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Domain growth controlled by interfacial transport in two-dimensional systems
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Domain growth is studied for a conserved order parameter when the interfacial particle current dominates
the material transport in a two-dimensional system. A simple geometrical model suggests that the typical
domain size increases ast1/4 for long times. This behavior is supported by Monte Carlo simulations performed
in a half-filled lattice gas taking the first- and second-neighbor jumps and interactions into consideration.
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Domain growth is widely studied in systems of particl
with an attractive interaction when the system is quenc
from the homogeneous high-temperature phase into the
phase coexistence region@1#. For a conserved number o
particles the initial spatial inhomogeneities evolve into m
roscopic domains of high- and low-density phases. Assu
ing a low initial concentration Lifshitz and Slyozov@2# have
shown that the average size of widely spaced particle d
lets increases ast1/3 for long times. In this case the growth
limited by a diffusion current from the shrinking droplets
the growing ones through the matrix. The evaporation of
smaller droplets and the growth by condensation of the la
ones are maintained by the Gibbs-Thomson boundary co
tion at the surface of a spherical droplet.

The situation is different for the half-filled~critical! sys-
tems where one can observe connected domains of a com
cated and random geometry. Experimental, numerical,
analytical approaches have demonstrated that the sy
evolves into a scaling regime for sufficiently long tim
when the domain patterns look statistically similar to those
earlier times. This domain structure is usually characteri
by an average linear domain sizeR(t);tn. Analyzing the
time-dependent Ginzburg-Landau~TDGL! model for a con-
served order parameter, Mazenko@3# has shown that in the
early stage of domain coarsening the process is controlle
interfacial diffusion, which gives at1/4 growth law. Later,
however, the bulk diffusion will dominate the growth an
results in a faster growth lawR(t);t1/3.

Recent Monte Carlo~MC! simulations of Ising system
@4# and numerical studies of TDGL models@6–8# have con-
firmed that the classical value of 1/3 for the exponent
correct at long times. More precisely, the power-law ans
for the growth at intermediate times leads to an ‘‘effecti
exponent’’ of ne f f(t), which is found to increase continu
ously with time toward the valuen51/3. Generalizing the
Lifshitz-Slyozov theory, Huse@9# has suggested that the tim
dependence of the effective exponent be given as
571063-651X/98/57~5!/6172~4!/$15.00
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ne f f5n2C/R~ t !, ~1!

where n51/3 andC is related to the enhanced interfaci
conductivity. This result is supported by evidence from so
computer simulations@9,4,6#. Using the so-called cell dy-
namical system approach, Puri and Oono have indicate
crossover behavior from the earlier exponent ofn.1/4 to the
asymptotic value@7#. A similar transient was observed b
Roland and Grant@5# when studying the two-dimensiona
Ising ferromagnet with a spin-exchange mechanism.

In the present work our investigation will concentrate
two-dimensional systems where the role of bulk diffusion
negligible. Adapting a geometrical approach, it will b
shown that the interfacial transport itself leads ton51/4 in
the scaling regime. This process will be demonstrated by
simulations in a lattice-gas model that clearly exhibits t
n.1/4 behavior in a wide time regime.

The geometrical model of interface evolution was intr
duced by Broweret al. @10# to study the kinematics of mov
ing boundaries appearing for dendritic solidification. Duri
the investigated processes the extension of the interface
creased with time as a result of interfacial instability. No
the opposite case will be studied. The geometrical appro
will be described briefly because many details of the cal
lations are given in previous papers@10–12#.

In this approach the domain structure is characterized b
set of ~nonintersecting and differentiable! closed curves
specified parametrically by the position vectorsxa(t,s) sepa-
rating the two phases wheres denotes the arclength. First w
concentrate on a single curve neglecting its indexa where it
is possible.

In the isotropic system we assume that the projection
the velocity in the normal direction (vn) depends on the loca
curvaturek(s,t) and on its derivatives with respect to th
arclength, namely,

vn5U~k,]sk, . . . !. ~2!
6172 © 1998 The American Physical Society
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In this case the equation of motion for the curvature ob
the simple form

k̇52Fk21
]2

]s2GU. ~3!

This equation of motion involves a nonlocal contribution
fixed s becausek̇(s,t)5]k/]t1 ṡ]k/]s @10–12#.

