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Branching annihilating random walks with parity conservation on a square lattice
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Using Monte Carlo simulations we have studied the transition from an “active” steady state to an absorbing
“inactive” state for two versions of the branching annihilating random walks with parity conservation on a
square lattice. In the first model the randomly walking particles annihilate when they meet and the branching
process creates two additional particles; in the second case we distinguish particles and antiparticles created
and annihilated in pairs. Quite distinct critical behavior is found in the two cases, raising the question of what
determines universality in these kinds of systef8d.063-651X99)51503-1

PACS numbgs): 64.60.Ht, 05.40.Fb, 02.50r

Branching annihilating random walk8ARWSs) have domly chosen particle creates two additional particles with a
been extensively studied in recent years because they arepeobability p which are located on two randomly chosen
prototype for a variety of reaction-diffusion-like systeffesr  neighboring empty sitegl5]; otherwise the chosen particle
recent reviews, see the work by Cardy andifer[1] and by  jumps to one of its nearest neighbor positions. For both el-
Marro and Dickmar{2] for more general aspegts-or dif- ementary processes, if the destination site is occupied then
ferent models, the random walkers can represent either daehe two particles annihilate. In order to study extinction, we
main walls(kinks) or active sites on a lattice. In general, the consider only even initial numbers of particles.
corresponding critical behavior belongs to the directed per- |n the second model we distinguish particles and antipar-
colation(DP) universality class. According to the “DP con- tjcles, the creation and annihilation processes involving a
jecture,” [3], most of the one-component models with a particle/antiparticle pair with an evolution rule similar to the
single absorbing state belong to the DP universality classapove one. During the sequential updating we neglect all the
Exceptions can appear when additional symmetries or CONslementary processes which would result in two partiebes

servation laws are introduced. The best known oneyninarticles on the same site. The numbers of particles and
d;n:itens()'?r:ﬁglﬁ&ri’éceerpg?nzz{gemsogefows‘évr@gg’ c(iaLIJtrri]r?r t:]heeantiparticles are chosen to be equal. As a result we have a
glemyentary processég—Q]p or there is an equivalencegbe- unique absorbing statého particle$ independent of time.
tween two absorbing staté]so 11). Henceforth, we will con- This model can be considered as a 2D generalization of the
centrate on this type of 2D éAéWs whose behavior differsparity conserving model introduced by Menytigs] where
from the 2D DP universality cladd 2] the 1D ferromagnetic domain walls are represented by par-

A field theoretical analysis of such systems was recentl);ides and antiparticles. It is worth mentioning that in the
reported[13,1]. In 1D, the numerical and theoretical ap- former model the particles and antiparticles are alternately

proaches are in satisfactory agreement: a new universalif§osSitioned along the chain and this feature is maintained by
class appears when parity is preserved. Agreement is aldbe elementary processes; therefore, their distinction is not
found for D>2 in which case the mean-field results arefelevant. In the present 2D model, however, two particles
valid. The nonexistence of the absorbing stégtinction  (antiparticles can occupy neighboring positions and they can
for finite values of the branching rate predicted by mean-fielcdevoid each other.
approximation foD=2 was also confirmed by early Monte ~ The MC simulations are performed on arxL square
Carlo (MC) simulations[14] in 2D and 3D. However, ac- lattice with periodic boundary conditions for different values
cording to the field theoretical analysis, logarithmic correc-of the branching rate. In order to have sufficiently accurate
tions are expected for the marginal dimensionalty:2 for  results, the system sid&) is increased up th =2000 for a
models with parity conservation and this was not born out bysmall concentration of particles. The simulations are started
previous work. In this Rapid Communication we report re-from a randomly half-filled lattice and during the evolution
sults of extensive MC simulations in 2D lattices showingwe record the concentration of particlésher initial condi-
evidence of such corrections. Inspired by the kink/antikinktions were also test¢dTime is measured in Monte Carlo
interpretation of creation and annihilation, we have also consteps(MCS) within which each particle has an opportunity to
sidered a modification of the model where two types of parjump (probability 1—p) or branch(probability p).
ticles are present in the creation and annihilation processes For both models, in the absence of branchipg-Q), the
and indeed found that a distinct behavior appears in this caseumber of particles decreases monotonically and eventually
In the first model there is only one species of particlesvanishes. Fop>0, however, the system remains active with
walking randomly on a square lattice. In addition to thea fluctuating number of particlasif the lattice size is suffi-
single particle diffusion, the time evolution is governed by ciently large. In the stationary state the average concentration
creation and annihilation of particle pairs as follows. A ran-(c=(n)/L?) of particles vanishes continuously whetends
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FIG. 1. Concentratiorfupper curve and its fluctuation(lower FIG. 2. Time dependence of concentration of partickesd an-
curve multiplied by the time vs the logarithm of time at zero tiparticle in the second model at zero branching rate for different
branching rate for the first model. system sizesl(=100, 200, 300, 500, 1000, and 2000 from left

to right). The dashed lindslope —0.5) indicates the theoretical
to 0. In other words, decreasing the branching rate, bottyower law behavior.
systems undergo a transition with a critical pgnt= 0. _ _ _ _

