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Topological aspects of interfaces are studied by comparing quantitatively the evolving three-color patterns in
three different models, such as the three-state voter, Potts, and extended voter models. The statistical analysis
of some geometrical features allows us to explore the role of different elementary processes during distinct
coarsening phenomena in the above models.
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The dynamics of the ordering process from a disordered
state is a long-standing problem with a wide range of appli-
cation[1,2]. In many cases the growing domains can be char-
acterized by a typical lengthrstd (average linear size, corre-
lation length, etc.) for the late stage of coarsening, and on
typical length scales the domain structures become similar.
The time dependence of the linear length scale can be de-
scribed by an algebraic growth lawrstd, tn where the
growth exponentn= 1/2 for curvature-driven growth if the
order parameter is not conserved during the elementary pro-
cesses[2–4].

During domain growth the interfaces form closed loops in
two-state systems[5]. In Q-statesQù3d systems, however,
one can observe vertices where three(or more) states(or
interfaces) meet. According to an early conjecture of Lifshitz
[6] and Safran[7] the curvature driving force for such a
domain growth is practically switched off along the straight-
line interfaces connecting two vertices and its absence may
affect the dynamics of the domain growth. Subsequent nu-
merical investigations of the two-dimensionalQ-state Potts
models did not confirm this conjecture. More precisely, the
first Monte Carlo simulations reported aQ-dependent effec-
tive exponent[8,9]; however, a large scale simulation sug-
gested thatn=1/2 holds independent of the ordering degen-
eracy Q [10]. Nevertheless, the numerical evidence is not
satisfactory for drawing any solid conclusions. Recently, the
effect of the branching interfaces during the coarsening pro-
cess has also been investigated by Cardy[11] using a field
theoretical approach.

In addition, a distinct universality class, represented by
the two-dimensional voter model, is introduced to consider
the coarsening process driven by interfacial noise[12]. In
this case the kinetics of domain growth shows a logarithmic
decay of the density of interfaces[13,14]. According to this
argument this class is identified by the absence of surface
tension.

Motivated by the above mentioned topological aspect, we
will consider numerically the time dependence of the coars-
ening process for three-color growing domain structures. For
this purpose we have adopted a numerical technique devel-
oped previously to investigate the geometry of spiral struc-
tures appearing in some cyclically dominated three-state
voter models[15].

In this Brief Report we compare the variation of topologi-
cal features during coarsening dynamics in different three-

state models. The models investigated are the Potts model,
the voter model, and a voter model extended by Potts energy
[15]. A common feature of these models is the existence of
three (equivalent) types of growing domains separated by
branching interfaces. The comprehensive comparative geo-
metrical analysis of the topological features allows us to ex-
tend the statistical analyses yielding a deeper insight into the
kinetics of coarsening.

Henceforth we consider a square lattice(with L3L sites
under periodic boundary conditions) where at each sitex
there is a state variable with three possible states, namely,
sx=0, 1, or 2. The time dependence of these state variables is
governed by random sequential updates. Starting from a ran-
dom initial state this elementary process is repeated. The
symmetric elementary rules conserve the equivalence be-
tween the three states.

In the case of the voter model we choose randomly a
nearest neighbor pair of sites and one of these state variables
is changed. Variation can occur only if the randomly chosen
states are different. More precisely, the different state vari-
ablesss1,s2d become uniform, yielding anss1,s1d or ss2,s2d
pair with equals1/2d probability. On two-dimensional lat-
tices this model exhibits coarsening with a logarithmic decay
of the density of interfaces[13,14].

The energy in the three-state ferromagnetic Potts model is
defined by the Hamiltonian

H = o
kx,yl

f1 − dssx,sydg s1d

where the summation runs over the nearest neighbor sites
and dssx,syd indicates Kronecker’s delta. On the analogy of
Glauber dynamics, here the statesx at a randomly chosen site
x is updated to a new randomly chosen statesx8. The transi-
tion probability is given by

Wssx → sx8d =
1

1 + expsdH/Td
s2d

where dH is the energy difference between the final and
initial states, andT is temperature. The Boltzmann constant
is chosen to be unity, as usual. This system becomes ordered
if T,Tc=0.995 [16]. Our simulations are performed well
below the critical pointsT=0.6Tcd where the interfaces are
smooth enough to apply geometrical analysis. At the same
time this temperature is sufficiently high to avoid temporal
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pinning [17,18] or the observation of artifact domain shape
as a consequence of the specified host lattice. In all the
present models the Potts energy expresses the total length of
interfaces(separating the homogeneous domains) measured
in units where the lattice constant is chosen to be 1. If the
time dependence of the excess energy per sitesfDEstdg is
measured from the corresponding thermal average valueET
=kHlT/L2=Est→`d, that is,

DEstd = Estd − ET, s3d

then its inversef1/DEstdg estimates the average domain ra-
dius [19]. According to the Allan-Cahn growth law the in-
verse ofDEstd shows algebraic decay with an exponent of
0.5.