The functionU is determined by assuming that the ma
rial transport along the interface is driven by the derivat
of the chemical potentialm with respect tos, while m is
proportional tok @15#. Choosing a suitable time scale th
equation of continuity yields

U5
]2k

]s2 . ~4!

In fact, now the curves are characterized by their curvatur@a
set of ka(s,t) functions# and the sign convention fork is
chosen to have positive curvature for a circular domain of
high-density phase.

It is worth mentioning that similar interfacial transport
taken into consideration for the surface evolution descri
by the conserved Kardar-Parisi-Zhang equation@13#. This
description was proposed by Sunet al. @14# to study the dy-
namics of growing interfaces. In the former approach
interface is characterized by a heighth(x,t) measured from a
reference plane andh is assumed to be a single-valued fun
tion of positionx. Consequently, the former description do
not allow us to study closed~or overhanging! curves and
~generally! simplifies the effect of isotropic interfacial trans
port.

Many features of the motion of a closed curve have b
well investigated previously@10–12#. Some quantities de
fined as integrals over the closed curve remain constant.
example, the tangent vector rotates62p along the curves,
that is,

E
0

La~ t !
k~s,t !ds562p, ~5!

whereLa(t) is the length of the given curve and the plus
minus sign indicates that the curve encloses a region of h
or low concentration. As expected, the area is conserved
the dynamics given by Eq.~4! independently of whether i
encloses a region of high or low concentration. This fact is
agreement with the particle-hole symmetry characteriz
the systems we are interested in.

The time derivative of the length of a closed curve obe
the simple form

dLa

dt
5E

0

La~ t !
kaU ds52E

0

La~ t !S ]ka

]s D 2

ds. ~6!

According to this expression,La(t) decreases monoticall
and the single curve tends to form a circle conserving
initial area.

The domain structure observed during the critical coa
ening is topologically similar to an ‘‘islands inside of lake
inside of islands . . . ’’ pattern. When considering the corr
sponding set of curves one can observe the coalescen
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two curves~or domains!. In the united curve immediately
after the coalescence there appear two6pd(s2si) Dirac-d
peaks quickly spreading away. This process reduces
number of curves~domains! continuously and plays a crucia
role in the formation of the domain structure. Henceforth
assume that the system evolves into the scaling regime
long times and the power-law behavior is maintained by
above processes.

In the scaling regime the time derivative of the tot
length of the curves may be written as

dL~ t !

dt
5(

a

dLa

dt
52AL~ t !, ~7!

where

A5
1

L(
a

E
0

La~ t !S ]ka

]s D 2

ds ~8!

denotes the average value of (]k/]s)2 over all the curves. In
the scaling regime the curvature varies typically fro
61/R(t) to 71/R(t) in a lengthR. Consequently, the value
of A may be approximated as

A;
1

R4~ t !
. ~9!

The total lengthL(t) is proportional to the total energy~mea-
sured from its asymptotic value! and is assumed to follow a
power-law behavior for long times@16,4#. Substituting Eq.
~9! into Eq. ~7!, this former power-law behavior can be sa
isfied if

R~ t !;t1/4, ~10!

in agreement with a previous prediction based on the fie
theoretical analysis of the TDGL equation in the early sta
of evolution @3#.

In deriving the above result we have assumed that
material transport is localized along the interface and
strength is controlled by the variation of curvature. Althou
the real systems have enhanced interfacial conductivity,
mobile particles can leave the surface~evaporation! and
these particles will give contribution to the bulk diffusio
controlling the growth sooner or later. This picture impli
that the dominance of interfacial conductivity may be pr
longed by suppressing the rate of evaporation.

In order to check the above prediction the growth is stu
ied with MC simulations in a half-filled, two-dimensiona

FIG. 1. Possible positions~open circles! for the mobile particle
~black circle! walking through a step formed by other particle
~gray circles!.
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lattice-gas model choosing the attractive first- and seco
neighbor interactions to be unity (J15J251). Because of
the attractive interactions, this system decomposes into
phases below the critical temperatureTc51.33(1) (kB51).
The evolution is governed by jumps of particles chosen r
domly. In the present case the particle jumps to one of
first- and second-neighbor positions with a probability sa
fying the condition of detailed balance~Kawasaki rate@17#!.
A similar model was used previously by Mannaet al. @18# to
investigate the effect of gravitation on the shape of dro
sliding down on a wall and by Szabo´ et al. @19# to study the
interfacial instability in a driven lattice gas.

