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Influence of extended dynamics on phase transitions in a driven lattice gas
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Monte Carlo simulations and dynamical mean-field approximations are performed to study the phase tran-
sition in a driven lattice gas with nearest-neighbor exclusion on a square lattice. A slight extension of the
microscopic dynamics with allowing the next-nearest-neighbor hops results in dramatic changes. Instead of the
phase separation into high- and low-density regions in the stationary state the system exhibits a continuous
transition belonging to the Ising universality class for any driving. The relevant features of the phase diagram
are reproduced by an improved mean-field analysis.
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The concept of universality is well established in equilib- The occupation variables;=0(1) if the lattice sitei is
rium critical phenomena. According to this concept only justempty (occupied and the concentration is defined as
a few parameters, i.e., spatial dimension of the system and 5. 4, /N. The only interaction is to forbid the simultaneous
the dimensionality of the order parameter determine the critinearest-neighbor occupancy. During the time evolution a ran-
cal exponents, meanwhile other details like the microscopiglomly chosen particle can hop to one of its empty neighbor-
dynamics are irrelevant. The nonequilibrium systems exhibiing sites satisfying the condition of NNE. In the basic model
a richer and more complex feature. One of the importanstudied by Dickman the particles can hop only to the nearest-
questions to address is whether this concept also applies Heighbor sites while in this extended model the next-nearest-
nonequilibrium systems. There are examples when a slighieighbor hops are also permitted with a probability as de-
extension of microscopic dynamics results in different mor-fined in Fig. 1. Here, the value & is varied from 0.5 to 1.
phology of the stationary stafé,2]. The importance of the The caseP=0.5 corresponds to the isotropic hopping rate
dynamics also manifests in other problems, such as chemgharacteristic to the equilibrium model afd=1 represents
cally reactive mixtureg3] or driven diffusive system$4]  the infinitely strong drive. Further details and the review of
where the microscopic and the supposed macroscopic modgie equilibrium properties can be found in Rg8].
yield different morphologies. The former nonequilibrium  |n the stationary state of this model the particle distribu-
system also exemplifies that the resulting stationary statgon is disordered if the concentration is low enough. For
may differ significantly from that of the corresponding equi- sufficiently high concentration sublattice ordering can be ob-
librium model[5]. served, that is the particles form a checkerboardlike pattern.

Very recently, Dickman has introduced a simple drivenin other words, if the square lattice is divided into two inter-
lattice-gas model with hard-core interaction between the pamenetrating sublattices\(andB) then the particles prefer to
ticles which excludes the simultaneous occupation of thestay in one of these sublattices. The transition between the

nearest-neighbor sites on a square latfie In the absence ordered and disordered states is characterized by an order
of driving this model is equivalent to a thoroughly investi- parameter

gated equilibrium model discussed in connection with the
theory of melting[7—10]. For this particular interaction the PA™ PB
only (contro) parameter of the model is the particle concen- = + R’ @)

PAT PB
tration. The driven version of this nearest neighbor exclusion
(NNE) model can be related to some traffic and granular flomwhere p, and pg denotes the concentration of particles in
models as detailed by Dickmé#8]. Despite its simplicity the sublattice A and B. In the disordered phasé#=0. Con-
driven NNE model shows remarkable nonequilibrium behav-
ior such as the coexistence of low- and high-density phases NN hops NNN hops
and the current may decrease in response to increased drive.

existence of two phases disappears and the phase transition
remains continuous for all drives by allowing the next-
nearest-neighbor hops too. A more accurate version of the
dynamical mean-field theory predicts a phase diagram in G, 1. Schematic illustration of possible hopping rates of the
good qualitative agreement with the results of Monte Carlohearest-neighborNN) and the extended next-nearest-neighbor
(MC) simulations. (NNN) hopping dynamics. The drive is horizontal and the direc-

We consider two-dimensional driven lattice gases on aions are chosen with equal probabilifi/4 (1/8) for the NN
square lattice with. X L= N sites under periodic conditions. (NNN) hops.
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The order-disorder phase transition also changes from sec- L 1 P
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ond to first order in the presence of drive. In this Brief Re- . = 0 e
port we slightly modify the microscopic dynamics to explore LP, I P 1P, ;I\é« P
the robustness of this behavior. We demonstrate that the co- 4 4 8 8
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versely,®=1 (or —1) if all the particles are positioned in 1

the sites of sublatticd (B). When decreasing the concen-

tration the equilibrium systemR=0.5) undergoes an order- 091 "

disorder transition which is continuous and belongs to the os |

Ising universality clas§10]. In the driven system, however, a

this transition becomes first order if only nearest-neighbor 07t p A

hops are permittef6]. The present dynamics conserve the

number of particles therefore the first-order transition is ac- 06

companied with the coexistence of high- and low-density

phases. 05 ‘
03 032 034 036 038 04

To explore the phase diagram of the extended model, we
have performed a dynamical mean-field analysis. The most P
relevant details of this laborious technique are given in the k|G, 2. Phase diagram in theP plane. The solid curve is the
Appendix of the work by Dickmafi6] at the levels of two-  prediction of a six-point mean-field approximation. Symbols repre-
and four-site clusters. Using this method one can determingent Monte Carlo results. The dashed line is a guide to the eye. The
the probability of possible configurations on a given set ofantiferromagnetic &), and the paramagneti®) phases are indi-
clusters if the particle distribution is homogeneous. Similarlycated.
to the NN hop model, the two- and four-site approximations
are not capable to describe the effect of driving as a cons
guence of the strong constraints of NNE. This means that th
results are independent Bfand equivalent to those obtained
by using the tradional cluster-variation methgtl,12] for

