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Branching annihilating random walks with parity conservation on a square lattice
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Using Monte Carlo simulations we have studied the transition from an ‘‘active’’ steady state to an absorbing
‘‘inactive’’ state for two versions of the branching annihilating random walks with parity conservation on a
square lattice. In the first model the randomly walking particles annihilate when they meet and the branching
process creates two additional particles; in the second case we distinguish particles and antiparticles created
and annihilated in pairs. Quite distinct critical behavior is found in the two cases, raising the question of what
determines universality in these kinds of systems.@S1063-651X~99!51503-1#

PACS number~s!: 64.60.Ht, 05.40.Fb, 02.50.2r
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Branching annihilating random walks~BARWs! have
been extensively studied in recent years because they a
prototype for a variety of reaction-diffusion-like systems~for
recent reviews, see the work by Cardy and Ta¨uber@1# and by
Marro and Dickman@2# for more general aspects!. For dif-
ferent models, the random walkers can represent either
main walls~kinks! or active sites on a lattice. In general, th
corresponding critical behavior belongs to the directed p
colation~DP! universality class. According to the ‘‘DP con
jecture,’’ @3#, most of the one-component models with
single absorbing state belong to the DP universality cla
Exceptions can appear when additional symmetries or c
servation laws are introduced. The best known o
dimensional~1D! exceptions are models in which, either th
parity of the number of particles is conserved during
elementary processes@4–9#, or there is an equivalence be
tween two absorbing states@10,11#. Henceforth, we will con-
centrate on this type of 2D BARWs whose behavior diffe
from the 2D DP universality class@12#.

A field theoretical analysis of such systems was rece
reported @13,1#. In 1D, the numerical and theoretical a
proaches are in satisfactory agreement: a new univers
class appears when parity is preserved. Agreement is
found for D.2 in which case the mean-field results a
valid. The nonexistence of the absorbing state~extinction!
for finite values of the branching rate predicted by mean-fi
approximation forD>2 was also confirmed by early Mont
Carlo ~MC! simulations@14# in 2D and 3D. However, ac
cording to the field theoretical analysis, logarithmic corre
tions are expected for the marginal dimensionalityD52 for
models with parity conservation and this was not born out
previous work. In this Rapid Communication we report r
sults of extensive MC simulations in 2D lattices showi
evidence of such corrections. Inspired by the kink/antik
interpretation of creation and annihilation, we have also c
sidered a modification of the model where two types of p
ticles are present in the creation and annihilation proce
and indeed found that a distinct behavior appears in this c

In the first model there is only one species of partic
walking randomly on a square lattice. In addition to t
single particle diffusion, the time evolution is governed
creation and annihilation of particle pairs as follows. A ra
PRE 591063-651X/99/59~3!/2509~3!/$15.00
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domly chosen particle creates two additional particles wit
probability p which are located on two randomly chose
neighboring empty sites@15#; otherwise the chosen particl
jumps to one of its nearest neighbor positions. For both
ementary processes, if the destination site is occupied
the two particles annihilate. In order to study extinction, w
consider only even initial numbers of particles.

In the second model we distinguish particles and antip
ticles, the creation and annihilation processes involving
particle/antiparticle pair with an evolution rule similar to th
above one. During the sequential updating we neglect all
elementary processes which would result in two particles~or
antiparticles! on the same site. The numbers of particles a
antiparticles are chosen to be equal. As a result we hav
unique absorbing state~no particles! independent of time.
This model can be considered as a 2D generalization of
parity conserving model introduced by Menyha´rd @5# where
the 1D ferromagnetic domain walls are represented by p
ticles and antiparticles. It is worth mentioning that in th
former model the particles and antiparticles are alterna
positioned along the chain and this feature is maintained
the elementary processes; therefore, their distinction is
relevant. In the present 2D model, however, two partic
~antiparticles! can occupy neighboring positions and they c
avoid each other.

The MC simulations are performed on anL3L square
lattice with periodic boundary conditions for different valu
of the branching ratep. In order to have sufficiently accurat
results, the system size~L! is increased up toL52000 for a
small concentration of particles. The simulations are star
from a randomly half-filled lattice and during the evolutio
we record the concentration of particles~other initial condi-
tions were also tested!. Time is measured in Monte Carl
steps~MCS! within which each particle has an opportunity
jump ~probability 12p) or branch~probability p).

For both models, in the absence of branching (p50), the
number of particles decreases monotonically and eventu
vanishes. Forp.0, however, the system remains active w
a fluctuating number of particlesn if the lattice size is suffi-
ciently large. In the stationary state the average concentra
(c5^n&/L2) of particles vanishes continuously whenp tends
R2509 ©1999 The American Physical Society
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to 0. In other words, decreasing the branching rate, b
systems undergo a transition with a critical pointpc50.

First we have investigated the decrease of concentratio
the critical point (pc50). For this purpose the time
dependent average concentration and its fluctuationx
5L2^(c2n/L2)2& are determined at discrete time ste
~equidistant in the logarithmic scale! by averaging over 500
runs.

