PHYSICAL REVIEW E 71, 027102(2005

Three-state Potts model in combination with the rock-scissors-paper game
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We study a three-state Potts model extended by allowing cyclic dominance between the states as exemplified
in the rock-scissors-paper game. Monte Carlo simulations are performed on a square lattice while varying the
temperature and the strength of cyclic dominance. It is shown that the critical phase transition from the
disordered state to the ordered one is destroyed by the cyclic dominance, which yields a self-organizing pattern
even at low temperatures. The differences and similarities are discussed between the present model and
half-filled, driven lattice gases with repulsive interaction.
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Ordering phenomena and related phase transitions are ahese stategstrategies, species, etavill be denoted by the
ready well understood in equilibrium systerfis] while a  basis vectors of a three-dimensional space, i.e.,
theoretical understanding of nonequilibrium phase transitions

is still in its infancy[2,3]. Many relevant and general fea- 1 0 0
tures of these transitions in equilibrium systems can be stud- =0, s,=({1], s,=({0][. (1)
ied by the Potts modelgl]. We present an extended version 0 0 1

of the three-state Potts model to investigate the effect of
cyclic dominance between the states. We can imagine thiShe time evolution of the system is governed by random
model as a combination of the traditional Potts model and &equential updates. More precisely, the transition probability
spatial rock-scissors-paper gal(semetimes known as three- from a states(x) (at sitex) to a randomly chosen stag(x)
state cyclic predator-prey or Lotka-Volterra modelthis s given as
way providing a continuous transition between an equilib- L
rium system and a spatial evolutionary game where the time- P —
reversal symmetry(detailed balandeis broken at the el- Ws(x) — s'(x)]= 1+exg- sUX)/T]’ (2)
ementary (microscopi¢ steps. The consideration of this _ ) ]
model was Strong]y motivated by the work of Kagt al. where 5U(X) is the difference of payOffS between the final
[5,6] who presented the concept of driven lattice gases t@nd initial states, and is the temperature characterizing the
study the effect of an external electric field on their orderingeffect of the noise. The payoff at siledepends ors(x) as
process. Since the appearance of their work, many generalell as on the neighboring statExy)] as given by the fol-
features of these systems have been expl¢i@da review |owing sum of matrix products:
see Refs[2,7]).

In this Brief Report we will show that in the presence of ux =, sT(x)Asly), (3
cyclic dominance long-range order cannot be observed, and w

Potts model is also suppressed. Instead, a self-organizingsie x, sf(x) denotes the transpose sfx), and the payoff
pattern is observed even for low temperatures and weak C¥q5trix A is defined as

clic dominance. The behavior of the correlation length and
specific heat also proves this fact. A similar phenomenon has 1 & -e¢
already been observed for a two-dimensional driven lattice A=l-g 1 ¢ |. (4)
gas with repulsive interactions. There the formation of long-
range order is prevented by an interfacial instability that re-
sults from the enhanced particle transport along the boundn the limit e — 0, this model can be considered a&imetic)
aries separating the “chessboard”- and “antichessboardthree-state ferromagnetic Potts mo@é] with Glauber dy-
ordered phas€s,9]. namics[10]. Plainly, in this case the total energy is defined
In our model the strength of cyclic dominance will be asH=-3,U(x)/2 and the microscopic processes satisfy the
characterized by a single parametey in such a way that for detailed balance in equilibrium. Consequently, the system
£=0, the system becomes equivalent to the equilibrium Pottsends towards a stationary state whose statistical features
model: exhibiting a well-known critical transition. Our are described by the Gibbs ensemble. When decreasing
analysis is focused on a two-dimensional system where eadhe temperature, the Potts model undergoes an ordering
site x of a square lattice is characterized by a three-state sitprocess from the disordered state to one of the three equiva-
variable, namelys(x)=sy, s;, ands,. For later convenience lent homogeneou&rdered states. The corresponding criti-
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cal transition represents a well-known universality class
[1,4].

