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We study a three-state Potts model extended by allowing cyclic dominance between the states as exemplified
in the rock-scissors-paper game. Monte Carlo simulations are performed on a square lattice while varying the
temperature and the strength of cyclic dominance. It is shown that the critical phase transition from the
disordered state to the ordered one is destroyed by the cyclic dominance, which yields a self-organizing pattern
even at low temperatures. The differences and similarities are discussed between the present model and
half-filled, driven lattice gases with repulsive interaction.
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Ordering phenomena and related phase transitions are al-
ready well understood in equilibrium systemsf1g while a
theoretical understanding of nonequilibrium phase transitions
is still in its infancy f2,3g. Many relevant and general fea-
tures of these transitions in equilibrium systems can be stud-
ied by the Potts modelsf4g. We present an extended version
of the three-state Potts model to investigate the effect of
cyclic dominance between the states. We can imagine this
model as a combination of the traditional Potts model and a
spatial rock-scissors-paper gamessometimes known as three-
state cyclic predator-prey or Lotka-Volterra modelsd, this
way providing a continuous transition between an equilib-
rium system and a spatial evolutionary game where the time-
reversal symmetrysdetailed balanced is broken at the el-
ementary smicroscopicd steps. The consideration of this
model was strongly motivated by the work of Katzet al.
f5,6g who presented the concept of driven lattice gases to
study the effect of an external electric field on their ordering
process. Since the appearance of their work, many general
features of these systems have been exploredsfor a review
see Refs.f2,7gd.

In this Brief Report we will show that in the presence of
cyclic dominance long-range order cannot be observed, and
thereby the critical transitionsobserved in the traditional
Potts modeld is also suppressed. Instead, a self-organizing
pattern is observed even for low temperatures and weak cy-
clic dominance. The behavior of the correlation length and
specific heat also proves this fact. A similar phenomenon has
already been observed for a two-dimensional driven lattice
gas with repulsive interactions. There the formation of long-
range order is prevented by an interfacial instability that re-
sults from the enhanced particle transport along the bound-
aries separating the “chessboard”- and “antichessboard”-
ordered phasesf8,9g.

In our model the strength of cyclic dominance will be
characterized by a single parameters«d in such a way that for
«=0, the system becomes equivalent to the equilibrium Potts
model: exhibiting a well-known critical transition. Our
analysis is focused on a two-dimensional system where each
site x of a square lattice is characterized by a three-state site
variable, namely,ssxd=s0, s1, ands2. For later convenience

these statessstrategies, species, etc.d will be denoted by the
basis vectors of a three-dimensional space, i.e.,
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The time evolution of the system is governed by random
sequential updates. More precisely, the transition probability
from a statessxd sat sitexd to a randomly chosen states8sxd
is given as

Wfssxd → s8sxdg =
1

1 + expf− dUsxd/Tg
, s2d

wheredUsxd is the difference of payoffs between the final
and initial states, andT is the temperature characterizing the
effect of the noise. The payoff at sitex depends onssxd as
well as on the neighboring statesfssydg as given by the fol-
lowing sum of matrix products:

Usxd = o
kyl

s†sxdAssyd, s3d

where the summation runs over the nearest neighbors of the
site x, s†sxd denotes the transpose ofssxd, and the payoff
matrix A is defined as

A = 1 1 « − «

− « 1 «

« − « 1
2 . s4d

In the limit «→0, this model can be considered as askineticd
three-state ferromagnetic Potts modelf4g with Glauber dy-
namicsf10g. Plainly, in this case the total energy is defined
as H=−oxUsxd /2 and the microscopic processes satisfy the
detailed balance in equilibrium. Consequently, the system
tends towards a stationary state whose statistical features
are described by the Gibbs ensemble. When decreasing
the temperature, the Potts model undergoes an ordering
process from the disordered state to one of the three equiva-
lent homogeneoussorderedd states. The corresponding criti-
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cal transition represents a well-known universality class
f1,4g.

For «.0 the off-diagonal components of the payoff ma-
trix A are antisymmetric; therefore the total payoffsor the
above-definedHd is not affected by the value of« for any
state. At the same time, the value of« influences the prob-
ability of strategy changes, becauseWfssxd→s8sxdg directly
depends on the variations in individual payoffsfdUsxdg. The
above evolutionary rule demonstrates a strategy in thesself-
ishd individuals attempt to maximize their own payoff with-
out concerning themselves with their neighbors’ perfor-
mance. As a result, cyclic invasions occur along the
boundaries separating homogeneous domains; domains of
states0 are invaded bys1, which are invaded bys2, which are
invaded bys0. These cyclic invasions are capable of main-
taining a self-organizing pattern with rotating spiral arms
whose “velocity” is controlled by« f11–13g.