The second-neighbor interactions and jumps are in
duced to support the interfacial transport at the expens
bulk diffusion as demonstrated in Fig. 1. The mobile parti
(P) walking randomly along the curved interfaces should
over steps formed by the condensed particles. If only near
neighbor jumps are permitted, then the particle should s
on site 1, where it is bound to the interface by the seco
neighbor interaction (J2). The attractiveJ2 prevents the par-
ticle from leaving the surface and from contributing to t
bulk diffusion. Furthermore, the possibility of the secon
neighbor jumps allows the particleP to jump directly to site
2. Notice that the jump from site 1 to 3 increases the role
interfacial diffusion too. All the above features together a
responsible for the enhanced interfacial conductivity. Her
is worth mentioning that the second-neighbor interactio
and jumps make the domain structure more isotropic.

The MC simulations are performed on a half-filled squa
lattice as large as 102431024 under periodic boundary con
ditions. The system is started from a random distribution
particles. After a quench to a temperatureT,Tc , the evolu-
tion of the domain structure has been monitored by eval
ing the first zero of the pair-correlation function@C(z)50#
characteristic of the typical domain sizeR(t) @4,9#. The do-
main size is determined as a function of time for times up
43106 Monte Carlo steps~MCS! per particle.

Figure 2 shows the results on a log-log plot for thr
different temperatures. ForT51.25 (T/Tc'0.94) the system
evolves into the scaling regime after;103 MCS. Within this
regime the correlation function satisfies the scaling ans
reasonably well andR(t).t1/4. For lower temperatures th
domain growth is slower and it requires much more time
reach the scaling regime.

FIG. 2. Time dependence of the first zero of the pair correlat
function for temperaturesT51.25, 1.0, and 0.5~from top to bot-
tom!. The dashed line indicates a power-law behavior oft1/4.
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To study the convergence toward the asymptotic beha
we have also determined the effective exponentne f f ~the
slope of curves in Fig. 2! @4,9#. Namely, we have fitted a
power function to our data points between timest/2 and 2t
and the exponent is plotted as a function of 1/z(t). The data
plotted in Fig. 3 are averaged over two runs for the giv
temperatures~a single run of 23106 MCS takes a month on
a Pentium processor!. Very similar results are obtained whe
analyzing the time dependence of either the energy or
average domain size at low temperatures.

Figure 3 demonstrates that the MC data follow the l
described by Eq.~1! and they intercepts~extrapolated expo-
nents! are sufficiently close to 1/4. The best agreement
been observed for the highest temperature (T50.94Tc). In
the vicinity of Tc Hume observed very similar behavio
when studying the traditional lattice-gas model~with the
nearest-neighbor interactions and jumps! for T50.9Tc ~see
Fig. 4 in Ref. @9#!. This result implies that the interfacia
transport may play a dominant role for a sufficiently lon
period in the vicinity ofTc due to the wide and diffuse do
main walls.

For lower temperatures (T51 and 0.5! the higher inter-
cepts are caused by data of long times. This fact may
considered as an indication of the crossover to thet1/3 behav-
ior. Despite this weak evidence I believe that the crosso
should clearly appear for much longer times. For futu
simulations the crossover may be studied in models invo
ing the second-neighbor interactions and jumps exclusiv
As mentioned, the crossover was already observed by
and Oono@7# in a cellular dynamical system that takes t
effect of second-neighbor cells into consideration too.

In summary, using two different methods I have studi
the domain growth for a conserved order parameter when
critical coarsening is controlled by interfacial transport in
two-dimensional system. Accepting the scaling hypothe
the geometrical approach gives direct evidence for thet1/4

growth law. The MC simulations confirm this asymptot
behavior for a wide range of time intervals when using
lattice-gas model having enhanced interfacial conductiv
Further systematic research is required to clarify how
bulk and interfacial transport can be modified by tuning t
parameters of the lattice gases as well as to determine
crossover from the behavior oft1/4 to t1/3.

This work was supported by the Hungarian National R
search Fund under Grant No. T-16734.

n FIG. 3. Effective exponent vs 1/z for T51.25 ~circles!, 1.0
~squares!, and 0.5~diamonds!. The straight lines indicate the leas
squares fits.
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