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Evolutionary prisoner’s dilemma games are studied with players located on square lattice and random
regular graph defining four neighbors for each one. The players follow one of the three strategies: tit-for-tat,
unconditional cooperation, and defection. The simplified payoff matrix is characterized by two parameters: the
temptation b to choose defection and the cost c of inspection reducing the income of tit-for-tat. The strategy
imitation from one of the neighbors is controlled by pairwise comparison at a fixed level of noise. Using Monte
Carlo simulations and the extended versions of pair approximation we have evaluated the b-c phase diagrams
indicating a rich plethora of phase transitions between stationary coexistence, absorbing, and oscillatory states,
including continuous and discontinuous phase transitions. By reasonable costs the tit-for-tat strategy prevents
extinction of cooperators across the whole span of b determining the prisoner’s dilemma game, irrespective of
the connectivity structure. We also demonstrate that the system can exhibit a repetitive succession of oscillatory
and stationary states upon changing a single payoff value, which highlights the remarkable sensitivity of
cyclical interactions on the parameters that define the strength of dominance.

DOI: 10.1103/PhysRevE.80.056104 PACS number�s�: 89.75.Fb, 02.50.Le, 87.23.Ge

I. INTRODUCTION

Cyclical interactions underlie the mating strategies of
side-blotched lizards �1�, the competition between different
strains of Escherichia coli �2�, and the overgrowth of marine
sessile organisms �3�. The paradigmatic example, however, is
the children’s rock-paper-scissors game �4�, which despite its
simplicity still maintains notable scientific allure �5–8�.
Models of cyclical interactions are used to tackle fundamen-
tal problems in theoretical biology and ecology, as well as
social and economic systems, whereby sustainability of
biodiversity �9� and the evolution of cooperation �10� appear
to be the two most prominent topics. Arguably thus, cyclical
interactions are fascinating and powerful examples of evolu-
tionary processes, able to provide insights into the intriguing
mechanisms of Darwinian selection �11� as well as structural
complexity and prebiotic evolution �12�.

Evolutionary game theory �13� provides a competent
framework in which to investigate the success of different
strategies or species in well-mixed as well as structured
populations �14�. In this context the rock-paper-scissors and
related games have been investigated intensely �15–18�, and
particularly the effects of mobility �19� and stochasticity �20�
recently received substantial coverage in view of potential
maintenance of biodiversity. The evolution of cooperation
within models incorporating a closed loop of dominance has
been addressed within public good games �10,21�, where it
has been shown that volunteering leads to rock-paper-
scissors dynamics between the participating strategies �22�.
Similar observations have been made for the prisoner’s di-
lemma game as well. In general, the modifications brought
about by strategic complexity have been found favorable for
the sustenance of cooperation either in terms of stationary or
oscillatory states �23�.

An interesting extension of the prisoner’s dilemma game
has been proposed by Imhof et al. �24�, who besides the

unconditional cooperation and defection introduced the well-
known tit-for-tat strategy as a third type using mutation-
selection dynamics in well-mixed population. The tit-for-tat
strategy has proven most successful for the iterated prison-
er’s dilemma game �25� even within the set of stochastic
reactive strategies �26�. Similar to equivalent retaliation or
reciprocity, the virtue of the tit-for-tat strategy is to follow
the opponent’s previous action, albeit initially to always co-
operate. Only few concepts were thus far able to challenge
the success of this fairly simple yet effective strategy
�27,28�. In Ref. �24� Imhof et al. reported that the introduc-
tion of the tit-for-tat strategy to the prisoner’s dilemma game
via mutation-selection dynamics in finite �29� well-mixed
populations leads to a natural selection of reciprocity, thus
sustaining cooperation where otherwise defection would
dominate completely.