For most of the spatial evolutionary games, the choice of
the dynamical rulessor Wfssxd→s8sxdgd is based on a learn-
ing mechanism or strategy adoption modeling the Darwinian
selectionsf14–16g. In these models different ways are sug-
gested for the players to adopt the strategy of their more
successful neighbors. A common feature of these strategy
adoptions is that the new state will be equivalent to one of
the neighboring strategies. Consequently, this mechanism
prohibits the variation inside the homogeneous domains and
makes the extinction process similar to those defined by the
contact processsor directed percolationd f2,3g. In the present
model, however, the above Glauber dynamics allow the play-
ers to choose all the possible strategies. Therefore, the time
variation is not restricted to the interfaces separating the ho-
mogeneous domains. In the context of evolutionary game
theory, the above evolutionary rule describes a different be-
havior. Namely, here the players know all the possibilities
and their choices depend on the increase in income that they
are able to predict, given their knowledge of neighboring
strategies.

In the present work we study the effect of the “cyclic
dominance” on the phase transition. For this purpose system-
atic Monte Carlo sMCd simulations are performed on a
square lattice under periodic boundary conditions varying the
temperatureT and strength« of the cyclic dominance for
different linear sizesL. Each simulation is started from a
random initial state and after a suitable thermalization time,
we recorded the concentration of statessr0, r1, andr2d for
each Monte Carlo step. We have also made simulations start-
ing from ordered homogeneous phases to check the stability
of the stationary state. To investigate the ordering process,
we have determined the average value of the order parameter
from the values of concentration dataf4,17g

m=
1

2
kf3 maxsr0,r1,r2d − 1gl, s5d

wherek¯l refers to averaging over a sampling time varied
from 105 to 106 Monte Carlo steps per sitessMCSd. In the
disordered phasesr0=r1=r2=1/3 sdue to the cyclic sym-
metryd and m=0 in the thermodynamic limitsL→`d. For
«=0 and below the critical temperaturefT,Tc=0.995s1dg

the system evolves into one of the long-range ordered
ssymmetry-breakingd stationary statesfe.g., kr0l=s1+2md /
3 andkr1l=kr2l=s1−md /3 and the remaining two equivalent
states are given by the cyclic permutation of indicesg if the
linear size is sufficiently large. In the thermodynamic limit
the order parameterm decreases monotonously from 1 to 0
as the temperature is increased from 0 toTc and the vanish-
ing of m follows a power law behavior ifTc is approached
from below f4g. For finite sizes, however, the MC simula-
tions exhibit a smoothed-order parameter function that devi-
ates monotonously if we decrease the system sizef17,18g.
Significantly, different finite size effects are observed when
investigating the present model for«.0.

Figure 1 illustrates how the order parameterm varies with
temperatureT for different linear sizes if«=0.1. MC data
referring to an ordering process for small sizessL=50 and
100d bear a resemblance to MC data obtained for«=0. On
the contrary, for example whenL=500, the MC data do not
indicate the appearance of long-range order. Instead, a self-
organizing, three-color domain structure can be observed
when visualizing the time-dependence of the spatial distribu-
tion sfor a snapshot, see Fig. 2d.

On this snapshot one can identify all three ordered phases
forming domains with a characteristic linear sizel. For T
,Tc and«=0, the growth of these domainssl ,Îtd is driven
by the interfacialsPottsd energyf19–21g. Here, however, this
domain growth is prevented by two processes emerging for
«.0. The first process is related to the appearance of rotat-
ing spiral arms for the three-edge vortices where the three
types of domainssor domain boundariesd meet. On these
maps we can distinguish vortices and antivortices rotating in
opposite directions. Some topological and geometrical fea-
tures of such spatiotemporal patterns were already investi-
gated in previous papersf11–13,22g. It is found that the spi-
rals become well marked if a “surface tension” is switched
on, after which the corresponding patterns cannot be charac-
terized by a single parameterse.g., typical domain size or
correlation lengthd f22g.

In the present model there exists a second process causing
the appearance of growing domains via a nucleation mecha-

FIG. 1. Monte Carlo data for the order parameter vs. tempera-
ture at«=0.1 for different system sizes as indicated. The solid lines
are visual guides.
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nism inside the large “homogeneous” territories. Due to this
process, an “ordered state” dominated bys0 will be trans-
formed into another one dominated bys1 as indicated by
simulations for small sizes. In these cases the three ordered
states follow each other cyclically and the above method
yields a sufficiently large value form ssee Fig. 1d. Both the
duration time and the probability of these transitions—which
are initiated by a nucleation mechanism dependent upon the
thermal fluctuations—increase with the system size. This is
the reason why the values ofm are higher forL=50 than
those forL=100 in Fig. 1.

