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Monte Carlo simulations and dynamical mean-field approximations are performed to study the phase tran-
sitions in the rock-scissors-paper game on different host networks. These graphs are originated from lattices by
introducing quenched and annealed randomness simultaneously. In the resulting phase diagrams three different
stationary states are identified for all structures. The comparison of results on different networks suggests that
the value of the clustering coefficient plays an irrelevant role in the emergence of a global oscillating phase.
The critical behavior of phase transitions seems to be universal and can be described by the same exponents.
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Complex networks have recently been studied extensively
as these objects pervade all nature[1–3]. Initial efforts were
focused on the characterization and evolution of these
graphs. Very recently, the investigations were extended to
critical behavior in dynamical models defined on various
random networks[4,5]. The effects of the network topology
on critical transitions can well be investigated on the small-
world networks introduced by Watts and Strogatz[6] be-
cause this structure provides a transition from a regular lat-
tice to some random networks. It is shown that modifications
in the host topology either change the class of universality
[7,8] or the long-range connections prevent complete order-
ing [9].

In addition, there are examples where the increase of ran-
domness of the host network induces a phase transition to-
ward a state that cannot be observed on lattices. To be spe-
cific, the emergence of an oscillating state has been observed
by Kuperman and Abramson[10] at a finite rate of random-
ness in an epidemiological model. The appearance of global
oscillation (synchronization) is also observed in some cycli-
cally dominated three-state systems, such as the voluntary
prisoner’s dilemma[11] and rock-scissors-papers(RSP)
games[12]. For the latter models the amplitude of oscillation
depends on the randomness, and a second transition may
occur when the limit cycle approaches the absorbing states.
The application of annealed(temporal) randomness results in
qualitatively similar behaviors. In this Brief Report, concen-
trating on the RSP game, we extend our previous work by
combining both types of randomness to explore the global
phase diagram and to clarify a universal feature.

For the spatial rock-scissors-paper game the individuals
located on sitei of a lattice belong to one of the three species
sSi =1,2,3d which dominate each other cyclically. This
means that the time evolution of this system is governed by
the iteration of cyclic invasion processes between two ran-
domly chosen neighboring sites; namely, the pair(1,2) or
(2,1) becomes(1,1), (2,3) or (3,2) becomes(2,2), and finally
(3,1) or (1,3) evolves to(3,3) with the same rate, defined to
be 1. Starting from a random initial state on a square lattice,
this system evolves into a self-organizing pattern in which
the three species are present with the same average concen-
tration s1/3d. This state, maintained by cyclic invasions
[13–15], provides protection against some types of invaders

[16,17] and exhibits an unusual response to external pertur-
bation [18,19].

In our previous paper[12] the RSP game was studied on
such regular small-world structures where randomly chosen
(long-range) links are substituted for a portionQ of the
nearest-neighbor links between sites located on a square lat-
tice. A similar algorithm was proposed by Watts and Strogatz
[6] as a continuous transition between a lattice and a random
network. For the sake of simplicity, our rewiring process[12]
conserves regularity, i.e., the coordination number of each
site (called the degree) remains unchangedz=4. Evidently,
for Q=0 this structure is equivalent to a square lattice; mean-
while the limit Q→1 results in a regular random graph. It is
important to note that the restriction of fixed degree does not
change the small-world feature of the network: the charac-
teristic (average) path length between two sites scales as the
logarithm of the network size. Consequently, the main con-
clusion is expected to be valid also for standard Watts-
Strogatz networks. At the same time, this simplification has
allowed us to compare the results from these quenched struc-
tures with those obtained from “annealed” structures that can
also be investigated analytically. For the annealed structures
the (long-range) links are substituted temporarily with a
probabilityP for the standard(nearest-neighbor) links on the
square lattice. Naturally, in the limitP→1 the dynamics of
the system satisfies the mean-field condition. The effect of
annealed randomness on rumor propagation[20,21] and for
the two-state voter model[22] has already been studied.