Here we extend the subject by studying the evolutionary
prisoner’s dilemma game supplemented by the tit-for-tat
strategy in structured populations, showing that cooperation
can survive even in the absence of mutation. The prisoner’s
dilemma game is a paradigmatic example of a social di-
lemma �30�, which even with the addition of the tit-for-tat as
a third strategy features defection as the strict Nash equilib-
rium �24�. Since spatial structure may maintain cooperative
behavior in the prisoner’s dilemma game, as has been shown
in the seminal work of Nowak and May �31�, it is also of
interest to investigate the evolutionary outcome of the three-
strategy version, entailing cooperation, defection, and tit-for-
tat, as the possible strategies. Since the classical mean-field
approximation assumes well-mixed populations, we use the
k-site cluster dynamical mean-field approximation to capture
the essential role of different geometries of the connectivity
structure. The dynamical mean-field approximation tech-
nique proved to be a powerful tool for the determination of
phase diagrams in several nonequilibrium systems
�15,16,33�. Indeed, we show that for the considered evolu-
tionary game the phase diagrams obtained subsequently via
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Monte Carlo simulations are in qualitative agreement with
the k-site cluster dynamical mean-field approximation, evi-
dencing a rich dynamical behavior depending on the payoff
parameters. The payoff parameters determine the strength of
cyclical interactions between the three strategies and, de-
pending also on the interaction graph, crucially influence the
outcome of the game, both in terms of strategy abundance as
well as the resulting dynamics.

The remainder of this paper is organized as follows. In
Sec. II we describe the three-strategy evolutionary game and
present the predictions of the dynamical mean-field ap-
proach. These results are compared with the output of Monte
Carlo simulations in Sec. III, whereas in Sec. IV we summa-
rize our findings and discuss their potential implications.

II. GAME DEFINITION AND DYNAMICAL MEAN-FIELD
APPROXIMATIONS

We extend the two-strategy �unconditional cooperation C
and defection D� spatial prisoner’s dilemma game �for a sur-
vey see �14,16�� with allowing the players to use the tit-for-
tat �in short T� strategy too. Within the framework of two-
strategy game we adopt the parametrization suggested by
Nowak and May �31�, i.e., the prisoner’s dilemma is charac-
terized by the temptation b, reward 1, and both punishment
as well as the suckers payoff equaling 0, whereby 1�b�2
ensures a proper payoff ranking. We should stress, however,
that our observations are not restricted to the so-called weak
prisoner’s dilemma limit but remain fully valid also if the
rank of payoff elements fulfills the game definition strictly.

We introduce the tit-for-tat strategy so that we neglect the
payoff reduction of T arising from the first encounter with a
defector �32�. This simplification, still retaining the essence
of the payoff matrix, is valid in the case players imitate the
neighbor’s strategy rarely in comparison with the frequency
of games they play. In many previous models �28,36� the
payoff reduction of T arising from the first cooperation is
considered quantitatively and caused technical difficulties in
the investigations. As the application of T strategy requires
continuous inspection and recording the neighbors’ previous
step, the pure income of T players is reduced by the cost of
monitoring. Accordingly, the reward �against C or T� is 1
−c, whereas a defector gets 0 if facing a T player who then
obtains −c. The payoff elements are summarized in Table I.

Note that the presence of tit-for-tat players introduces a
cyclic dominance-type relation among strategies in the spa-
tial model, which is absent in the well-mixed case. More

precisely, a group of neighboring players adopting the tit-for-
tat strategy can spread in the sea of D’s because they support
each other as cooperators yet do not allow defectors to ex-
ploit them. On the other hand, even a single cooperator can
invade tit-for-tat players because their cooperation is bur-
dened by the monitoring cost. Furthermore, above a thresh-
old value of b defectors conquer cooperators in the absence
of T. The mentioned relations introduce a sort of cyclic
dominance between the three strategies �C→T→D→C�.
More importantly, the intensity of dominance can be tuned
effectively via alterations of b and c. Accordingly, the
present study may strengthen the link between evolutionary
game models and other systems of cyclic dominance relevant
to biology and social sciences �26,34�.

