when using homogeneous
dynamical rules �Kx=K�. Therefore, the same surface on K
−b plane is determined for kagome lattice as plotted in Fig.
7�a�.

For the PD game �b�1� the ��K� curves �for fixed b�
vary continuously from nonzero value of ��K=0� until
reaching the absorbing state ��=0�. We can distinguish dif-
ferent types of behaviors although the accurate separation of

the corresponding regions of parameter is prevented by the
above-mentioned technical difficulties. From the extrapola-
tion of the low noise behavior monotonously decreasing
��K� can be concluded if K is increased from zero to infinity
at 3 /2�b	1.4. In the subsequent region, 1.4	b�bth
=1.182, the curves ��K� possess only one local maximum
close to K=0. At b=bth, with a sudden jump there appears
another local maximum while the other local maximum close
to K=0 still exist to b=1. The absolute maximum is the one
belonging to larger K value. This behavior indicates that the
triangle percolation added a support for cooperation for
lower noise values and the cooperator density profile can be
derived as the superposition of a plateau originated from the
triangle percolation effect and the normal one-peak profile of
a lattice. In the region of SH game �b�1� the ��K� curves
are resembling those discussed in the previous section. As
well as for the square lattice the function bc1�K� goes to 1 if
K tends to zero or infinity.

Our conjecture, based on the close relation of the fixed
noise level and the optimal cooperation level of homoge-
neous K system, is completely supported by the evolution of
adoption rules on kagome topology, too. More precisely, in
the SH region the Ki values of coexistence C+D phase drift
to the minimal K value to reach Kc1�b� that ensures the maxi-
mal cooperation ��=1�. Technically, if we choose two initial
Ki values from the coexistence region than the lower K value
will spread eventually in the whole population. At high val-
ues of b in the PD region the final value of noise parameter
is always the lowest among the initial set signaling K��0.
This feature is related to the fact that cooperation level al-
ways has a local maximum at K�0. Decreasing b, however,
a bifurcation occurs at b=1.185: beside the K��0 fixed
point a new attractor appears located at a positive K value.
The presence of two attractors are demonstrated in Fig. 8
where the measure of preference, is plotted by means of K.
In this b region the initial Ki values always destine at K�

�0 if they are below Ksep�b� value. �The position of separa-
tor, as the border of basins of attractors will be discussed in
the next section.� If Ki�Ksep, the adoption rules converge to
the above-mentioned K��0 value. Naturally, if all Ki�Kc,
means all Ki values are from the absorbing D phase, similar
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FIG. 7. �Color online� The same plot as Fig. 6 for kagome
lattice. The cooperation level �upper panel� has minima in the SH
region and maxima in the PD area. The maximum at positive K
decreases as b increases and is replaced by a maximum at K=0 if b
exceeds a threshold value �bth=1.182�. Bullets and thick green line
mark the main attractor while the positions of maximal cooperation
level are also denoted by dotted blue line.
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FIG. 8. The same plot as Fig. 5 but using kagome lattice topol-
ogy at b=1.1 and �K=0.01. The system sizes are 3�L�L=3
�20�20 �closed circles�, 3�40�40 �open boxes�, and 3�80
�80 �closed boxes�. The plot demonstrates clearly the existence of
two attracting fixed points at K�=0 and at K�=0.212 where the
border of attraction of fixation values is at Ksep=0.038.
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behavior can be observed as shown in Fig. 2.
An interesting situation occurs when the initial Ki values

are distributed from the whole �0,Kc� interval. In this case,
only K��0 fixed point survives, signaling that the latter is
the stronger attractor. As expected, the position of positive
K� attractor is close to the K value where maximal coopera-
tion level is measured for homogeneous K model. Summing
up our observations for both representative topologies and
for both dilemma games, it is concluded that the system
spontaneously will evolve to a state that is favorable for co-
operation if the adjustment of noise �strategy adoption� is
allowed.

V. DYNAMICAL CLUSTER APPROXIMATIONS

Beside the MC simulations, we performed dynamical
cluster approximations �5� on kagome lattice. The choice of
kagome lattice for this type of investigation was motivated
by its simplicity. To highlight the difficulties in the applica-
tion of these sophisticated technique, first we emphasize that
neither the mean-field �one-site� nor the pair �two-site� ap-
proximations were capable to give an adequate description of
the homogeneous K model, particularly in the low noise
limit. On the square lattice, a higher level of approximation
�four-site approach� is needed to reproduce qualitatively the
results of MC simulations. Furthermore, a more demanding
nine-site level is necessary to reach an adequate accuracy. On
the contrary, the three-site �triangular� approximation can re-
produce quantitatively well the results of MC simulations on
kagome lattice.