First we have investigated the decrease of concentration at Systematic and extensive MC simulations have been per-
the critical point .=0). For this purpose the time- formed to study the average concentration and its fluctuation
dependent average concentration and its fluctuation in the steady statéreached after some thermalizatioior
=L2%((c—n/L?)?) are determined at discrete time stepsfinite branching rates. For the smallgstvalues both the
(equidistant in the logarithmic scalby averaging over 500 thermalization and sampling times were longer than
runs. 10° (10°) MCS for the first(second model. These simula-

For the first model the field theoretical investigation sug-tions were repeated 20 times to suppress the undesired ef-
gestscxInt/t [1]. To check this prediction we have plotted fects of long time fluctuations.

tc vstin a log-lin plot. Our MC result¢see Fig. 1 obtained The results for the first model are summarized in Fig. 3.
for L=2000 indicate clearly that the time-dependent concenAt first glance, the MC data for the concentrati@famonds
tration can be well described as in the log-log ploj indicates a power law behavior, namely,
c(p)xp? with B=1.276, similar to what was found by
A+BlInt Takayasu and Tretyakdd4]. The careful reader can, how-

c(t) (1)  ever, observe a definite deviation from this behayjmosi-

tive curvaturg¢ whose magnitude exceeds our statistical error.
Taking the logarithmic corrections into account Cardy

and Taiber have suggesté¢d3] that the leading term of the

r(T‘(p) function is proportional t@/In?(p). This function does

not fit adequately the present MC data; however, an excellent

>[}i;tting is found if we usec(p)=p/[A+ B In(p)+CIn?(p)].

t

for sufficiently long times {>>100 MCS). This function fits
the MC data ifA=0.2238 andB=0.8979. The leading term
of this asymptotic behavior agrees with the above predictio
given by Leg[16] and Cardy and Tiber[1].

The fluctuation of concentration decreases proportionall
with the average value of concentration, as demonstrated i ) .
Fig. 1. Neglecting the “noisy decoration” due to the statis- =0.4098, B:. —0.5825, andCf0.096 01 NOt.'CG tha'g th's
tical error, the ratio of the time-dependent fluctuation andformula confirms the theoretical prediction in the linpt
concentration can be well approximated agt)/c(t) —0.
=0.67(2) on the time range indicated in Fig. 1. This ratio

his function is represented by a solid line in Fig. 3 for

agrees very well with the theoretical prediction (2/3) ob- 10
tained by Leg16] using renormalization group technique.

For the second model the decrease of concentration fol- 1021
lows a different behavior at the critical point. Indeed when
p=0 we get the diffusion limited surface reaction+B 2
—(J case, already studied by several autHdg-19. The o 107
concentrations decrease tag’* if the dimensiond is lower
than 4(the upper critical dimension for this systgnCom- 10* L

pared to the former case, the results depend more strikingly

on size, as shown in a log-log pl¢fig. 2. The sharp de-

crease inc is a consequence of the extinction whose prob- 10
ability is higher for smaller systems. Our simulation confirms

the mentioned power law behavior in the linit-oo, as

indicated in Flg 2. The extent of this behavior for the Iargest FIG. 3. Log-log plot of the particle concentratigdiamond$
system is illustrated in the figure by the dashed line. Theand its fluctuationsquaresas a function of branching rate for the
fluctuations are almost constant during this scaling regimeirst model. The solid line indicates the fitted curve described in the
[ x(t)=0.009(1) forL=2000 and 606&t<60000]. text.
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tration is smaller than found for the first model, namely,
x(p)/c(p)=1.10(5).

In summary, we have studied and compared two simple
models of BARWSs on a square lattice with parity conserva-
tion. In contrast with the first model, where there is only one
type of particle, the second model has particles and antipar-
ticles annihilating(only) each other when they meet. This
distinction has caused significant differences between their
behavior at the critical poiniho branching as well as in the
stationary states for finite branching rate. For the first model,
our MC simulations have justified the appearance of the
logarithmic corrections predicted theoretically by Lee and by
Cardy and Taber. On the contrary, we have observed power
law behavior in the second model. Surprisingly, the fluctua-

FIG. 4. Particle and antiparticle concentrati@iamond$ and  tions decrease witp; more precisely, thg dependence of
its fluctuation(squaresvs branching rate for the second model. The the fluctuation is found to be proportional to the concentra-
fitted asymptotic power law behavior is indicated by the straighttion for both models. The significant differences between the
line (slope 1.11 behavior of the present models imply the possibility to find

other two-dimensional systems whose critical behavior does
not belong to the directed percolation universality class. The

Figure 3 indicates clearly that the concentration fluctuabelief that in these systems parity conservation is sufficient
tion is proportional to the concentration itself in theegion  to determine the universality class is probably also to be
we have studied. These quantities satisfy the relatiomuestioned.

x(p)/c(p)=2.5(2) within the statistical error. (% We thank U. Taber for his valuable comments. We have
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