A very relevant difference between the above mentioned
two models is the presence(absence) of bulk fluctuation in
the Potts(voter) model. The third model is considered as a
combination of the standard voter and Potts models where
the adoption of the nearest neighbor’s opinion(state) is af-
fected by their neighborhood via the Potts energy[15]. This
means that the new possible states8 for a randomly chosen
site x should be equivalent to one of the neighboring states
(as happens for the voter model); meanwhile the transition
probability is defined by the expression(2). Due to this
modification, domain growth appears for arbitraryT, while
the interfacial irregularities are reduced by the surface ten-
sion (Potts energy) whose strength is tuned byT. Evidently,
the behavior of the standard voter model can be reproduced
by this version in the limitT→`. Henceforth the analysis of
this model will be restricted to a fixed temperatureT=2. It
will be demonstrated that the consequences of the surface
tension can be well observed during the domain growth for
such a high temperature whose value substantially exceeds
the critical temperature of the corresponding Potts model.

Our Monte Carlo(MC) simulations were performed for
L=2000 and the results were averaged over 20–100 indepen-
dent runs. For such a large system size the domain growth
could be monitored until 105 MC steps per site(MCS) with-
out the disturbance of finite size effects. First we consider
Estd (the concentration of domain walls for the voter and
extended voter models) and the excess energy per siteDEstd
(for the Potts model). A comparison of these quantities on a
log-log plot(see Fig. 1) demonstrates that the logarithmically
slow coarsening dynamics of the voter model can be well
distinguished from those situations where the growth process
is affected by the surface tension. BothEstd (for the extended
voter model) and DEstd (for the Potts model) tends toward
the prediction of an algebraic growth law with Allen-Cahn
exponents1/t1/2d. It demonstrates that the asymptotic behav-
ior can be seen only fort.103 MCS. Now, it is worth men-
tioning that our numerical data are consistent with the ap-
pearance of a logarithmic correctionsln t / t1/2d for t,2
3104 MCS within our statistical error. Unfortunately, the
large statistical error in the last time decade does not allow
us to extrapolate this behavior for longer times.

In order to have a picture about the essence of our topo-
logical analysis, Fig. 2 illustrates schematically a typical part
of the three-color maps on a continuous background if the

motion of interfaces is characterized by infinitesimally small
steps. In this case we can neglect those vertices where more
than three states meet. In such a map the typical objects are
the islands and the three-edge vertices. An(isolated) island is
surrounded by the same domain; therefore its boundary is
free of vertices. In fact, two types of vertices(called vertices
and antivertices) can be distinguished depending on whether
we find 0, 1, 2 or a reversed order of states when going
around the center in clockwise direction. The vertices and
antivertices are located alternately along the boundaries.
Each vertex can be connected to one, two, or three antiver-
tices; thus, they can be further classified according to the
number of linked antivertices. For example, the one-neighbor
vertex is represented by a vertex-antivertex pair linked to
each other by three edges(see Fig. 2). The concentration of
these vertices are denoted byr1,r2, or r3, respectively, and
referred as one-, two-, and three-neighbor vertices. The total
concentration of vertices is given byr=r1+r2+r3.

In a previous work[15] we developed a method to deter-
mine the concentration of vertices and also to study some

FIG. 1. The decay of interfacial energy per siteEstd for the voter
(pluses) and extended voter(open boxes) models. For the Potts
model the excess interfacial energy per sitefDEstdg is shown by
filled boxes as a function of time. The solid line indicates the slope
of −0.5.

FIG. 2. Schematic plot of domain walls of three-state topology
showing the three possible vertex types. Black(white) bullets rep-
resent vertices(antivertices). The inserted figures denote the num-
ber of different antivertices connected to a given vertex.
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geometrical features(e.g., arc length measured in units of the
lattice constant) of the vertex edges. Now the capacity of this
method is extended by allowing a distinction between the
one-, two-, and three-neighbor vertices. Unfortunately, on a
square lattice this method requires the elimination of the
four-edge vertices before the geometrical analysis of a given
pattern. It is found, however, that this manipulation causes
only a minor change(much less than 1%) in the Potts(inter-
facial) energy except for a short transient period. At the same
time we can get a more complete picture of the domain
growth.

Following an earlier suggestion[20], the inverse of the
vertex concentration can be considered as a rough estimation
of the average area of the growing domains that increases
linearly with time. The inset of Fig. 3 demonstrates that,
instead ofr, the concentration of three-neighbor verticessr3d
gives a much better estimate for the expected linear increase
in the averaged domain area for the Potts model. Notice,
furthermore, that the time dependences ofr3

−1 are very simi-
lar for the Potts and modified voter models(see Fig. 3) de-
spite the noticeably different behaviors inr2 and r1 as dis-
cussed below.

