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Domain growth controlled by interfacial transport in two-dimensional systems
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Domain growth is studied for a conserved order parameter when the interfacial particle current dominates
the material transport in a two-dimensional system. A simple geometrical model suggests that the typical
domain size increases #* for long times. This behavior is supported by Monte Carlo simulations performed
in a half-filled lattice gas taking the first- and second-neighbor jumps and interactions into consideration.
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Domain growth is widely studied in systems of particles Nesf=n—CIR(1), (1)
with an attractive interaction when the system is quenched
from the homogeneous high-temperature phase into the two- . . .
phase coexistgnce regic[r_‘?]. Forpa conse’r)ved number of wheren.=.1/3 andC IS rglated to the enhz_anced interfacial

. e o " . conductivity. This result is supported by evidence from some
particles the initial spatial inhomogeneities evolve into mac- ; : X
roscopic domains of high- and low-density phases Assum(—:OmDUter simulation$9,4.§. Using the so-called cell dy-
: F itial gn- Lifshi d élp g h namical system approach, Puri and Oono have indicated a
Ing a low initia concentrat}on s .|tz and Slyozg ]'ave crossover behavior from the earlier exponenhefl/4 to the
shown that the average size of widely spaced particle drOpésymptotic valug7]. A similar transient was observed by
lets increases as® for long times. In this case the growth is Roland and Granf5] when studying the two-dimensional
limited by a diffusion current from the shrinking droplets t0 |sing ferromagnet with a spin-exchange mechanism.

the growing ones through the matrix. The evaporation of the | the present work our investigation will concentrate on
smaller droplets and the growth by condensation of the largegyo-dimensional systems where the role of bulk diffusion is
ones are maintained by the Gibbs-Thomson boundary condhegligible. Adapting a geometrical approach, it will be
tion at the surface of a spherical droplet. shown that the interfacial transport itself leadsnte 1/4 in

The situation is different for the half-fille¢critical) sys-  the scaling regime. This process will be demonstrated by MC
tems where one can observe connected domains of a comp$imulations in a lattice-gas model that clearly exhibits the
cated and random geometry. Experimental, numerical, and=1/4 behavior in a wide time regime.
analytical approaches have demonstrated that the system The geometrical model of interface evolution was intro-
evolves into a scaling regime for sufficiently long times duced by Broweet al.[10] to study the kinematics of mov-
when the domain patterns look statistically similar to those atng boundaries appearing for dendritic solidification. During
earlier times. This domain structure is usually characterize@he investigated processes the extension of the interface in-
by an average linear domain si®t)~t". Analyzing the Ccreased wlth time as a result_of interfacial mst_abmty. Now
time-dependent Ginzburg-Land4TDGL) model for a con- th_e opposite case WI|| be studied. The geom_etrlcal approach
served order parameter, Mazen{&] has shown that in the W|I_I be descr_lbed .brlefly .because many details of the calcu-
early stage of domain coarsening the process is controlled H§tions are given in previous pap€r0—12. _
interfacial diffusion, which gives & growth law. Later, In this approach the domain §tructur.e is characterized by a
however, the bulk diffusion will dominate the growth and set (.)f (nonlnterseptlng and dlffer_e?ntlableclosed Curves
results in a faster growth laR(t) ~tY3 spgcnﬂed parametrically by the position vectmy$t,s) sepa-

Recent Monte CarldMC) simulations of Ising systems rating the two phases whesalenotes the arclength. First we

: ) concentrate on a single curve neglecting its indewhere it
[4] and numerical studies of TDGL moddB—8] have con- is possible.

firmed that the classical value of 1/3 for the exponent is In the isotropic system we assume that the projection of

correct at long t|m_es. Morg preqsely, the power—lﬁw ansat%he velocity in the normal directiorv() depends on the local
for the growth at intermediate times leads to an “effective . o ;
curvaturex(s,t) and on its derivatives with respect to the

exponent” of ng¢4(t), which is found to increase continu- arclength, namely
ously with time toward the value=1/3. Generalizing the ' '
Lifshitz-Slyozov theory, Husg9] has suggested that the time
dependence of the effective exponent be given as vn=U(k,dsk, ...). (2)
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In this case the equation of motion for the curvature obeyswo curves(or domain$. In the united curve immediately
the simple form after the coalescence there appear tve 6(s—s;) Dirac-6
peaks quickly spreading away. This process reduces the