The game is staged on a L�L square lattice with nearest-
neighbor interactions and periodic boundary conditions or a
random regular graph with an identical degree, whereon ini-
tially each player on site i is designated either as a cooperator
�si= C�, defector �D�, or a tit-for-tat player �T� with equal
probability. Irrespective of the interaction graph, a randomly
selected player i acquires its payoff Pi by playing the game
with its four neighbors. Next, one randomly chosen neighbor,
denoted by j, also acquires its payoff Pj by playing the game
with its four neighbors. Last, player i tries to enforce its
strategy si on player j in accordance with the probability

W�si → sj� =
1

1 + exp��Pj − Pi�/K�
, �1�

where K denotes the amplitude of noise �35�. For simplicity
we keep the value K=0.1 fixed throughout this study, but we
note that the qualitative features remain unchanged for dif-
ferent K.

We first present phase diagrams obtained via k-site cluster
dynamical mean-field approximations. The first level that can
approximate the square lattice structure �containing short
loops� correctly is the four-site level, where the master equa-
tions for probabilities of configurations on a 2�2 cluster
need to be derived. The details of this approach can be found
in Ref. �37�, especially for three-strategy system in Ref. �15�.
The predictions of the four-site level approximation for the
present model are summarized in Fig. 1. It can be observed

TABLE I. Payoff matrix of the studied evolutionary game. The
three strategies are cooperation �C�, defection �D�, and tit-for-tat
�T�. b is temptation to defect; c is the cost of monitoring other’s
strategy.

C D T

C 1 0 1

D b 0 0

T 1−c −c 1−c 0.0
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FIG. 1. �Color online� Full b-c phase diagram for the three-
strategy evolutionary game on the square lattice obtained via the
four-site �square� cluster dynamical mean-field approximation. Red
lines mark the border between stationary mixed states C+D and
C+D+T, as well as absorbing D ��D=1� states.
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that for low values of c a mixed stationary state of all three
strategies exists across the whole span of b. For very low b
and c�0.028, however, the T strategy dies out, yielding a
mixed C+D state, as marked by the arrow. In this region the
system is equivalent to the traditional two-strategy prisoner’s
dilemma game. In the remainder of the phase diagram ab-
sorbing D states prevail. In essence, it can be concluded that
the addition of the tit-for-tat strategy to the evolutionary pris-
oner’s dilemma game on the square lattice maintains coop-
eration across the whole span of b in the form of a stationary
mixed C+D+T state if only the monitoring cost c is suffi-
ciently low. It should be noted, however, that the nonmo-
notonous b dependence of the transition line separating C
+D+T and D phases is just an artifact originating from the
order of approximation.

As expected, the lack of “shortcuts” �or the absence of the
small-world property� prevents the emergence of synchro-
nized strategy invasions. Thus, the mixed C+D+T phase
depicted in Fig. 1 has the properties of a stationary state in
that the permanent spreading of invasion fronts between the
three strategies maintains their density constant. In other
words, at low values of the cost c, the self-organizing pattern
of strategy distribution game on the square lattice has the
same morphology as was observed previously for spatial
rock-paper-scissors game �6,38–40�.

Based on the established conceptual similarity with the
rock-paper-scissors model, significantly different behavior is
expected if the square lattice interaction topology is replaced
with the random graph. For the purposes of simplicity and
comparability, we use random regular graphs ensuring the
same degree z=4 for all players. Such a graph can be ob-
tained by randomly rewiring the links of the original square
lattice, as demonstrated in Ref. �15�. In the absence of strong
local correlations between neighbors of a given player, al-
ready the two-point level of dynamical mean-field approxi-
mation yields reliable predictions. At this level, the variables
are denoted by p2�si ,sj�, characterizing the configuration
probability of a link connecting players with si and sj strat-
egies. By neglecting higher order correlations, the time de-
rivative of two-point probabilities is given as a function of
probabilities of such configurations. To illustrate these equa-
tions, the probability of a strategy adoption process between
players i and j is given as

p2�si,sj� �
k,l=1

3

p2�si,sik�p2�sj,sjl�

�p1�si�p1�sj��3 W�si → sj� , �2�

where p1�si� and p1�sj� denote the frequency of strategies si
and sj, respectively, and the payoff difference dependent
adoption rate W is from Eq. �1�. The notation used for the
description of the neighborhood of the i− j link is illustrated
in Fig. 2.