Now we briefly survey this method for a simple case
where each site x has only two states �sx=C or D�, and later
we give the main details of the extension to the four-state
systems that is necessary to describe our present model �for a
more detailed description see the papers �5,30,31� with fur-
ther references therein�. Within the framework of this ap-
proximation the system is characterized by all possible con-
figuration probabilities p3�s ,s� ,s�� on a block of three
neighboring sites forming a regular triangle on the kagome
lattice �, �, and � are site labels within the three-site block�.
In the present case the eight possible configurations can be
given using by only three parameters due to the symmetries
and compatibility conditions. These configuration probabili-
ties are determined by solving a set of differential equations
expressing the derivative of p3�s ,s� ,s�� with respect to time
�denoted as ṗ3�s ,s� ,s���. The main difficulties in the appli-
cation of this method comes from the fact that the contribu-
tion of the elementary processes �here strategy adoption be-
tween two neighboring sites� to the quantity ṗ3�s ,s� ,s��
depend on the configuration containing seven sites.

Figure 9 illustrates an elementary process with the neigh-
borhood affecting the probability of strategy adoption from
site y to x. This process decreases ṗ3�sx ,sy ,s3� and simulta-
neously increases ṗ3�sy ,sy ,s3� with a value

�p = Wp7�s1, . . . ,s5� �2�

where W describes the payoff dependence defined by Eq. �1�
and p7�s1 , . . . ,s5� denotes the seven-site configuration prob-
ability. For the present connectivity structure the latter quan-

tity can be approximated by a Bayesian formula:

p7�s1, . . . ,s5� �
p3�s1,s2,sy�p3�sy,sx,s3�p3�sx,s4,s5�

p1�sx�p1�sy�
, �3�

where the one-site configuration probability in the denomi-
nator can be also expressed by the three-site configuration
probabilities as

p1�s� = 

s�,s�

p3�s,s�,s�� . �4�

Summarizing the contribution of all the possible elementary
processes affecting the values of ṗ3�s ,s� ,s��, one can derive
a set of differential equations. Now we do not wish to display
the huge formulas depending only on the three-site configu-
ration probabilities due to approximative formula �3�. Instead
of it we emphasize that one can easily develop a computer
algorithm to collect systematically all the contributions and
the resultant formulas can be used to find the stationary so-
lution�s� numerically for any values of parameters. In the
knowledge of the stationary solutions of the three-site con-
figuration probabilities the most relevant characteristic of the
stationary state can be evaluated, for example, �= p1�C�. Us-
ing this approach the b−K phase diagram was reproduced
qualitatively well in �20,21�.

In the present work this method is extended by substitut-
ing �s ,K� for s where s=C or D and K=K1=K
−�K /2 or K2=K+�K /2. This extension does not influence
the applicability of the above described method. Using only
two initial adoption rules, it was possible to keep the number
of the feasible configurations low enough so that the numeri-
cal solution of the differential equation system was fairly
fast. It turned out that this method is capable to reproduce all
the relevant features characterizing the Darwinian selection
of the dynamical rules. For the quantitative analysis we used
small �K=0.001 values to evaluate the position of the attrac-
tor �K�� and the separatrix for any values of b.

The results are summarized and compared with the MC
data in Fig. 10. The predictions of the generalized mean-field
approximation for the PD region are in excellent agreement
with MC data. As both approaches stated, there are two at-
tractors in a restricted interval of b where a separatrix mark-
ing the border of basins of attractors tends to b=1 if K de-

s1 s2

sy

sxs3 s4

s5

FIG. 9. Strategy adoption from sy to sx �marked by an arrow�
will modify the three-site configuration probabilities on triangles
marked by gray color. All the other neighbors influencing the payoff
difference are denoted by gray circles.
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creases. It also means that the basin of attractor K��0 keeps
getting wider with increasing b. When separatrix reaches the
other fixed point the latter disappears resulting a unique fixed
point in the large b region. Turning to the SH side, the dy-
namical cluster approximation predicts increasing K� fixed
point as we leave b=1, which is again in nice agreement
with the MC results. Further decreasing b, however, the ap-
proximation predicts a small two-attractor region and finally
the K��b� function coincides with the phase boundary where
� becomes 1.

Before evaluating the predictions of the present cluster
mean-field approach, we should stress that the simpler �two-
state� version of the three-site approximation, which is valid
for homogeneous K case, cannot describe correctly the func-
tions ��K� as well as bc1�K� in the low K limit. Namely, the
border of all C phase tends to b=0.75 instead of b=1 when
K→0. �According to this, defectors can survive the deter-
ministic limit when b�1.� Such a qualitative failure of the
approximation might have been the consequence of the small
number of independent variables. In other words, the re-
stricted freedom prevents the approximation to find the valid
solution. At the same time, if we increase the number of
independent variables by letting different Ki values for play-
ers, the approximation is already capable to find the relevant
solution �at least in the vicinity of b=1�. Our argument is
supported by the fact that the five-site approximation for the

homogeneous K model can also describe the behavior bc1
→1 in the K→0 limit. The relevant increase in bc1 can re-
move the artifact�s� occurred at low b values. Summing up,
the extension of the three-site approximation by letting dif-
ferent Ki values was capable to indicate the correct results of
the more sophisticated approximation based on larger cluster
of sites.