o= —| 2y A U 3) number of curvegsdomaing continuously and plays a crucial
97| role in the formation of the domain structure. Henceforth we

assume that the system evolves into the scaling regime for
This equation of motion involves a nonlocal contribution atlong times and the power-law behavior is maintained by the
fixed s becausex(s,t) = dx/dt+sdxlds [10-13. above processes.
The functionU is determined by assuming that the mate- In the scaling regime the time derivative of the total
rial transport along the interface is driven by the derivativelength of the curves may be written as
of the chemical potential. with respect tos, while u is

proportional tox [15]. Choosing a suitable time scale the dL(1) :2 %=—AL(t) @
equation of continuity yields dt = dt '
U Pk @ where
=—.
I8 1 LoD 9K, )2
. . A=—> f ds (8)
In fact, now the curves are characterized by their curvdture L Jo Js

set of k,(s,t) functiond and the sign convention fo is
chosen to have positive curvature for a circular domain of thelenotes the average value @fiq 3s)? over all the curves. In
high-density phase. the scaling regime the curvature varies typically from
It is worth mentioning that similar interfacial transport is = 1/R(t) to = 1/R(t) in a lengthR. Consequently, the value
taken into consideration for the surface evolution describe@f A may be approximated as
by the conserved Kardar-Parisi-Zhang equati@B]. This
description was proposed by Sehal.[14] to study the dy- A 1 )
namics of growing interfaces. In the former approach the RA(t)
interface is characterized by a heidtf,t) measured from a
reference plane anis assumed to be a single-valued func- The total length_(t) is proportional to the total enerdgynea-
tion of positionx. Consequently, the former description doessured from its asymptotic vali@nd is assumed to follow a
not allow us to study closefor overhanging curves and power-law behavior for long timegl6,4]. Substituting Eq.
(generally simplifies the effect of isotropic interfacial trans- (9) into Eq. (7), this former power-law behavior can be sat-
port. isfied if
Many features of the motion of a closed curve have been 1
well investigated previously10—12. Some quantities de- R(t)~t™, (10

fined as integrals over the closed curve remain constant. For t with . diction based the field
example, the tangent vector rotate2 7 along the curves, In agreement with a prévious prediction based on the Tield-
that is, theoretical analysis of the TDGL equation in the early stage

of evolution[3].

La(t) In deriving the above result we have assumed that the
f k(s,t)ds= =2, (5 material transport is localized along the interface and its
strength is controlled by the variation of curvature. Although
the real systems have enhanced interfacial conductivity, the

0

wherelL ,(t) is the length of the given curve and the plus or ; : X
. s > . ._mobile particles can leave the surfa¢evaporation and
minus sign indicates that the curve encloses a region of hig . g I e
. . ese particles will give contribution to the bulk diffusion
or low concentration. As expected, the area is conserved for

; . : - controlling the growth sooner or later. This picture implies
the dynamics given by Ed4) independently of whether it that the dominance of interfacial conductivity may be pro-

encloses a region of high or low concentration. This fact is inlonged by suppressing the rate of evaporation
agreement with the particle-hole symmetry characterizing In order to check the above prediction the gfowth is stud-

the systems we are interested in. jed with MC simulations in a half-filled, two-dimensional

The time derivative of the length of a closed curve obeys

the simple form

dL, fLam U d fLam Ky 2d 6 QQOG@

RS LN 1 T ! 0000

According to this expressior, ,(t) decreases monotically '....".

and the single curve tends to form a circle conserving the

ot e 00000000
The domain structure observed during the critical coars-

ening is topologically similar to an “islands inside of lakes  FIG. 1. Possible position@pen circles for the mobile particle

inside of island ... " pattern. When considering the corre- (black circlé walking through a step formed by other particles
sponding set of curves one can observe the coalescence (@fay circles.
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FIG. 2. Time dependence of the first zero of the pair correlation ~FIG. 3. Effective exponent vs A/for T=1.25 (circles, 1.0
function for temperature3 =1.25, 1.0, and 0.5from top to bot-  (squares and 0.5(diamonds. The straight lines indicate the least-
tom). The dashed line indicates a power-law behaviot'8f squares fits.

