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Evolutionary prisoner’s dilemma game on a square lattice

György Szabo´1 and Csaba To˝ke2

1Research Institute for Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
2Eötvös University, Mu´zeum krt. 6-8, H-1088 Budapest, Hungary
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A simplified prisoner’s game is studied on a square lattice when the players interacting with their neighbors
can follow two strategies: to cooperate (C) or to defect (D) unconditionally. The players updated in random
sequence have a chance to adopt one of the neighboring strategies with a probability depending on the payoff
difference. Using Monte Carlo simulations and dynamical cluster techniques, we study the densityc of
cooperators in the stationary state. This system exhibits a continuous transition between the two absorbing
states when varying the value of temptation to defect. In the limitsc→0 and 1 we have observed critical
transitions belonging to the universality class of directed percolation.@S1063-651X~98!00303-1#

PACS number~s!: 02.50.Le, 05.50.1q, 05.40.1j, 64.60.Ht
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I. INTRODUCTION

The evolutionary prisoner’s dilemma games were int
duced by Axelrod@1# to study the emergence of cooperati
rather than exploitation among selfish individuals. Since
pioneering work of Axelrod this approach has become
fruitful tool in the area of political and behavior science
biology and economics@2–4#.

In the prisoner’s dilemma~PD! game each of two player
has to decide simultaneously whether it wishes to coope
with the other or to defect. The rewards dependent on t
choices are expressed by 232 payoff matrices in agreemen
with the four possibilities. Assuming a symmetric game t
players get rewardsR (P) if both choose to cooperate~de-
fect!. In the remaining two cases the defector’s and coope
tor’s payoff areT ~temptation to defect! and S ~sucker’s
payoff!, respectively. The elements of the payoff matrix s
isfy the following conditions:T.R.P.S and 2R.T1S.
In this game the mutual cooperation leads to the highest t
~average! payoff. The highest individual payoff (T) can only
be reached against the other player decreasing the ave
payoff. These features makes the PD game interesting in
mentioned areas.

In earlier studiesN contestants played an iterated roun
robin prisoner’s dilemma game. The population of cont
tants, which apply different algorithms to choose betwe
defection and cooperation in the knowledge of previous
cisions, was modified according to a Darwinian select
rule round by round. For example, eliminating the wo
player, the best one will have an offspring inheriting t
parent’s strategy. In a different interpretation, the wo
player adopts the best algorithm. Computer tourname
~simulations! were performed to study how the population
contestants varies with time@1#. Evidently, the final~station-
ary! state depends on the initial population. The simulatio
have clarified the emergence of mutual cooperation am
all the players under some conditions. In these tournam
the winner, the so-called tit for tat~TFT! algorithm, has a
crucial role. This very simple algorithm cooperates in t
first round and later it reciprocates the partner’s previo
decision. It forces the players to cooperate mutually a
maintains this state against defectors.
PRE 581063-651X/98/58~1!/69~5!/$15.00
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In addition to the homogeneous system with players f
lowing the TFT algorithm, the state where all the playe
choose to defect has proved to be stationary too; more
cisely, spare cooperators will be suppressed due to the
lutionary rule in the large-N limit. More precisely, only a
sufficiently large portion of mutual cooperators can surv
among defectors. The emergence of uniform cooperation
comes easier when, combining the evolutionary game w
spatial effects, the players interact much more with th
neighbors than with those who are far away, as it is typica
real populations. The spatial effects promote the surviva
cooperators even if we do not use any kind of elabor
strategies such as the TFT.

Recently, Nowak and May@5# have introduced a spatia
evolutionary PD game. In this model individuals located o
lattice play with their neighbors and with themselves. T
strategical complexities and memories of past encounters
neglected by considering only two simple kinds of individ
als: those who cooperate (C) and those who defect (D) un-
conditionally. The evolutionary rule was also simplified b
using discrete time steps. Between two rounds individu
adopt the strategy that has received the highest payoff am
its neighbors including themselves. This deterministic mo
is equivalent to a two-state cellular automaton where the n
state at a given lattice point is determined by the states on
surrounding points. The outcome depends on the initial c
figuration and the rescaled payoff matrix described by
single parameterb characterizing the measure of temptati
to defect~see the matrix in Sec. II!. This model with and
without self-interaction was investigated on different latti
structures~square, triangle, and cubic!. The most exhaustive
analysis is performed on a square lattice taking into acco
the interactions with the first and second neighbors and s
interaction. Nowak and May observed a rich variety of sp
tial and temporal dynamics dependent on the value ofb. For
example, the cooperators can invade the world of defec
along straight borderlines, while defectors gain along irre
lar boundaries for a given interval ofb. Furthermore, the
above rules conserve the symmetries of the initial state
adequate boundary conditions. Due to the discrete natur
total payoff, sharp steps appear when varyingb.

Introducing stochastic evolutionary rules between t
69 © 1998 The American Physical Society
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rounds, Nowaket al. @6# have extended the above mode
Although the stochasticity simplifies the dynamics, it do
not change the basic observations that cooperators and
fectors can coexist. The randomness destroys the stra
borderlines as well as other symmetries that appear in
deterministic model.