For sufficiently large system sizessL@ ld, both mentioned
mechanisms work simultaneously and result in a self-
organizing pattern where the three states are present with the
same concentration andm=0. Henceforth, the quantitative
investigations will be focused on large systemssL.500d and
the temperature regionsT.0.6Tcd where the spatial patterns
are isotropic.

We now turn our focus to the variation of the correlation
lengthj, derived from the asymptotic behaviorsexponential
vanishingd of the two-site correlation functionf8g. For this
purpose a series of MC simulations were performed by
varying the temperature for«=0.1. The inset in Fig. 3 illus-
trates the absence of divergence inj as expected. When de-
creasing the temperature, the correlation length increases
monotonously until a maximum valuefj.11.5s5d measured
in lattice unitg. Below the peak atT.0.77 the visualization
of the distribution of species shows a self-organizing pattern
ssee Fig. 2d and here the value ofj decreases very slowly
with T.

The « dependence of the correlation length is also deter-
mined for a fixed temperature and the results are illustrated
in a log-log plotssee Fig. 3d. These MC data are consistent
with a predictedj,1/« for small «. For a typical domain
size a similar divergence was found previously in a model
where the nucleation mechanism was blockedf22g. This

observation refers to the minor role that the nucleation plays
in the maintenance of self-organizing patterns at suffi-
ciently low temperaturesT,Tcd. For higher temperature,
the nucleation mechanism plays a crucial role by preventing
the formation of a monodomain state even for«=0. Thus
it is conjectured that this process results in a different be-
havior of j at the critical temperature. Furthermore, it is
worth mentioning here that in the above-mentioned driven
lattice gas model, the transversal correlation length was
also proportional to the inverse of the strength of driving
field f9g.

In our model the Potts energy measures the concentration
of domain walls and also gives additional information about
spatial distributions. From the average Potts energy as a
function of temperature, one can derive a specific heatsc
=dkHl /dTd that exhibits al divergence at the critical tem-
perature in the equilibrium limits«=0d. Figure 4 illustrates
how the l divergence is smoothed out if the cyclic domi-

FIG. 2. Snapshot of a typical domain structure appearing forT
=0.64 and«=0.1. The three-edge vorticessantivorticesd rotate in a
clockwise santiclockwised direction with spiral arms because the
average velocity of the invasion frontsswhite invades black invades
gray invades whited is hardly affected by their curvature.

FIG. 3. Variation of correlation lengthswith error barsd as a
function of « for fixed temperaturesT=0.75d. The straight line in-
dicates a power law divergence with a slope of −1. The inset shows
the correlation length vs temperature for«=0.1.

FIG. 4. Specific heat as a function of temperature for three dif-
ferent values of« as indicated. These MC data are obtained for such
a large linear sizesL=1000d that size effects are negligible.
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nance is switched on. When choosing larger and larger« the
maximum value of specific heat decreases, while the peak
position moves towards lower and lower temperatures. The
peaks are so shallow in the “driven” cases that a logarithmic
scale was necessary to present them in the same figure. The
appearance of this peak in the specific heat can be interpreted
as a sign of short-range ordering.

A similar phenomenon was observed for the driven lattice
gases with repulsive interaction when increasing the external
electric field f8,9g. Although the observed patterns and
microscopic mechanisms are very different, in both cases
interfacial effects prevent the formation of long-range order
in the presence of the driving force. In these cases the inter-
faces belong to the stationary states and their geometrical
characterization requires additional parameters. This general
feature can occur in other nonequilibrium systemsse.g., in
ecological modelsd where an external force induces some
extra activity along the interfaces separating the “ordered
domains.”

In summary, a three-state dynamical lattice model was
introduced by combining the Potts model and the rock-
scissors-paper game to study the effect of cyclic dominance
on ordering processes. The cyclic dominance was shown to
break the time-reversal symmetry at the elementary steps,
whereby the behavior of this model cannot be described by
methods of equilibrium statistical physics. Our numerical
analyses have demonstrated that both the long-range
ssymmetry-breakingd ordering process and the corresponding
critical transition are suppressed in the presence of cyclic
dominances«.0d. As seen in the simulations, the three
equivalent ordered phases coexist by forming a self-
organizing domain structure even at low temperatures and
weak cyclic dominance. The equilibrium state is approached
via the divergence of the typical domain size when the
strength of cyclic dominance goes to zero.
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