For the RSP model on the quenched structures the emer-
gence of global oscillation is observed ifQ exceeds a thresh-
old value and the amplitude of oscillation tends to a fixed
value in the limit Q→1. Such a transition occurs also for
annealed structures when the value ofP increases. In the
latter case, however, the amplitude of global oscillation in-
creases with time and finally the evolution ends in one of the
homogeneous(absorbing) states if P exceeds a second
threshold value. The different consequences of the two types
of randomness have inspired us to combine these random-
nesses when starting from different lattices.

Henceforth, both types of randomness are applied to de-
rive a global phase diagram on theP-Q plane. To explore the
robust (universal) behaviors we also analyze what happens
for other regular structures with degrees ofz=3, 4, and 6.
These lattices are Kagomé(where z=4 as for the square
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lattice), honeycombsz=3d, trianglesz=6d, cubic sz=6d, and
ladder-shapesz=3d lattices. For the ladder-shape structure
two parallel chains are connected by interchain bonds.

Our analysis is based on systematic Monte Carlo(MC)
simulations. First we create a quenched random regular
structure starting from one of the above mentioned lattices.
That is, a portionP of the nearest-neighbor links are replaced
by randomly chosen links in a way that conserves the regu-
larity (for details, see[12]). The MC simulations are started
from a random(uncorrelated) initial state where the three
species take their place with the same probabilitys1/3d.
Keeping this structure fixed the time evolution is governed
by invasions between neighbors with a probability 1−P or
along a(random) long-range link chosen with a probability
P. In the simulation the number of lattice points is varied
from 103 to 107. The large sizes are used in the close vicin-
ity of transition points to reduce the undesired effect of fluc-
tuations.

The main features of the steady-state phase diagram,
which is generally valid for all structures, can be summarized
as follows. For small values ofQ andP, the stationary state
is characterized by a self-organizing strategy distribution de-
noted byS. In this self-organizing pattern the strategies al-
ternate cyclically at each site, these local oscillations are not
synchronized by the short-range interactions, and the average
concentrations are the same(1/3). For the opposite limit—
when both structural parametersQ andP are close to 1—the
system evolution is characterized by growing spiral trajecto-
ries [12], and finally the evolution ends in one of the three
absorbing (homogeneous) states sAd containing only one
strategy. Evidently, this absorbing phase is threefold degen-
erate due to the cyclic symmetry. These two phases(SandA)
are separated by the region of global oscillationsOd on the
P-Q plane. In this oscillating phase the behavior is charac-
terized by a limit cycle which is quantified by an order pa-
rameterF defined as the ratio of the area of the limit cycle
and area of the full triangle in the ternary phase diagram
[12]. This order parameter isOs1d in the stateSsAd and var-
ies from 0 to 1 for the occurrence of global oscillation(phase
O). Figure 1 shows the phase boundaries obtained by MC
simulations forz=3 on theP-Q plane.

A striking quantitative difference is found in the behavior
of these systems when varying the value ofz; namely, global

oscillation (phaseO) can be observed on random regular
graphs(Q=1, P=0) for z=3 andz=4. On the contrary, the
system evolution terminates in one of the absorbing states
sAd on random regular graphs forz=6, and similar behavior
is expected forz.6. In order to illustrate the relevance ofz,
Fig. 2 shows theQ dependence ofF for quenched structures
sP=0d created by the rewiring technique from the above
mentioned lattices.

Evidently, in the limitQ→1 the quenched structures be-
come independent of the original lattice. Consequently, start-
ing from either the square or the Kagomé lattice the order
parameterFsQ,P=0d tends monotonically to the same value
fF1sz=4d=0.980s5dg in the limit Q→1. Forz=3 (triangular
and ladder-shape lattices) we have obtained a lower limit
value, namely,F1sz=3d=0.750s5d. For z=6, however, the
system ends in the phaseA if Q exceeds a threshold value
Q2. According to our simulations on the quenched structures
sP=0d Q2=0.378s8d if the random regular structure is cre-
ated from a cubic lattice andQ2=0.405s10d for the triangular
lattice.