The resulting phase diagram, presented in Fig. 3, features,
besides the stationary mixed �C+D and C+D+T� and pure
�D� phases, also an oscillatory region �O�, where all three
strategies coexist in an oscillating manner. Interestingly, the
transition from the stationary mixed C+D+T state to the
oscillatory state is always discontinuous, denoted explicitly

by the dashed blue line. We note that the starting amplitude
of oscillatory states increases when c is increased along the
border separating C+D+T and O phases. However, the jump
associated with this transition at c�0.3 becomes so sharp
that the system instantly switches to the oscillatory state hav-
ing maximal amplitude. Accordingly, the three strategies cy-
clically alternate almost complete dominance sequentially
�C→T→D→C� in an oscillatory fashion. On the other
hand, the transition from the oscillating O to the absorbing D
phases is always continuous. The latter transition is illus-
trated explicitly in Fig. 4, where the time evolution of three
different oscillating states is plotted, as obtained for three
different values of c by a fixed temptation b=1.95. At first
glance, the oscillatory solutions vary only slightly in depen-
dence on c, the most significant difference being that the
duration of the almost complete dominance of D becomes
increasingly longer as c is increased. Stated differently, the
departures to the C and T strategies become rarer, until even-
tually they are completely left out when the O-D transition
line is crossed. It is worth noting that if plotted in the ternary
diagram, all three oscillatory states depicted in Fig. 4 would
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FIG. 2. Schematic presentation of the evolution of two-site clus-
ter probabilities on a random regular graph. The central players are
si �black circle� and sj �white circle� with four neighbors each �gray
circles and the corresponding central player�. Black player passes
strategy to the white player, as denoted by the arrow.
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FIG. 3. �Color online� Full b-c phase diagram for the three-
strategy evolutionary game on the random regular graph obtained
via the two-site cluster dynamical mean-field approximation. The
phase diagram contains all the stationary states �mixed and pure�
presented in Fig. 1, as well as an additional region with oscillatory
states denoted with O, which may be separated by a continuous
second-order �red line� or a discontinuous first order �dashed blue
line� phase transition to absorbing D or stationary C+D+T phases,
respectively.
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be identical, following closely the border of the triangle. Re-
garding the phase diagram, the high bc value separating C
+D and D phases is again an artifact due to the low level of
approximation, as we will show below. Next, it is thus of
interest to test the accuracy of predictions obtained via the
k-site cluster dynamical mean-field approximations with
Monte Carlo simulations.

III. MONTE CARLO SIMULATIONS

Monte Carlo results presented below were obtained on
populations comprising 400�400 to 5000�5000 individu-
als, whereby the fractions of the three strategies �s ;s
� �C,D,T� were determined after discarding an appropriate
relaxation time. The duration of this time depends signifi-
cantly on the phase toward which the system is evolving. For
example, at small b and c values 103 Monte Carlo steps
�MCSs� are sufficient to reach the stationary state. On the
other hand, more than 2�104 MCSs need to be discarded at
the border of C+D+T and O phases. Furthermore, it is im-
portant to note that the system size may play a pivotal role
by the extinction of a strategy even if the latter is very large.
Such undesirable system-size effects were observed on inter-
action graphs hosting up to N=2.5�107 players. To eschew
these artifacts, we introduced a tiny mutation during the
simulations; in particular, after every MCS the strategy of
N�10−5 players was changed randomly. This small mutation
rate does not influence the positions of the phase transitions
but solely ensures computationally manageable conditions in
all phases.

Figure 5 features the phase diagram for the square lattice
as obtained via Monte Carlo simulations of the three-strategy
evolutionary game. Apart from the shifts of the correspond-
ing regions the results are in good agreement with the phase
diagram presented in Fig. 1, which was obtained via the
four-site cluster dynamical mean-field approximation. Re-
gardless of the differences, both approaches stress that the
addition of the third strategy, and with it related emergence