The geometrical analysis allows us to determine the time
dependence of the total perimeter of isolated islands per
sites,Ei, as a portion of the interfacial energyEstd. Since we
have monitored the average length of vertex edgesslvd dur-
ing the simulation, the total length of vertex edges per sites
can be expressed asEv=3rlv. Thus the interfacial energy of
islands is given as

Ei = Estd − 3rlv. s4d

The simulations indicate strikingly different behaviors inEi
for the above three models as plotted in Fig. 4. Surprisingly,
Ei increases monotonously for the voter model in the time
region in which we could study this system. It is expected,
however, thatEi will decrease for longer times because it is a
part of the total interfacial energy vanishing as 1/ lnstd
[13,14]. For the Potts modelEi decreases and tends toward a
limit value dependent on temperature. This limit value,

which is consistent with the corresponding thermal average
value of Potts energysETd, comes from the contribution of
islands generated by the thermal fluctuations within the large
domains. In the third modelEi asymptotically approaches an
algebraic decaysEi ~ t−1/2d manifesting the surface-tension-
driven shrink of islands. Notice that here the dynamical rule
prohibits the creation of islands inside a homogeneous do-
main.

The significant differences in the vertex dynamics can
also be perceived when analyzing ther1/r portion of the
one-neighbor vertices. Figure 5 shows thatr1/r (as well as
r2/r) tends toward a fixed ratio for the voter model. It can be
assumed that the ratior1:r2:r3 remains fixed for larger
times too. Conversely, in the Potts model the one-neighbor
vertices become dominant for long times because the con-
centration of the three-neighbor vertices vanishes asr3
~1/t (see Fig. 3); meanwhiler2~1/Ît in the asymptotic
time regime.

For the Potts model the appearance of a new state(e.g.,
state 0) inside a domain(of type 1 or 2) represents the cre-
ation of a new island. The occurrence of this island at the
boundaries between the domains of type 1 and 2 yields the
creation of a three- or two-neighbor vertex-antivertex pair
(see Fig. 2). In the third model, however, the extinction of
both the one- and two-neighbor vertices as well as of the
islands is driven by interfacial energy(as happens for the
Potts model). At the same time their extinction is not com-

FIG. 3. The inverse ofr3 as a function of time for the Potts
model (filled boxes) and extended voter model(open boxes). The
inset shows the inverse of the total concentration of verticesr
(pluses) and the concentration of three-neighbor verticesr3 (circles)
for the Potts model. The scales of time and concentration agree with
those of the main plot.

FIG. 4. The interfacial energies of islands per sites as a function
of time. The symbols are the same as in Fig. 1. The solid line has a
slope of −0.5.

FIG. 5. The ratior1/r versus time for the three models. Sym-
bols as in Fig. 1.
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pensated by their creation via the appearance of a new type
of domain. As a result, the ratior1/r andr2/r tends to zero
with the total concentration of vertices in the long time limit.

In the absence of interfacial energy(voter model) the in-
terfaces become more and more irregular[12] and the occa-
sional overhanging represents a mechanism to create a new
island. These islands move, change their form, and meet ran-
domly. The meeting of two islands of the same type repre-
sents their fusion and the contact of two islands of different
types creates a three-neighbor vertex-antivertex pair. Simi-
larly, if an island meets a vertex edge then a two-neighbor
vertex-antivertex pair is created. All of these and the reversed
processes are due to the uncorrelated, random motion of in-
terfaces. The above results suggest the emergence of some
fixed ratio between the numbers of one-, two-, and three-
neighbor vertices; in the meantime the typical domain size
increases logarithmically.

In summary, in the present work we have quantified the
topological differences occurring during the two-dimensional
domain growth in three-state systems. The analysis is fo-
cused on the time dependence of the concentration of the
one-, two-, and three-neighbor vertices as well as on the

interfacial energy of islands. The numerical investigations
indicate that the concentrations of the three types of vertices
tend very slowly toward fixed ratios while the typical length
scale increases asr , ln t in the voter model. In the Potts
model the interfacial energy results in a faster domain
growth (if T,Tc) and the vertex dynamics is governed by
the appearance of islands and of the one- and two-neighbor
vertex-antivertex pairs created by the thermal noise. Above
the critical temperature these processes prevent domain
growth. In the extended voter model the introduction of sur-
face tension changes the dynamics of growth dramatically.
Similarly to the voter model, the domain growth takes place
for an arbitrary value of temperature but the interfacial en-
ergy reduces the creation of islands as well as of the one- and
two-neighbor vertices. As a consequence, in this case the
growth dynamics becomes equivalent to those characterized
by the Allen-Cahn universality class.
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