VI. DISCUSSION AND OUTLOOK

We studied evolutionary Prisoner’s Dilemma and Stag
Hunt games on two representative two-dimensional lattices.
The underlying structures were the square lattice and the
kagome lattice exemplifying spatial connectivity structures
without or with triangle percolation. We analyzed the simul-
taneous evolutions of strategy and a player specific noise
parameter used by individuals in the strategy imitation pro-
cesses. It turned out that players prefer to use the same dis-
tinguished noise level, namely the same way of strategy
adoption and the fixed points of the adoption parameter are
systematically close to those parameter values which are the
most favorable for cooperation for the PD games. It implies
that the evolution of the adoption parameter drives the popu-
lation to a state which assures substantial cooperation within
the coexistence region. In the region of SH game the maxi-
mum average payoff is achieved at the peripheries of the
coexistence region. It is shown that in the latter case the
Darwinian selection favors the edge of coexistence region
where the noise level �K� is lower. The preference of the
lower noise level can also be observed within the PD region
because the distinguished rule K� was always smaller than
that where the maximum average payoff �or cooperator den-
sity� occurs for homogeneous dynamical rules at fixed pay-
off. The above results raise many general questions about the
main features of states �including many aspects of the model
itself� favored by the Darwinian selection. Here we empha-
size that the Darwinian selection seems to be more efficient
within the coexistence region where the simultaneous evolu-
tion of strategies accelerates the evolution of adoption rules,
too. The latter observation is confirmed by simulations where
the coexistence in maintained artificially by introducing rare
mutations in the systems.

The above investigations have required to improve the
accuracy particularly in the low noise limit where the relax-
ation time diverges. The systematic investigation of the co-
operator’s density versus b �temptation to choose defection�
and K have indicated different types of nonanalytical behav-
iors in the limit b→1 and K→0 as Figs. 6 and 7 show. At
the same time we found qualitatively similar behavior on
both structures in the region of SH game. Although most of
these features can be reproduced qualitatively well by the
dynamical cluster methods on sufficiently large cluster of
sites, we think that further analysis is required to clarify the
effects of the sucker’s payoff S, topology of connectivity
network, and dynamics �e.g., when irrational choices are for-
bidden� on the nonanalytical behavior appeared here at b
=1 and K=0.

The present investigations have expanded the research of
coevolutionary game theory by applying Darwinian selection
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FIG. 10. �Color online� Positions of fixed points of adoption
rules on b−K plane as predicted by MC simulation �top� and three-
site cluster approximation �bottom� for kagome lattice. Bullets, con-
nected by solid �green� line, show the fixed point given by MC
simulations. The position of separatrix in the two-attractor region is
denoted by dashed �green� line. The borders of phases are marked
by dashed-dotted �blue� lines. In the lower panel solid �red� lines
show the position of attractors while separatrix is denoted by
dashed �red� lines. Dashed-dotted �blue� lines mark the borders of
phases.

SZOLNOKI, VUKOV, AND SZABÓ PHYSICAL REVIEW E 80, 056112 �2009�

056112-8



among a continuous set of noise levels in dynamical rules
used by the individuals, while other relevant ingredients of
the model were fixed. In most of the previous studies of the
coevolutionary games only two ingredients of the system
were allowed to evolve simultaneously. Recently, Van Seg-
broeck et al. studied a model where the players could modify
three quantities: their strategy, connections, and the way how
a new partner is chosen �24�. In the light of the latter model
one can ask what happens if the payoff parameter b is also
considered as an individual property �bx� and it can be
adopted from the neighbors as well as the strategy sx and
dynamical rule Kx. The preliminary MC results have indi-
cated that within the strategy coexistence region of the b
−K plane the system evolves toward K��b� with favoring
smaller b values. It is found that the system evolves fast
toward a state where players use game of the lower b value
and subsequently the homogenization in Kx will be done as
described above. This means that the Darwinian selection
prefers SH to PD game, that is, the system develops an en-
vironment where the mutual cooperation �providing the
maximum average payoff� can be achieved more conve-
niently. Similar results were reported by Worden and Levin
�32� and also by Fort �15� who studied models with different
adoptions of payoff parameters. Evidently, other results can
be obtained if the simultaneous evolution of the connectivity
structure �interaction and learning networks �33�� is also pos-
sible.

In principle, all the ingredients of the multiagent coevo-
lutionary games can be the subject of Darwinian selection if
we assume that these features are determined by the partici-
pants. In that case the system can evolve toward a strategy
distribution with a proper connectivity structure, payoff pa-
rameter, adoption rule�s�, mutation, etc., that are preferred by
the Darwinian selection. As a consequence the given Dar-
winian selection will show us the preferred features �or pa-
rameter values�, we can fix when exploring the effect of
other properties �34�. To be more precise, the K� value�s� can
be suggested in numerical simulations if one wish to fix the
noise level.

Finally we would like to mention that in many real sys-
tems besides the evolving individual’s features there are ex-
ternal conditions affecting the system behavior. For example,
the noise itself can arise from external sources as it was
investigated by Traulsen �35� and Perc �36�. Further system-
atic investigations are required to clarify the effect of the
external noise or any other questions mentioned above.
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