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Influence of extended dynamics on phase transitions in a driven lattice gas
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~Received 6 December 2001; published 18 March 2002!

Monte Carlo simulations and dynamical mean-field approximations are performed to study the phase tran-
sition in a driven lattice gas with nearest-neighbor exclusion on a square lattice. A slight extension of the
microscopic dynamics with allowing the next-nearest-neighbor hops results in dramatic changes. Instead of the
phase separation into high- and low-density regions in the stationary state the system exhibits a continuous
transition belonging to the Ising universality class for any driving. The relevant features of the phase diagram
are reproduced by an improved mean-field analysis.
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The concept of universality is well established in equil
rium critical phenomena. According to this concept only ju
a few parameters, i.e., spatial dimension of the system
the dimensionality of the order parameter determine the c
cal exponents, meanwhile other details like the microsco
dynamics are irrelevant. The nonequilibrium systems exh
a richer and more complex feature. One of the import
questions to address is whether this concept also applie
nonequilibrium systems. There are examples when a sl
extension of microscopic dynamics results in different m
phology of the stationary state@1,2#. The importance of the
dynamics also manifests in other problems, such as che
cally reactive mixtures@3# or driven diffusive systems@4#
where the microscopic and the supposed macroscopic m
yield different morphologies. The former nonequilibriu
system also exemplifies that the resulting stationary s
may differ significantly from that of the corresponding equ
librium model @5#.

Very recently, Dickman has introduced a simple driv
lattice-gas model with hard-core interaction between the p
ticles which excludes the simultaneous occupation of
nearest-neighbor sites on a square lattice@6#. In the absence
of driving this model is equivalent to a thoroughly inves
gated equilibrium model discussed in connection with
theory of melting@7–10#. For this particular interaction the
only ~control! parameter of the model is the particle conce
tration. The driven version of this nearest neighbor exclus
~NNE! model can be related to some traffic and granular fl
models as detailed by Dickman@6#. Despite its simplicity the
driven NNE model shows remarkable nonequilibrium beh
ior such as the coexistence of low- and high-density pha
and the current may decrease in response to increased d
The order-disorder phase transition also changes from
ond to first order in the presence of drive. In this Brief R
port we slightly modify the microscopic dynamics to explo
the robustness of this behavior. We demonstrate that the
existence of two phases disappears and the phase tran
remains continuous for all drives by allowing the nex
nearest-neighbor hops too. A more accurate version of
dynamical mean-field theory predicts a phase diagram
good qualitative agreement with the results of Monte Ca
~MC! simulations.

We consider two-dimensional driven lattice gases on
square lattice withL3L5N sites under periodic conditions
1063-651X/2002/65~4!/047101~3!/$20.00 65 0471
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The occupation variabless i50(1) if the lattice site i is
empty ~occupied! and the concentration is defined asr
5( is i /N. The only interaction is to forbid the simultaneou
nearest-neighbor occupancy. During the time evolution a r
domly chosen particle can hop to one of its empty neighb
ing sites satisfying the condition of NNE. In the basic mod
studied by Dickman the particles can hop only to the near
neighbor sites while in this extended model the next-near
neighbor hops are also permitted with a probability as
fined in Fig. 1. Here, the value ofP is varied from 0.5 to 1.
The caseP50.5 corresponds to the isotropic hopping ra
characteristic to the equilibrium model andP51 represents
the infinitely strong drive. Further details and the review
the equilibrium properties can be found in Ref.@6#.

In the stationary state of this model the particle distrib
tion is disordered if the concentration is low enough. F
sufficiently high concentration sublattice ordering can be
served, that is the particles form a checkerboardlike patt
In other words, if the square lattice is divided into two inte
penetrating sublattices (A andB) then the particles prefer to
stay in one of these sublattices. The transition between
ordered and disordered states is characterized by an o
parameter

F5
rA2rB

rA1rB
, ~1!

where rA and rB denotes the concentration of particles
sublatticeA and B. In the disordered phaseF50. Con-

FIG. 1. Schematic illustration of possible hopping rates of
nearest-neighbor~NN! and the extended next-nearest-neighb
~NNN! hopping dynamics. The drive is horizontal and the dire
tions are chosen with equal probability@1/4 (1/8) for the NN
~NNN! hops#.
©2002 The American Physical Society01-1
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versely,F51 ~or 21) if all the particles are positioned i
the sites of sublatticeA (B). When decreasing the conce
tration the equilibrium system (P50.5) undergoes an orde
disorder transition which is continuous and belongs to
Ising universality class@10#. In the driven system, howeve
this transition becomes first order if only nearest-neigh
hops are permitted@6#. The present dynamics conserve t
number of particles therefore the first-order transition is
companied with the coexistence of high- and low-dens
phases.