an be observed in the stationary states when the systems are
griven. While the separation of the high- and low-density
phases characterizes the NN dynamjég leading to a
jammed “herringbone” structure then the stationary state re-
T L mains homogeneous for any drive and concentration when
the eqU|I|br|_u_m sys_tem R:2p1/2). The pred|ct|_ons f0r4tg1e NNN jumps gre also aIIoweél. The study of order parameter
phase-transition point arg;"=0.25 at two-point andp; and density profiles as a function of the transversal coordi-
=0.317 at four-point level. nate also support that the ordered phase is homogeneous in
The failure of dynamical mean-field approximation is dis- the case of extended dynamics. As a consequence, the cur-
appointing since previously this method gave qualitativelyrent has no size dependence and varies smoothly with the
good phase diagrams for several nonequlibrium mddéds  concentration and. The phase diagram obtained by MC
To overcome this shortage we have performed a six-poinsimulations confirms the qualitative prediction of the dy-
approximation used succesfully for a similar driven latticenamical mean-field theory. Namely, the critical concentration
gas[14]. In this case we determine the configuration prob-(p.) decreases witl® and the transition remains continuous
abilities on 2<3 clusters. Taking the compatibility condi- for those drives displayed in Fig. 2.
tions and symmetries into account the configuration prob- The classification of the critical behavior for a nonequi-
abilities are described by 17 parameters whose values aft®rium model requires careful analysis. The difficulties are
determined by solving numerically the corresponding set ofvell demonstrated by the investigation of the standard model
equations of motion. AP=1/2 this calculation has repro- [16] whose critical behavior is even controvergiaf]. Here,
duced the same solution obtained at the level of a four-pointve present a finite-size scaling analysis for the infinite strong
approximation. For the driven cases, however, the solutiondrive (P=1) in the case of extendg®\NN) dynamics. For
(for =0 and®>0) are already affected by the valueRdf this purpose we have used the scaling fa8]
As an example, for infinite drive the transition appears at B "
pSP(P=1)=0.3026. The resulting phase diagram is shown P(L,p)=L"7"D(p L), @

in Fig. 2. We should mention that the phase transition reynerep, =(p—p.)/p, is the reduced concentration. Assum-

mains continuous for any drives according to this level ofiyg that the nonequlibrium phase transition belongs to the
approximation.

To check these predictions MC simulations are performed 1 8
for L=20, 40, 80, 160, and 320 under periodic boundary " ot
conditions varying the concentratignand driveP. To reach oF ot ’“";:‘
the stationary state we have used both homogeneous random . ' ow
and ordered initial states. In the former initial state the par- <, + 20 E“*_
ticles are positioned within a strip parallel to the drive. & -l =40 Q"-Q.' 718
In agreement with the expectation the modification of dy- = 80
namics does not influence the stationary statePi#0.5 o | ° 160
(equilibrium mode). The MC data of®(p) functions col- %2
lapse when comparing the results obtained for the NN and 3 2 1 0 1 2 3 4
NNN dynamics at any system sizes. At the same time the o, LIV

evolution toward the stationary states becomes faster when
NNN hops are allowed. A similar effect was also reported in  FIG. 3. The finite-size scaling of order parameter of the NNE
another driven diffusive moddll] as well as in domain model with NNN hopping forP=1. The slopes of the asymptote
growth processefl5]. In contrast, a significant difference lines are indicated.
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class of the equilibrium modéi.e., Ising exponents are sup- mitted. In this case the system exhibits a sublattice ordering
posed, nice data collapse is foungsee Fig. 3 Here, when the particle concentration is increased. The value of
pg"C(P=1):O.35q5). This value is consistent with an al- critical concentration decreases with the drive and this be-
ternating estimate which comes from the analysis of théhavior can be explained by the higher level of dynamical
fourth-order cumulant of order parametelU =1 mean-field approximation. The numerical results support that
—(®%_/3(®?)? [18]. Similar critical behavior is found for the system is in the same universality class of the equilib-
any P<1 drive. rium Ising model. This model exemplefies that the nonequ-
In summary, the microscopic dynamics has been slightlylibrium behavior may be significantly influenced by a weak
extended in a previously introduced driven diffusive latticemodification of microscopic dynamics.
gas where the only interaction is to forbid the simultaneous
nearest-neighbor occupancy. Despite the weak modification The authors thank Ron Dickman for stimulating discus-
the nonequlibrium behavior changes significantly. The stasions. This research was supported by the Hungarian Na-
tionary states are found to be homogeneous for any driveional Research FungOTKA) under Grant Nos. F-30449
and densities if the next-nearest-neighbor hops are also pemnd T-33098. A.S. thanks the HAS for financial support.
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