For £ >0 the off-diagonal components of the payoff ma-
trix A are antisymmetric; therefore the total payéir the
above-defineH) is not affected by the value of for any
state. At the same time, the value ©finfluences the prob-
ability of strategy changes, becauds(x) — s'(x)] directly
depends on the variations in individual paydf&J(x)]. The
above evolutionary rule demonstrates a strategy insb#-
ish) individuals attempt to maximize their own payoff with-
out concerning themselves with their neighbors’ perfor-
mance. As a result, cyclic invasions occur along the . X :
boundaries separating homogeneous domains; domains of 0.5 0.6 0.7 0.8 0.9 1
states, are invaded byg,, which are invaded byg,, which are T
invaded bys,. These cyclic invasions are capable of main-
taining a self-organizing pattern with rotating spiral arms FIG. 1. Monte Carlo data for the order parameter vs. tempera-
whose “velocity” is controlled by [11-13. ture ate=0.1 for different system sizes as indicated. The solid lines

For most of the spatial evolutionary games, the choice ofire visual guides.
the dynamical rulesor W[s(x) —s'(x)]) is based on a learn-
ing mechanism or strategy adoption modeling the Darwiniarihe system evolves into one of the long-range ordered
selectiongd14—-16. In these models different ways are sug- (Symmetry-breaking stationary statege.qg., (po)=(1+2m)/
gested for the players to adopt the strategy of their mor& and{p;)={p,)=(1-m)/3 and the remaining two equivalent
successful neighbors. A common feature of these strategstates are given by the cyclic permutation of indicéghe
adoptions is that the new state will be equivalent to one ofinear size is sufficiently large. In the thermodynamic limit
the neighboring strategies. Consequently, this mechanismme order parameten decreases monotonously from 1 to 0
prohibits the variation inside the homogeneous domains ands the temperature is increased from ffaand the vanish-
makes the extinction process similar to those defined by thing of m follows a power law behavior i, is approached
contact proceséor directed percolation2,3]. In the present from below [4]. For finite sizes, however, the MC simula-
model, however, the above Glauber dynamics allow the playtions exhibit a smoothed-order parameter function that devi-
ers to choose all the possible strategies. Therefore, the tinstes monotonously if we decrease the system [siZel§.
variation is not restricted to the interfaces separating the haSignificantly, different finite size effects are observed when
mogeneous domains. In the context of evolutionary gaménvestigating the present model fer>0.
theory, the above evolutionary rule describes a different be- Figure 1 illustrates how the order parametevaries with
havior. Namely, here the players know all the possibilitiestemperatureT for different linear sizes ife=0.1. MC data
and their choices depend on the increase in income that thegferring to an ordering process for small siZés=50 and
are able to predict, given their knowledge of neighboring100) bear a resemblance to MC data obtaineddei0. On
strategies. the contrary, for example when=500, the MC data do not

In the present work we study the effect of the “cyclic indicate the appearance of long-range order. Instead, a self-
dominance” on the phase transition. For this purpose systembrganizing, three-color domain structure can be observed
atic Monte Carlo(MC) simulations are performed on a when visualizing the time-dependence of the spatial distribu-
square lattice under periodic boundary conditions varying theion (for a snapshot, see Fig).2
temperaturel and strengthe of the cyclic dominance for On this snapshot one can identify all three ordered phases
different linear sized.. Each simulation is started from a forming domains with a characteristic linear sizeFor T
random initial state and after a suitable thermalization time< T, ande=0, the growth of these domaiiils~ \E) is driven
we recorded the concentration of statpg, p1, andp,) for by the interfacialPotts energy{19-21. Here, however, this
each Monte Carlo step. We have also made simulations staiomain growth is prevented by two processes emerging for
ing from ordered homogeneous phases to check the stability>0. The first process is related to the appearance of rotat-
of the stationary state. To investigate the ordering processng spiral arms for the three-edge vortices where the three
we have determined the average value of the order parametgjpes of domaingor domain boundari@¢smeet. On these
from the values of concentration dee17] maps we can distinguish vortices and antivortices rotating in

opposite directions. Some topological and geometrical fea-
(5) tures of such spatiotemporal patterns were already investi-

gated in previous papefd41-13,22. It is found that the spi-

rals become well marked if a “surface tension” is switched
where(: --) refers to averaging over a sampling time variedon, after which the corresponding patterns cannot be charac-
from 1C° to 1° Monte Carlo steps per sitéd1CS). In the  terized by a single parametée.g., typical domain size or
disordered phasesy=p;=p,=1/3 (due to the cyclic sym- correlation length[22].
metry) and m=0 in the thermodynamic limitL — ). For In the present model there exists a second process causing
£=0 and below the critical temperatuf@ <T,=0.9951)]  the appearance of growing domains via a nucleation mecha-

1
m= 5([3 max(pg, p1,p2) ~ 1),
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FIG. 3. Variation of correlation lengtlwith error barg as a
function of ¢ for fixed temperaturéT=0.75. The straight line in-
dicates a power law divergence with a slope of —1. The inset shows
the correlation length vs temperature for0.1.