For the first model the field theoretical investigation su
gestsc} ln t/t @1#. To check this prediction we have plotte
tc vs t in a log-lin plot. Our MC results~see Fig. 1! obtained
for L52000 indicate clearly that the time-dependent conc
tration can be well described as

c~ t !5
A1B ln t

t
~1!

for sufficiently long times (t.100 MCS). This function fits
the MC data ifA50.2238 andB50.8979. The leading term
of this asymptotic behavior agrees with the above predic
given by Lee@16# and Cardy and Ta¨uber @1#.

The fluctuation of concentration decreases proportion
with the average value of concentration, as demonstrate
Fig. 1. Neglecting the ‘‘noisy decoration’’ due to the stat
tical error, the ratio of the time-dependent fluctuation a
concentration can be well approximated asx(t)/c(t)
.0.67(2) on the time range indicated in Fig. 1. This ra
agrees very well with the theoretical prediction (2/3) o
tained by Lee@16# using renormalization group technique.

For the second model the decrease of concentration
lows a different behavior at the critical point. Indeed wh
p50 we get the diffusion limited surface reaction A1B
→B case, already studied by several authors@17–19#. The
concentrations decrease ast2d/4 if the dimensiond is lower
than 4~the upper critical dimension for this system!. Com-
pared to the former case, the results depend more striki
on size, as shown in a log-log plot~Fig. 2!. The sharp de-
crease inc is a consequence of the extinction whose pro
ability is higher for smaller systems. Our simulation confirm
the mentioned power law behavior in the limitL→`, as
indicated in Fig. 2. The extent of this behavior for the larg
system is illustrated in the figure by the dashed line. T
fluctuations are almost constant during this scaling reg
@x(t).0.009(1) forL52000 and 600,t,60000].

FIG. 1. Concentration~upper curve! and its fluctuation~lower
curve! multiplied by the time vs the logarithm of time at zer
branching rate for the first model.
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Systematic and extensive MC simulations have been
formed to study the average concentration and its fluctua
in the steady state~reached after some thermalization! for
finite branching rates. For the smallestp values both the
thermalization and sampling times were longer th
105 (106) MCS for the first~second! model. These simula-
tions were repeated 20 times to suppress the undesired
fects of long time fluctuations.

The results for the first model are summarized in Fig.
At first glance, the MC data for the concentration~diamonds
in the log-log plot! indicates a power law behavior, namel
c(p)}pb with b51.276, similar to what was found b
Takayasu and Tretyakov@14#. The careful reader can, how
ever, observe a definite deviation from this behavior~posi-
tive curvature! whose magnitude exceeds our statistical err

Taking the logarithmic corrections into account Car
and Täuber have suggested@13# that the leading term of the
c(p) function is proportional top/ ln2(p). This function does
not fit adequately the present MC data; however, an excel
fitting is found if we usec(p)5p/@A1B ln(p)1C ln2(p)#.
This function is represented by a solid line in Fig. 3 forA
50.4098, B520.5825, andC50.096 01. Notice that this
formula confirms the theoretical prediction in the limitp
→0.

FIG. 2. Time dependence of concentration of particles~and an-
tiparticles! in the second model at zero branching rate for differe
system sizes (L5100, 200, 300, 500, 1000, and 2000 from le
to right!. The dashed line~slope 20.5) indicates the theoretica
power law behavior.

FIG. 3. Log-log plot of the particle concentration~diamonds!
and its fluctuation~squares! as a function of branching rate for th
first model. The solid line indicates the fitted curve described in
text.
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Figure 3 indicates clearly that the concentration fluct
tion is proportional to the concentration itself in thep region
we have studied. These quantities satisfy the rela
x(p)/c(p)52.5(2) within the statistical error.

Similar investigations have been performed for the sec
model. Figure 4 demonstrates clearly that the MC data te
towards a power law for both the concentration~c! and its
fluctuation (x) at small values of branchingp. Fitting the
functionc(p)5Apb to our numerical data we have obtaine
that b51.11(1). Theratio of the fluctuation to the concen

FIG. 4. Particle and antiparticle concentration~diamonds! and
its fluctuation~squares! vs branching rate for the second model. T
fitted asymptotic power law behavior is indicated by the strai
line ~slope 1.11!.
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tration is smaller than found for the first model, name
x(p)/c(p)51.10(5).

In summary, we have studied and compared two sim
models of BARWs on a square lattice with parity conserv
tion. In contrast with the first model, where there is only o
type of particle, the second model has particles and anti
ticles annihilating~only! each other when they meet. Th
distinction has caused significant differences between t
behavior at the critical point~no branching! as well as in the
stationary states for finite branching rate. For the first mod
our MC simulations have justified the appearance of
logarithmic corrections predicted theoretically by Lee and
Cardy and Ta¨uber. On the contrary, we have observed pow
law behavior in the second model. Surprisingly, the fluctu
tions decrease withp; more precisely, thep dependence of
the fluctuation is found to be proportional to the concent
tion for both models. The significant differences between
behavior of the present models imply the possibility to fi
other two-dimensional systems whose critical behavior d
not belong to the directed percolation universality class. T
belief that in these systems parity conservation is suffici
to determine the universality class is probably also to
questioned.
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