of a closed loop of dominance between the three strategies
on structured populations, strongly facilitates the cooperative
behavior even by high temptations to defect if only the moni-
toring costs c remain lower than a threshold value �i.e., c
�0.468 at b=1.99�. Most notably, the survival barrier of the
stationary mixed C+D+T state in Fig. 5 shifts toward higher
c if b is increased. This feature is in agreement with the
general character of systems whose dynamics is governed by
a closed loop of dominance. Namely, the direct support of a
player uplifts foremost the survival probability of its “preda-
tor” rather than the density of the directly supported player
itself �5,32�. In our case increasing b directly supports the
strategy D. Accordingly, the T strategy benefits from the in-
crease of b leading to the shrinking of the pure D region, as
depicted in Fig. 5. It is also worth noticing that the border
between C+D and D phases becomes independent of c. This
is because the game becomes identical to the prisoner’s di-
lemma game when T dies out. In this case the extinction of
cooperators depends only on b.

Further supplementing the above-presented findings of the
k-site cluster dynamical mean-field approximations, we show
in Fig. 6 the b-c phase diagram obtained via Monte Carlo
simulations of the evolutionary game on the random regular
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FIG. 4. �Color online� Time evolution of the density of defectors
�D for different values of c, as obtained via the two-site cluster
dynamical mean-field approximation with b=1.95 being fixed. Val-
ues of c are 0.25 �bottom panel�, 0.35 �middle panel�, and 0.43 �top
panel�. As c is increased the system spends more and more time in
the state where almost every player adopts the D strategy.
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FIG. 5. �Color online� Full b-c phase diagram for the three-
strategy evolutionary game on the square lattice obtained via Monte
Carlo simulations �boxes; connecting lines are just to guide the
eyes�. The notation of phases and separation lines is the same as in
Fig. 1.
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FIG. 6. �Color online� Full b-c phase diagram for the three-
strategy evolutionary game on the random regular graph obtained
via Monte Carlo simulations. Closed �open� boxes connected by red
solid �blue dashed� lines denote continuous second-order �discon-
tinuous first-order� phase transitions between marked phases. The
notation of phases is the same as in Fig. 3.
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graph. Presented results clearly support our previous obser-
vation regarding the impact of the random interaction topol-
ogy in that the oscillatory phase �O� appears when the temp-
tation to defect b is high enough, and moreover, that this
phase may emerge very suddenly via a discontinuous phase
transition. The nature of these oscillations on the random
regular graph can be characterized succinctly by the area A
inside each corresponding orbit in the ternary diagram �15�.
In particular, to demonstrate the different characters of the
phase transitions from stationary C+D+T to the oscillating
phases at different values of the cost c, we plot A in depen-
dence on b for three different values of c in Fig. 7. By small
costs the oscillating phase emerges gradually when b is en-
larged �red diamonds in Fig. 7�. As the ternary diagram
nested in Fig. 7 shows, the orbits become larger and larger as
b increases until eventually the borders of the triangle are
reached. By such high values of b the three strategies cycli-
cally exchange almost complete dominance sequentially �C
→T→D→C� in an oscillatory fashion, qualitatively similar
as depicted above in Fig. 4. Accordingly, the phase transition
at c=0.1 in Fig. 7 can be described by a continuous A�b�
function. By larger costs, however, a finite jump in the order
parameter A signals that the transition becomes discontinu-
ous �green squares in Fig. 7�, i.e., when the system enters the
O phase the smallest orbit still has a finite area. This phe-
nomenon is further amplified at even higher values of c,
where the transition becomes so sharp that the system starts
oscillating with the maximal amplitude instantaneously �blue
circles in Fig. 7�. This behavior is in full agreement with the
predictions of the two-site cluster dynamical mean-field ap-
proximation.

Finally, the rich variety of dynamical states that can be
observed within the examined three-strategy evolutionary
game containing a closed loop of dominance can be demon-
strated if we change the value of the cost c at fixed value of
the temptation to defect b. This also highlights the remark-
able sensitivity of cyclical interactions on the parameters �in
this case c� that define the strength of dominance between
the strategies �species�. As it is shown in Fig. 8, the system is
in an oscillatory phase at small c values �panel �a��. If we

increase the cost, the system arrives at a stationary C+D
+T phase that is characterized by time-independent densities
of the three strategies �panel �b��. Increasing c further, the
three densities start oscillating again, whereby the amplitude
of these oscillations increases with larger values of c �panels
�c�–�e��. Increasing c yet again, the oscillations disappear
anew �panel �f��. At even larger values of c the strategies C
and T die out, leaving the game trapped in an absorbing D
state �not shown�. Summarizing briefly, the smooth variation
of parameters can result in relevant changes of the intensity
of dominance between the three strategies, which manifest as
differently classified behaviors in the corresponding phase
diagram.