FIG. 2. Snapshot of a typical domain structure appearingrfor
=0.64 ands=0.1. The three-edge vorticéantivortices rotate in a
clockwise (anticlockwise direction with spiral arms because the
average velocity of the invasion frontwhite invades black invades

aray invades whiteis hardly affected by their curvature. observation refers to the minor role that the nucleation plays

in the maintenance of self-organizing patterns at suffi-
nism inside the large “homogeneous” territories. Due to thisciently low temperaturgT<T.). For higher temperature,
process, an “ordered state” dominated fgywill be trans-  the nucleation mechanism plays a crucial role by preventing
formed into another one dominated Iy as indicated by the formation of a monodomain state even for0. Thus
simulations for small sizes. In these cases the three orderedis conjectured that this process results in a different be-
states follow each other cyclically and the above methodhavior of ¢ at the critical temperature. Furthermore, it is
yields a sufficiently large value fan (see Fig. 1 Both the  worth mentioning here that in the above-mentioned driven
duration time and the probability of these transitions—whichlattice gas model, the transversal correlation length was
are initiated by a nucleation mechanism dependent upon theso proportional to the inverse of the strength of driving
thermal fluctuations—increase with the system size. This idield [9].

the reason why the values afi are higher forL=50 than In our model the Potts energy measures the concentration
those forL=100 in Fig. 1. of domain walls and also gives additional information about

For sufficiently large system sizés>1), both mentioned spatial distributions. From the average Potts energy as a
mechanisms work simultaneously and result in a selffunction of temperature, one can derive a specific Heat
organizing pattern where the three states are present with tled(H)/dT) that exhibits ax divergence at the critical tem-
same concentration anti=0. Henceforth, the quantitative perature in the equilibrium limite=0). Figure 4 illustrates
investigations will be focused on large systefbs>500 and  how the\ divergence is smoothed out if the cyclic domi-
the temperature regiof > 0.6T;) where the spatial patterns
are isotropic.

We now turn our focus to the variation of the correlation
length &, derived from the asymptotic behavi@xponential
vanishing of the two-site correlation functiof8]. For this
purpose a series of MC simulations were performed by
varying the temperature far=0.1. The inset in Fig. 3 illus-
trates the absence of divergencegias expected. When de- <«
creasing the temperature, the correlation length increase
monotonously until a maximum valjé=11.55) measured
in lattice unif. Below the peak aT=0.77 the visualization
of the distribution of species shows a self-organizing pattern
(see Fig. 2 and here the value of decreases very slowly
with T.

The ¢ dependence of the correlation length is also deter- 07 0.8 0.9 1 1.1
mined for a fixed temperature and the results are illustratec T
in a log-log plot(see Fig. 3 These MC data are consistent
with a predictedé~1/e for small . For a typical domain FIG. 4. Specific heat as a function of temperature for three dif-

size a similar divergence was found previously in a modeferent values ot as indicated. These MC data are obtained for such
where the nucleation mechanism was block@&]. This a large linear sizéL=1000 that size effects are negligible.
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nance is switched on. When choosing larger and lasgée In summary, a three-state dynamical lattice model was
maximum value of specific heat decreases, while the peaintroduced by combining the Potts model and the rock-
position moves towards lower and lower temperatures. Thecissors-paper game to study the effect of cyclic dominance
peaks are so shallow in the “driven” cases that a logarithmi®n ordering processes. The cyclic dominance was shown to
scale was necessary to present them in the same figure. Theeak the time-reversal symmetry at the elementary steps,
appearance of this peak in the specific heat can be interpretgghereby the behavior of this model cannot be described by
as a sign of short-range ordering. _ . methods of equilibrium statistical physics. Our numerical
A similar phenomenon was observed for the driven latticeynalyses have demonstrated that both the long-range
gases with repulsive interaction when increasing the externgkymmetry-breakingordering process and the corresponding
electric field [8,9]. Although the observed patterns and cyitical transition are suppressed in the presence of cyclic
microscopic mechanisms are very different, in both casegominance(s>0). As seen in the simulations, the three
interfacial effects prevent the formation of long-range Orderequivalent ordered phases coexist by forming a self-
in the presence of the driving force. In these cases the intef;ganizing domain structure even at low temperatures and
faces belong to the stationary states and their geometricgleai cyclic dominance. The equilibrium state is approached
characterization requires additional parameters. This genergly the divergence of the typical domain size when the

feature_ can occur in other nonequilibrium systefesg., in strength of cyclic dominance goes to zero.
ecological modelswhere an external force induces some

extra activity along the interfaces separating the “ordered This work was supported by the Hungarian National Re-
domains.” search Fund under Grant No. T-47003.
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