. . . . To study the convergence toward the asymptotic behavior
Iatt'lce—gas: model' choosing the. attractive first- and seconqive have also determined the effective exponeg; (the
neighbor interactions to be unity{=J,=1). Because of q5he of curves in Fig. 2[4,9]. Namely, we have fitted a
the attractive interactions, this system decomposes into tWgower function to our data points between tinté and 2
phases below the critical temperatdrg=1.33(1) kg=1).  and the exponent is plotted as a function af(fy. The data
The evolution is governed by jumps of particles chosen ranpjotted in Fig. 3 are averaged over two runs for the given
domly. In the present case the particle jumps to one of itsemperaturega single run of 2« 10° MCS takes a month on
first- and second-neighbor positions with a probability satisa Pentium processpiVery similar results are obtained when
fying the condition of detailed balan¢&awasaki rat¢17]).  analyzing the time dependence of either the energy or the
A similar model was used previously by Manekal.[18]to  average domain size at low temperatures.
investigate the effect of gravitation on the shape of drops Figure 3 demonstrates that the MC data follow the law
sliding down on a wall and by Szale al.[19] to study the  described by Eq(1) and they intercepts(extrapolated expo-
interfacial instability in a driven lattice gas. nentsg are sufficiently close to 1/4. The best agreement has
The second-neighbor interactions and jumps are introbeen observed for the highest temperatufe=0.94T). In
duced to support the interfacial transport at the expense ghe vicinity of T, Hume observed very similar behavior
bulk diffusion as demonstrated in Fig. 1. The mobile particlewhen studying the traditional lattice-gas modelith the
(P) walking randomly along the curved interfaces should gonearest-neighbor interactions and jumfr T=0.9T. (see
over steps formed by the condensed particles. If only nearestig. 4 in Ref.[9]). This result implies that the interfacial
neighbor jumps are permitted, then the particle should staffansport may play a dominant role for a sufficiently long
on site 1, where it is bound to the interface by the secondP€riod in the vicinity ofT¢ due to the wide and diffuse do-
neighbor interactiondy). The attractivel, prevents the par- Main walls. _ _
ticle from leaving the surface and from contributing to the For lower temperaturesT(=1 and 0.3 the higher inter-

bulk diffusion. Furthermore, the possibility of the Second_cepts_,daredcaused_ t()jy d?ta 01; tlr(])ng times. TE;S,tﬁfZ)Cthmay be
neighbor jumps allows the particke to jump directly to site considered as an indication ot the crossover ehav-

2. Notice that the jump from site 1 to 3 increases the role 0f'or. Despite this weak evidence | believe that the crossover

interfacial diffusion too. All the above features together areShOUId clearly appear for much longer times. For future

responsible for the enhanced interfacial conductivity. Here “Sr:m?*flggiggde.ﬁ;?sﬁggfznrpeagc?g rls;ugr:eddlljr:nm:iilcsldgi\(/oellv-
is worth mentioning that the second-neighbor interactionéAéJ mentioned thegcrossover was alreadj obzerved b P&/ﬁ
and jumps make the domain structure more isotropic. ’ y y

The MC simulations are performed on a half-filled squareand Oono[7] in a cellular dynamical system that takes the

lattice as large as 10241024 under periodic boundary con- effect of second-neighbor cells into consideration too.

ditions. The system is started from a random distribution of In summary, using two different methods 1 have studied
: the domain growth for a conserved order parameter when the
particles. After a quench to a temperatlr€ T, the evolu-

tion of the domain structure has been monitored by evaluagntlcal coarsening is controlled by interfacial transport in a

ing the first zero of the pair-correlation functi¢p@(z) =0] wo—dlmensu_)nal system. cheptlng the spallng hypothesis,
S . L the geometrical approach gives direct evidence forttffe
characteristic of the typical domain sigét) [4,9]. The do- h The MC simulati fi hi :
main size is determined as a function of time for times up t rowth law. The simulations confirm this asymptotic
4% 10° Monte Carlo step§MCS) per particle ehavior for a wide range of time intervals when using a
Figure 2 shows thepresults gn :Iog-lo.g plot for threeIattice—gas model having enhanced interfacial conductivity.
different temperatures, Far=1.25 (T/T,~0.94) the system Further systematic research is required to clarify how the

. . . RSN bulk and interfacial transport can be modified by tuning the
evo_lves into the sca_llng regime aftefr_lcf MCS. W|th_|n this arameters of the lattice gases as well as to determine the
regime the correlation function satisfies the scaling ansat

rossover from the behavior ot to t*/3,
reasonably well andR(t)=t*. For lower temperatures the
domain growth is slower and it requires much more time to  This work was supported by the Hungarian National Re-
reach the scaling regime. search Fund under Grant No. T-16734.
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