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Vertex dynamics during domain growth in three-state models
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Topological aspects of interfaces are studied by comparing quantitatively the evolving three-color patterns in
three different models, such as the three-state voter, Potts, and extended voter models. The statistical analysis
of some geometrical features allows us to explore the role of different elementary processes during distinct
coarsening phenomena in the above models.
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The dynamics of the ordering process from a disorderedtate models. The models investigated are the Potts model,
state is a long-standing problem with a wide range of applithe voter model, and a voter model extended by Potts energy
cation[1,2]. In many cases the growing domains can be charf15]. A common feature of these models is the existence of
acterized by a typical lengtht) (average linear size, corre- three (equivalen} types of growing domains separated by
lation length, eto. for the late stage of coarsening, and onbranching interfaces. The comprehensive comparative geo-
typical length scales the domain structures become similametrical analysis of the topological features allows us to ex-
The time dependence of the linear length scale can be déend the statistical analyses yielding a deeper insight into the
scribed by an algebraic growth law(t)~t" where the kinetics of coarsening.
growth exponenh=1/2 for curvature-driven growth if the Henceforth we consider a square latti@dgth L X L sites
order parameter is not conserved during the elementary pramnder periodic boundary conditionsvhere at each site
cesseg2-4). there is a state variable with three possible states, namely,

During domain growth the interfaces form closed loops ins,=0, 1, or 2. The time dependence of these state variables is
two-state systemgs]. In Q-state(Q= 3) systems, however, governed by random sequential updates. Starting from a ran-
one can observe vertices where thee more states(or ~ dom initial state this elementary process is repeated. The
interfaces meet. According to an early conjecture of Lifshitz Ssymmetric elementary rules conserve the equivalence be-
[6] and Safran[7] the curvature driving force for such a tween the three states.
domain growth is practically switched off along the straight- In the case of the voter model we choose randomly a
line interfaces connecting two vertices and its absence majearest neighbor pair of sites and one of these state variables
affect the dynamics of the domain growth. Subsequent nuis changed. Variation can occur only if the randomly chosen
merical investigations of the two-dimensior@istate Potts States are different. More precisely, the different state vari-
models did not confirm this conjecture. More precisely, theables(s;,s,) become uniform, yielding afs,,s,) or (s;,s,)
first Monte Carlo simulations reported@dependent effec- pair with equal(1/2) probability. On two-dimensional lat-
tive exponent8,9]; however, a large scale simulation sug- tices this model exhibits coarsening with a logarithmic decay
gested thah=1/2 holds independent of the ordering degen-of the density of interfacefl3,14.
eracy Q [10]. Nevertheless, the numerical evidence is not The energy in the three-state ferromagnetic Potts model is
satisfactory for drawing any solid conclusions. Recently, thedefined by the Hamiltonian
effect of the branching interfaces during the coarsening pro-
cess has also been investigated by Cdidy using a field H= 2> [1-8(s,05)] (1)
theoretical approach. xy)

In addition, a distinct universality class, represented byynere the summation runs over the nearest neighbor sites
the two-dimensional voter model, is introduced to considery,q 8(s,,s,) indicates Kronecker's delta. On the analogy of
the coarsening process driven by interfacial ndis2]. In Gjauber dynamics, here the stajeat a randomly chosen site

this case the kinetics of domain growth shows a logarithmic, ;g updated to a new randomly chosen sjteThe transi-
decay of the density of interfac¢$3,14. According to this 4, probability is given by

argument this class is identified by the absence of surface
tension. , 1

Motivated by the above mentioned topological aspect, we WS — 50 = WWH/T) @
will consider numerically the time dependence of the coars-
ening process for three-color growing domain structures. Fowhere sH is the energy difference between the final and
this purpose we have adopted a numerical technique devehitial states, andl is temperature. The Boltzmann constant
oped previously to investigate the geometry of spiral strucis chosen to be unity, as usual. This system becomes ordered
tures appearing in some cyclically dominated three-stat§f T<T,=0.995[16]. Our simulations are performed well
voter modelq15]. below the critical poin(T=0.6T.) where the interfaces are

In this Brief Report we compare the variation of topologi- smooth enough to apply geometrical analysis. At the same
cal features during coarsening dynamics in different threetime this temperature is sufficiently high to avoid temporal
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pinning [17,18 or the observation of artifact domain shape 1
as a consequence of the specified host lattice. In all the
present models the Potts energy expresses the total length of
interfaces(separating the homogeneous domgpimgasured

in units where the lattice constant is chosen to be 1. If the
time dependence of the excess energy per $itdgt)] is
measured from the corresponding thermal average &jue
=(H){/L?=E(t— ), that is,
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then its inversd 1/AE(t)] estimates the average domain ra- 1 10 lt?me [MICOS] 10 10
dius [19]. According to the Allan-Cahn growth law the in-
verse of AE(t) shows algebraic decay with an exponent of  F|G. 1. The decay of interfacial energy per i) for the voter
0.5. (pluses and extended votefopen boxeps models. For the Potts