Before summarizing, we would like to mention that the
Monte Carlo simulations of the considered evolutionary
game on the random regular graph indicate a transition from
the O to the D phase that is in close agreement with the
two-site cluster dynamical mean-field approximation results
presented in Fig. 4. Namely, it can be shown that these phase
transitions are continuous provided we choose as the order
parameter the fraction of the time during which the system is
not in the almost complete defection state. Finally, we should
stress that our observations are not valid only for the weak
prisoner’s dilemma parametrization. For example, using S
=−0.05 while keeping R=1 and P=0, the topology of the
b-c phase diagram on random regular graphs is identical to
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FIG. 7. �Color online� Area of orbits A in the ternary diagram in
dependence on b for three different values of the cost c. The phase
transition is continuous at c=0.1 �red diamonds� but becomes dis-
continuous at c=0.185 �green squares�. When increasing c further
the jumps become even sharper, as depicted by blue circles obtained
at c=0.2. The inset shows the orbits in the ternary diagram for b
=1.64, 1.66, 1.68, and 1.70 �from center� when c=0.1.
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FIG. 8. �Color online� Time evolution of the density of coopera-
tors �C for different values of c, as obtained via Monte Carlo simu-
lations of the three-strategy evolutionary game on the random regu-
lar graph of N=2.5�107 players with b=1.6 being fixed. Values of
c are �a� 0.01, �b� 0.08, �c� 0.125, �d� 0.15, �e� 0.17, and �f� 0.25.
Relaxation times have been discarded, hence the starting time in all
panels is arbitrary. Note also that the same scale is used in all panels
to ensure better comparison options.
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the one plotted in Fig. 6. Naturally, quantitative differences
are present, e.g., the tricritical point where D, C+D, and C
+D+T phases meet is located at b=1.067 and c=0.269.

IV. SUMMARY

We have studied an evolutionary game with three strate-
gies on the square lattice and the random regular graph via
dynamical mean-field approximations and Monte Carlo
simulations. Both approaches support that the introduction of
the �third� tit-for-tat strategy in structured population helps
us to maintain the “diversity” of strategies despite of the
absence of strict cyclic dominance, as defined by the payoff
matrix. The coexistence of strategies prevails irrespective of
the interaction structure, thus supporting the survival of co-
operators even at the highest temptations to defect, provided
the monitoring costs remain reasonably low. The cost of ex-
ecuting the tit-for-tat strategy introduces a powerful param-
eter to the evolutionary game, enabling us to tune the
strength of effective cyclic dominance among the three par-
ticipating strategies on structured populations. As a result, a
rich variety of phases and phase transitions can be observed
despite of the minimal number of parameters.

When the square lattice interaction topology is replaced
by the random regular graph, a new oscillating phase
emerges. Thus, the random topology has a similar impact on

the three-strategy evolutionary game as was reported before
for the voluntary prisoner’s dilemma games �41� and for the
rock-paper-scissors games in the presence of diffusion or
long range connections �8,15,19�. Here the phase transitions
from the stationary to the oscillating phase can be continuous
�second order� or discontinuous �first order�. The discontinu-
ous transitions are particularly fascinating, in that just a tiny
change in parameter values can result in full-blown oscilla-
tions having maximal amplitude from a state with constant
strategy densities. Another noteworthy property is the ex-
treme sensitivity of evolutionary games incorporating a
closed loop of dominance, where variations of a single pa-
rameter may evoke recursive oscillatory→stationary
→oscillatory phase transitions. These features highlight the
diversity of feasible dynamical states and associated phase
transition in evolutionary games with tunable cyclical inter-
actions, which not only facilitate cooperation through en-
hanced diversity of strategies but also provide interesting
results related to their dynamics.
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