Hubermann and Glance@7# have studied a similar mode
using continuous-time simulations where players are cho
randomly and immediately updated. Their results supp
that the above conclusions are not affected by whether
use continuous or discrete time in the stochastic case@6#.

In the present work we study a PD game with a sligh
different continuous-time evolution on a square lattice. In
modified model the players need less intelligence to dec
whether or not they adopt one of the neighboring strateg
Using systematic Monte Carlo simulations and generali
mean-field techniques, we calculate the density of coop
tors as a function ofb for different noise levels. It will be
shown that the transitions from the active state~coexistence
of defectors and cooperators! to the absorbing ones~all D or
all C) exhibit universal behavior.

II. MODEL

The players located on a square lattice can follow o
two simple strategies:C ~always cooperate! and D ~always
defect!. Due to this simplification this system can be hand
with the Ising formalism and we can use the sophistica
techniques developed in nonequilibrium statistical phys
Each player plays a PD game with itself and with its neig
bors. The total payoff of a certain player is the sum over
interactions. The elements of payoff matrix can be resca
because the evolutionary rule depends on the payoff dif
ences between the players. Accepting the idea suggeste
Nowak and May@5#, we chooseR51, P5S50, andT5b.
Thus the payoff to playerA againstB is given by the matrix:

whereb.1.
Two systems will be considered subsequently. In the fi

case only the first neighbors are taken into account. T
means that the total payoff of a defector surrounded by
operators is 4b, while the cooperator’s payoff is 5 in th
same surroundings. In the second case the neighborhoo
cludes the first and second neighbors. Thus the payoffs o
defector and cooperator are 8b and 9 in the sea of coopera
tors.

The randomly chosen playerX revises its strategy accord
ing to the following rules. This player selects one of
neighborsY with equal probability. Given the total payoff
(EX and EY) from the previous round, playerX adopts the
neighbor’s strategy with the probability

W5
1

11exp@2~EY2EX!/K#
, ~1!

whereEY is the neighbor’s payoff andK characterizes the
noise introduced to permit irrational choices. For succes
strategy adoptation the new state as well as the new pay
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are updated. Notice that the decision is not affected by
variation of total payoff involving the change in the su
roundings. Starting from a random initial state, the abo
process is repeated many times.

For K50 the playerX adoptsY’s strategy ifEY.EX . In
this case the randomness is represented by the selectio
the playersX andY. The finite value ofK characterizes the
range of payoff difference within which the irrational dec
sion can typically appear. At present, our analysis is c
strained to noise levelsK,1.

Monte Carlo~MC! simulations are performed by varyin
the value ofb for fixed K values. We have determined th
densityc of cooperators using periodic boundary condition
The system size was varied fromL5200 to 1000; the large
sizes are required to suppress the statistical error in the c
cal regions (c→0 or 1!.

The above models are also investigated by the general
mean-field technique that proved to be very efficient
studying dynamical systems such as the one-dimensional
chastic cellular automata@8–10# and driven lattice gase
@11–13#. In fact, the introduction of the above evolutiona
rule is motivated by the demand to make the model m
convenient for this method. In the present case we h
adapted the two-dimensional method to determine the p
ability of the configurations appearing on two-, four-, fiv
and six-point clusters@13#. It is expected that the larger th
cluster we use the more accurate the prediction given by
technique. At the level of a six-point approximation, takin
the consistency conditions and symmetries into account,
have to determine 20 parameters by solving a set of eq
tions of motion for the configuration probabilities in the st
tionary state. Details of this calculation are given in previo
papers@12,13#.

III. RESULTS

For both models thec50 ~all D) and 1~all C) states are
independent of time because the evolutionary rule can
create a new strategy that can spread out under advantag
conditions. The uniform cooperation (c51) is a stable state
if b does not exceed a threshold valuebc1 that is larger than
1. This means that any constellation of defectors will
defeated ifb,bc1. In the same way thec50 state remains
stable forb.bc2. Henceforth we will concentrate on thos
states that the cooperators and defector can coexist in, th
whenbc1,b,bc2.

First we consider the model with first-neighbor intera
tions. Figure 1 shows theb dependence of the densityc of
cooperators in the coexistence region forK50.1. As indi-
cated,c decreases monotonical with increasingb until the
second thresholdbc2 , where the cooperators vanish.

The results of both the MC simulations and the gene
ized mean-field method refer to steplike behavior becom
more and more striking if we decrease the value ofK. The
sharp steps appear at the break points~e.g., b54/3, 3/2)
described by Nowak and May@5#. Inside the coexistence
region the mean-field results of four-, five-, and six-po
approximations agree satisfactorily with the simulatio
while the pair approximation yields a marked difference. T
best agreement is found for the five-point approximatio
~dashed line!.