To explore the phase diagram of the extended model,
have performed a dynamical mean-field analysis. The m
relevant details of this laborious technique are given in
Appendix of the work by Dickman@6# at the levels of two-
and four-site clusters. Using this method one can determ
the probability of possible configurations on a given set
clusters if the particle distribution is homogeneous. Simila
to the NN hop model, the two- and four-site approximatio
are not capable to describe the effect of driving as a con
quence of the strong constraints of NNE. This means that
results are independent ofP and equivalent to those obtaine
by using the tradional cluster-variation method@11,12# for
the equilibrium system (P51/2). The predictions for the
phase-transition point arerc

2p50.25 at two-point andrc
4p

50.317 at four-point level.
The failure of dynamical mean-field approximation is d

appointing since previously this method gave qualitativ
good phase diagrams for several nonequlibrium models@13#.
To overcome this shortage we have performed a six-p
approximation used succesfully for a similar driven latti
gas @14#. In this case we determine the configuration pro
abilities on 233 clusters. Taking the compatibility cond
tions and symmetries into account the configuration pr
abilities are described by 17 parameters whose values
determined by solving numerically the corresponding se
equations of motion. AtP51/2 this calculation has repro
duced the same solution obtained at the level of a four-p
approximation. For the driven cases, however, the soluti
~for F50 andF.0) are already affected by the value ofP.
As an example, for infinite drive the transition appears
rc

6p(P51)50.3026. The resulting phase diagram is sho
in Fig. 2. We should mention that the phase transition
mains continuous for any drives according to this level
approximation.

To check these predictions MC simulations are perform
for L520, 40, 80, 160, and 320 under periodic bound
conditions varying the concentrationr and driveP. To reach
the stationary state we have used both homogeneous ran
and ordered initial states. In the former initial state the p
ticles are positioned within a strip parallel to the drive.

In agreement with the expectation the modification of d
namics does not influence the stationary state ifP50.5
~equilibrium model!. The MC data ofF(r) functions col-
lapse when comparing the results obtained for the NN
NNN dynamics at any system sizes. At the same time
evolution toward the stationary states becomes faster w
NNN hops are allowed. A similar effect was also reported
another driven diffusive model@1# as well as in domain
growth processes@15#. In contrast, a significant differenc
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can be observed in the stationary states when the system
driven. While the separation of the high- and low-dens
phases characterizes the NN dynamics@6# leading to a
jammed ‘‘herringbone’’ structure then the stationary state
mains homogeneous for any drive and concentration w
NNN jumps are also allowed. The study of order parame
and density profiles as a function of the transversal coo
nate also support that the ordered phase is homogeneo
the case of extended dynamics. As a consequence, the
rent has no size dependence and varies smoothly with
concentration andP. The phase diagram obtained by M
simulations confirms the qualitative prediction of the d
namical mean-field theory. Namely, the critical concentrat
(rc) decreases withP and the transition remains continuou
for those drives displayed in Fig. 2.

The classification of the critical behavior for a nonequ
librium model requires careful analysis. The difficulties a
well demonstrated by the investigation of the standard mo
@16# whose critical behavior is even controversial@17#. Here,
we present a finite-size scaling analysis for the infinite stro
drive (P51) in the case of extended~NNN! dynamics. For
this purpose we have used the scaling form@18#

F~L,r!5L2b/nF̄~r rL
1/n!, ~2!

wherer r[(r2rc)/rc is the reduced concentration. Assum
ing that the nonequlibrium phase transition belongs to

FIG. 3. The finite-size scaling of order parameter of the NN
model with NNN hopping forP51. The slopes of the asymptot
lines are indicated.

FIG. 2. Phase diagram in ther-P plane. The solid curve is the
prediction of a six-point mean-field approximation. Symbols rep
sent Monte Carlo results. The dashed line is a guide to the eye.
antiferromagnetic (A), and the paramagnetic~P! phases are indi-
cated.
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class of the equilibrium model~i.e., Ising exponents are sup
posed!, nice data collapse is found~see Fig. 3!. Here,
rc

MC(P51)50.350(5). This value is consistent with an a
ternating estimate which comes from the analysis of
fourth-order cumulant of order parameterUL51
2^F4&L/3^F2&L

2 @18#. Similar critical behavior is found for
any P,1 drive.

In summary, the microscopic dynamics has been sligh
extended in a previously introduced driven diffusive latti
gas where the only interaction is to forbid the simultaneo
nearest-neighbor occupancy. Despite the weak modifica
the nonequlibrium behavior changes significantly. The s
tionary states are found to be homogeneous for any dr
and densities if the next-nearest-neighbor hops are also
P

04710
e

ly

s
n
-

es
er-

mitted. In this case the system exhibits a sublattice orde
when the particle concentration is increased. The value
critical concentration decreases with the drive and this
havior can be explained by the higher level of dynami
mean-field approximation. The numerical results support t
the system is in the same universality class of the equi
rium Ising model. This model exemplefies that the none
librium behavior may be significantly influenced by a we
modification of microscopic dynamics.
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