The topological structure of the original lattice affects the
value ofQ1 because the global oscillation occurs for smallQ
for all the investigated lattices. The inset in Fig. 2 demon-
strates clearly that the lowestQ1 appears for the three-
dimensional cubic lattice, while the highest value is found
for the one-dimensional ladder-shape structures. It is under-
lined that the values ofQ1 are very close to each other for all
the small-world structures created from the two-dimensional
lattices.

The present RSP system undergoes two subsequent phase
transitions when increasing the randomness(Q and/orP) of
the backgrounds. The first transition(from S to O) is a Hopf
bifurcation that is well studied by mean-field type ap-
proaches[23]. Notice that the order parameterF vanishes
linearly for all the structures(see Fig. 2), in agreement with
theory.

Our results indicate clearly that the global oscillation
emerges just above a threshold value of quenched random-
ness although the small-world feature characterizes this type

FIG. 1. Phase diagram for the RSP game on a network derived
from the honeycomb lattice. The system exhibits self-organizing
sSd, oscillating sOd, and absorbingsAd phases. Symbols represent
MC results. The solid lines are guides to the eye.

FIG. 2. The order parameter as a function ofQ for quenched
networks sP=0d derived from cubic(box), square(bullet), and
ladder-shape(triangle) lattices. The corresponding critical value of
Q where the oscillatory phase emerges isQ1sP=0d=0.0103s1d,
0.067(1), and 0.210(2), respectively. The curves from left to right in
the inset show theFsQ,P=0d functions for small-world networks
derived from cubic, triangular, square, Kagomé, honeycomb, and
ladder-shape lattices.
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of network at any small rate of disorder. The same phenom-
enon was observed by Kuperman and Abramson[10] when
considering the transition to an oscillating phase in a three-
state(susceptible-infected-refractory) epidemiological model
where the initial lattice was the traditional one-dimensional
ring. They have conjectured that the emergence of global
oscillation is related to the variation in the clusterization. In
the present model, however, our results suggest that the clus-
tering coefficientsCd cannot play a significant role because
the corresponding values ofC are very different for the
structures studied. We cite as an example the case whereC
=0 for all initial lattices except the triangle and Kagomé
whereC=2/5 and 1/3,respectively. Furthermore, the value
of C ranges from 0.0004 to 0.3 for different topologies when
the system enters into the globally oscillating phase. The
inset of Fig. 2 shows the order parameter as a function ofQ
for all networks studied here. These results suggest thatQ1
depends basically on the dimension of the initial lattice;
namely,Q1=0.068s6d for all networks derived from a two-
dimensional lattice independently of the value of coordina-
tion number. On the contrary,Q1 is much smaller for the
graph derived from the cubic lattice and substantially larger
for the network originating from the ladder-shape(practi-
cally one-dimensional) lattice.

The second phase transition(from stateO to A) can be
studied more efficiently(or with a higher accuracy) if P
rather thanQ is varied, because the limit cycle is affected by
the quenched structural randomness even for largeN. This
discrepancy can be avoided by averaging over many runs on
different structures whose creation is very time consuming.
For temporary randomnesssP.0d, however, the technical
difficulties can be overcome more easily and the numerical
analysis is executable with adequate accuracy. This is the
reason why henceforth we concentrate on the second phase
transition occurring with the increase ofP.

First we study what happens on random regular graphs
(limit Q→1) for z=3 when increasingP. This choice was
motivated by the simplicity of this treelike structure on
which the dynamical cluster technique can be applied for
sufficiently large clusters. In Fig. 3 the MC results show that
the order parameterF tends very slowly to 1. Despite the
large sizes in simulations we could not study the very close
vicinity of the transition pointsP2d because of the fluctua-
tions yielding an occasional transition from the noisy limit
cycle to one of the homogeneous statessAd. Our MC data
can be well approximated by a power law behavior, namely,
1−F~sP2−Pdg with an exponentg=3.3s4d.