A very relevant difference between the above mentionednodel the excess interfacial energy per $if=(t)] is shown by
two models is the presengabsencgof bulk fluctuation in filled boxes as a function of time. The solid line indicates the slope
the Potts(votern model. The third model is considered as aof -0.5.
combination of the standard voter and Potts models where
the adoption of the nearest neighbor’s opinistatg is af-  motion of interfaces is characterized by infinitesimally small
fected by their neighborhood via the Potts engfit§]. This  steps. In this case we can neglect those vertices where more
means that the new possible statefor a randomly chosen than three states meet. In such a map the typical objects are
site x should be equivalent to one of the neighboring stateshe islands and the three-edge vertices(ialated island is
(as happens for the voter mogleeanwhile the transition surrounded by the same domain; therefore its boundary is
probability is defined by the expressiq®). Due to this free of vertices. In fact, two types of verticgsalled vertices
modification, domain growth appears for arbitrafywhile  and antiverticescan be distinguished depending on whether
the interfacial irregularities are reduced by the surface tenwe find 0, 1, 2 or a reversed order of states when going
sion (Potts energywhose strength is tuned By Evidently, — around the center in clockwise direction. The vertices and
the behavior of the standard voter model can be reproduceghtivertices are located alternately along the boundaries.
by this version in the limiff — «. Henceforth the analysis of Each vertex can be connected to one, two, or three antiver-
this model will be restricted to a fixed temperatdie2. It tices; thus, they can be further classified according to the
will be demonstrated that the consequences of the surfageumber of linked antivertices. For example, the one-neighbor
tension can be well observed during the domain growth fowvertex is represented by a vertex-antivertex pair linked to
such a high temperature whose value substantially exceedsich other by three edgésee Fig. 2 The concentration of
the critical temperature of the corresponding Potts model. these vertices are denoted py, p,, or p3, respectively, and

Our Monte Carlo(MC) simulations were performed for referred as one-, two-, and three-neighbor vertices. The total
L=2000 and the results were averaged over 20-100 indepenoncentration of vertices is given y=p;+p,+ps.
dent runs. For such a large system size the domain growth In a previous wor15] we developed a method to deter-
could be monitored until TOMC steps per sit¢éMCS) with- ~ mine the concentration of vertices and also to study some
out the disturbance of finite size effects. First we consider
E(t) (the concentration of domain walls for the voter and
extended voter modelsnd the excess energy per sSkE(t)
(for the Potts modgl A comparison of these quantities on a
log-log plot(see Fig. 1 demonstrates that the logarithmically
slow coarsening dynamics of the voter model can be well
distinguished from those situations where the growth process
is affected by the surface tension. Bdtt) (for the extended
voter mode) and AE(t) (for the Potts modeltends toward
the prediction of an algebraic growth law with Allen-Cahn
exponent(1/t¥?). It demonstrates that the asymptotic behav-
ior can be seen only far>10° MCS. Now, it is worth men-
tioning that our numerical data are consistent with the ap-
pearance of a logarithmic correctiofin t/tY?) for t<2
X 10* MCS within our statistical error. Unfortunately, the
large statistical error in the last time decade does not allow
us to extrapolate this behavior for longer times. FIG. 2. Schematic plot of domain walls of three-state topology

In order to have a picture about the essence of our toposhowing the three possible vertex types. Blaakite) bullets rep-
logical analysis, Fig. 2 illustrates schematically a typical partresent verticegantivertice. The inserted figures denote the num-
of the three-color maps on a continuous background if theéver of different antivertices connected to a given vertex.
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FIG. 3. The inverse op; as a function of time for the Potts

model (filled boxeg and extended voter modébpen boxep The FIG. 4. The interfacial energies of islands per sites as a function

inset shows the inverse of the total concentration of vertiges of time. The symbols are the same as in Fig. 1. The solid line has a
(pluses and the concentration of three-neighbor vertiggecircles  gjgpe of -0.5.