For periodic structures the dynamical cluster technique
has proved to be a very efficient method to describe different
phenomena in several nonequilibrium models[12,24–26]. In
the limit N→` the random regular graph becomes locally
treelike, and it can be considered as a Bethe lattice on which
this technique works well too[27]. Using this technique one
can determine the probability of each configuration occurring
on ak-site cluster by solving a suitable set of master equa-
tions (details are given in[12,28]). The cluster sizek is a
crucial parameter. For one-site clusters this technique is
equivalent to the mean-field approximation predicting con-
centric orbits independent ofP [23]. The pair approximation

sk=2d gives spiral trajectories reaching the edge of triangles
(or the absorbing states) for arbitraryP. Choosing four- and
six-site clusters(see the inset in Fig. 3) this method was
capable of reproducing the appearance of limit cycles below
a threshold value ofP. The quantitative predictions of this
method are compared with the MC results in Fig. 3. Obvi-
ously, the increase of cluster size improves the estimation.
Notice that, according to the six-site approximation, the or-
der parameterF also tends to 1 very slowly(see Fig. 4). The
extrapolated critical values areP2

s4sd=0.019s2d and P2
s6sd

=0.067s4d.
The above value of the exponentg agrees(within statis-

tical error) with those we observed on the square lattice in
our previous work concentrating only on the effect of an-
nealed randomness. This coincidence inspired us to study the
robustness of this transition. For this purpose the MC analy-
ses of the second transition were carried out on some two-
dimensional lattices(square, triangle, and honeycomb for
Q=0). The results, summarized in Fig. 4, seem to confirm
that the transition from the global oscillation(phaseO) to the
absorbing statessAd is universal.

FIG. 3. The order parameter as a function ofP for the three-
degree random regular graph. Boxes indicate the results of MC
simulation. The estimated critical value of the transition to an ab-
sorbing state isP2=0.079s2d. The dashed(solid) line represents the
prediction of the dynamical cluster technique at the levels of the
four- and six-site approximations. Inset shows the shape of four-
and six-site clusters used in these approximations.

FIG. 4. Comparison of the continuous transitions to the absorb-
ing phase for different networks. The MC data are obtained on
honeycomb(triangle), square(cross), and triangular(bullet) lattices,
and on a random regular graph with a degree ofz=3 (box). Filled
triangle represents the result of dynamical cluster approximation at
six-site level for the same graph. The solid line represents the slope
of b=3.3.

BRIEF REPORTS PHYSICAL REVIEW E70, 037102(2004)

037102-3



To summarize, we have studied the effect of host lattice
randomness on the stationary state for a simple rock-scissors-
paper system. The quenched and annealed randomness of the
regular background is characterized by two parametersQ
and P varying from 0(corresponding to a lattice with a di-
mension of 1, or 2, or 3) to 1 (random regular graph and/or
mean-field condition). This system displays two subsequent
transitions if the randomness is increased. A self-organizing
pattern can be observed if these randomness parameters re-
main within a region of theP-Q plane. When crossing the
boundary of this region a global oscillation(limit cycle) oc-
curs via a Hopf bifurcation. The transition point(for P=0)
depends strongly on the dimensiond of the original lattice;
meanwhile it is hardly affected by the clustering coefficient.
For the global oscillation the area of limit cycle(as well as
the “amplitude”) increases with randomness up to its satura-
tion value. Thus, above a second threshold value[more pre-
cisely forP. P2sQd] the system sooner or later terminates in
one of the homogeneous absorbing states. Our simulations
indicate that this second transition has also a universal fea-

ture in the slow tendency toward the saturation value. It also
turned out that the global oscillation is stablesF,1d on
quenched random regular structures if the number of neigh-
bors is not larger than 4szø4d. It would be interesting to see
how the synchronization(as well as the above mentioned
two transitions) emerges on other random networks. The
present rock-scissors-paper model involves two crucial fea-
tures. On the one hand, the dynamical rule is cyclically sym-
metric; on the other hand, the invasion fronts become very
irregular even on two-dimensional lattices because the inva-
sion between two neighboring sites is not affected by their
neighborhood. Further investigations are required to clarify
what happens if the dynamical rules are not cyclically sym-
metric and/or the moving interfaces are smoothed by local
interactions.
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