for the Potts model. The scales of time and concentration agree with
those of the main plot. which is consistent with the corresponding thermal average
value of Potts energyEr), comes from the contribution of
geometrical feature®.g., arc length measured in units of the islands generated by the thermal fluctuations within the large
lattice constantof the vertex edges. Now the capacity of this domains. In the third moddt; asymptotically approaches an
method is extended by allowing a distinction between thealgebraic decayE;«t'/? manifesting the surface-tension-
one-, two-, and three-neighbor vertices. Unfortunately, on alriven shrink of islands. Notice that here the dynamical rule
square lattice this method requires the elimination of theprohibits the creation of islands inside a homogeneous do-
four-edge vertices before the geometrical analysis of a givemain.
pattern. It is found, however, that this manipulation causes The significant differences in the vertex dynamics can
only a minor changémuch less than 1%n the Pott(inter-  also be perceived when analyzing thg/p portion of the
facial) energy except for a short transient period. At the samene-neighbor vertices. Figure 5 shows thatp (as well as
time we can get a more complete picture of the domairp,/p) tends toward a fixed ratio for the voter model. It can be
growth. assumed that the ratip;:p,:p; remains fixed for larger
Following an earlier suggestiof20], the inverse of the times too. Conversely, in the Potts model the one-neighbor
vertex concentration can be considered as a rough estimatioertices become dominant for long times because the con-
of the average area of the growing domains that increasesentration of the three-neighbor vertices vanishespas
linearly with time. The inset of Fig. 3 demonstrates that,«<1/t (see Fig. 3 meanwhilep,>=1/\t in the asymptotic
instead ofp, the concentration of three-neighbor verti¢gg time regime.
gives a much better estimate for the expected linear increase For the Potts model the appearance of a new s&atg,
in the averaged domain area for the Potts model. Noticestate 0 inside a domain(of type 1 or 3 represents the cre-
furthermore, that the time dependencesagjfare very simi-  ation of a new island. The occurrence of this island at the
lar for the Potts and modified voter modétee Fig. 3de-  boundaries between the domains of type 1 and 2 yields the
spite the noticeably different behaviors ga and p; as dis-  creation of a three- or two-neighbor vertex-antivertex pair
cussed below. (see Fig. 2 In the third model, however, the extinction of
The geometrical analysis allows us to determine the timdoth the one- and two-neighbor vertices as well as of the
dependence of the total perimeter of isolated islands peslands is driven by interfacial energyas happens for the
sites,E;, as a portion of the interfacial ener@yt). Since we Potts model At the same time their extinction is not com-
have monitored the average length of vertex edggsdur-
ing the simulation, the total length of vertex edges per sites
can be expressed & =3pl,. Thus the interfacial energy of
islands is given as a| "
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E = E(t) - 3pl,. (4)

The simulations indicate strikingly different behaviorsEn
for the above three models as plotted in Fig. 4. Surprisingly,
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E; increases monotonously for the voter model in the time
region in which we could study this system. It is expected,
however, thak; will decrease for longer times because it is a
part of the total interfacial energy vanishing as 1f)in
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[13,14. For the Potts moded; decreases and tends toward a  FIG. 5. The ratiop,/p versus time for the three models. Sym-
limit value dependent on temperature. This limit value,bols as in Fig. 1.
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pensated by their creation via the appearance of a new tygaterfacial energy of islands. The numerical investigations
of domain. As a result, the ratie;/ p andp,/p tends to zero indicate that the concentrations of the three types of vertices
with the total concentration of vertices in the long time limit. tend very slowly toward fixed ratios while the typical length
In the absence of interfacial energyoter modej the in- gcaje increases as~Int in the voter model. In the Potts
terfaces become more and more irregyled] and the occa-  qqe| the interfacial energy results in a faster domain
sional overhanging represents a mechanism to create a Neyw, h it T<T,) and the vertex dynamics is governed by
island. These islands move, change their form, and meet raty f island d of th - and two-neiahb
domly. The meeting of two islands of the same type repre- € appearance of Islands and of the onhe- and two-neighbor
sents their fusion and the contact of two islands of different/€rtex-antivertex pairs created by the thermal noise. Above
types creates a three-neighbor vertex-antivertex pair. Simihe critical temperature these processes prevent domain
larly, if an island meets a vertex edge then a two-neighbogrowth. In the extended voter model the introduction of sur-
vertex-antivertex pair is created. All of these and the reverseface tension changes the dynamics of growth dramatically.
processes are due to the uncorrelated, random motion of irsimilarly to the voter model, the domain growth takes place
terfaces. The above results suggest the emergence of sorftg an arbitrary value of temperature but the interfacial en-
fixed ratio between the numbers of one-, two-, and threeergy reduces the creation of islands as well as of the one- and
neighbor vertices; in the meantime the typical domain sizewo-neighbor vertices. As a consequence, in this case the
increases logarithmically. growth dynamics becomes equivalent to those characterized
In summary, in the present work we have quantified thepy the Allen-Cahn universality class.
topological differences occurring during the two-dimensional
domain growth in three-state systems. The analysis is fo- This work was supported by the Hungarian National Re-
cused on the time dependence of the concentration of theearch Fund under Grant Nos. F-30449 and No. T-33098 and
one-, two-, and three-neighbor vertices as well as on th&olyai Grant No. BO/0067/00.
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