A typical snapshot on the steady-state distribution of
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operators and defectors is illustrated in Fig. 2 forb51.4 and
T50.1. This snapshot, as well as the subsequent ones,
1003100 portion of the full 4003400 lattice. In this case the
pair ~two-point! approximation gives a satisfactory descri
tion of the short-range correlations.

Notice furthermore that the mean-field predictions are
adequate whenc tends to either 0 or 1. Namely, the four- an
six-point approximations predict a continuous~linear! transi-
tion, the five-point approximation indicates a first-order o
and the simulations suggest a power law behavior ifc→0. A
similar situation has already been observed for a o
dimensional stochastic cellular automaton@10#. The men-
tioned deviations are not surprising because the mean-
approximations are not capable of handling the critical tr
sitions exhibiting enhanced fluctuations and long-range c
relations.

In the limit c→0 the cooperators can survive if they for

FIG. 1. Density of cooperators as a function of temptation
defect forK50.1. The MC data are plotted by squares, the res
of generalized mean-field technique for different cluster sizes
indicated by long-dashed~2!, dotted~4!, dashed~5!, and solid~6!
lines.

FIG. 2. Distribution of cooperators~white boxes! and defectors
~black boxes! for b51.4 andT50.1 (c50.515).
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scattered colonies in the background of defectors, as il
trated in Fig. 3. In general, any compact colony formati
would be preferable for cooperators; however, the defec
make them rare.

Visualizing the time-dependent configuration, one can
serve how the colonies try to spread out. Their center, s
and shape change continuously and a separated colony
disappear without a trace. Two colonies can unite, provid
a better opportunity for their survival, or conversely,
colony can divide into two~or more! parts. Similar phenom-
ena can be observed in a wide range of dynamical proce
described by the directed percolation~DP! @14#, the Reggeon
field theory@15#, the surface reaction@16#, and Schlo¨gl mod-
els @17# as well as the branching and annihilating rando
walks @18#. Grassberger@19# and Janssen@20# conjectured
that all one-component models with a single absorbing s
belong to the universality class of directed percolation. E
ceptions can appear if the dynamics conserves some sym
tries ~e.g., parity of offsprings!.

Our MC data~shown in Fig. 1! refer to a power-law be-
havior, that is,

c}~bc22b!b ~2!

if b→bc2. The best fit is obtained forbc251.8472(1) and
b50.56(3), which is consistent with the critical exponen
(b'0.58) of the two-dimensional directed percolation@21#.

Contrary to the above pattern, defectors form small i
lated ‘‘gangs,’’ as demonstrated in Fig. 4 for a typical s
tionary state if 12c!1. A single defector surrounded b
cooperators has the highest payoff~fitness! in this system.
Sooner or later this defector will have a neighboring o
spring, which reduces its payoff immediately.~This process
can be considered as a retaliation executed by the TFT a
rithm if more elaborate strategies are permitted.! If b,4/3
then one of the defectors will be defeated within a short tim
The iteration of this process yields randomly walking gan
Two colliding gangs can unite into one. Due to the possib
ity of irrational choices a single gang can divide into two
can disappear. The gangs can be considered as branchin

s
re FIG. 3. Cooperators~white boxes! form colonies in the sea o
defectors~black boxes! when their density goes to 0.
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annihilating random walkers whose critical behavior belon
to the DP universality class too.

In the deterministic model introduced by Nowak and M
@5# isolated gangs with fixed positions can occur
1,b,4/3. The density of gangs~whose size alternates cy
clically if 5/4,b,4/3) depends on the initial state. In co
trast to this feature, the homogeneous cooperation
emerge in the stochastic models even forb.1 as a conse-
quence of the random walk and annihilation. In addition,
random walk causes the steady-state density to be inde
dent of the initial state.

Despite the mentioned expectation, the MC data in Fig
do not show any power-law behavior in the limitc→1. This
discrepancy can be resolved by reminding the reader tha
critical behavior is controlled by a simple function of th
diffusion constant and the rates of branching and annih
tion. In the present case these parameters are strongly
linear functions ofb at low K. For higher value ofK, how-

FIG. 5. Density of cooperators vsb for K50.5 as suggested b
MC simulations~squares! and generalized mean-field approxim
tions whose level is indicated as in Fig. 1.

FIG. 4. Typical snapshot for high concentration of cooperat
~white boxes! for b51.222 andT50.1. The small ‘‘gangs’’ of de-
fectors~black boxes! walk randomly.
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ever, the nonlinear contributions are negligible in the vicin
of bc1 and we expect the power-law behavior to appe
clearly. In order to check this statement we have repeated
same analyses at higher noise level.

The results obtained forK50.5 are summarized in Fig. 5
As expected, the MC data show a power-law behavior
both limitsc→0 and 1. A detailed numerical analysis resu
in bc151.2687, b50.62(5) if c→0 and bc251.6644(2),
b50.59(3) ifc→0. Theseb values agree satisfactorily with
the corresponding exponent of the DP universality class.
tice, furthermore, thatbc1 andbc2 depend onK. The deter-
mination of aK-b phase diagram indicating the active an
absorbing states goes beyond the purpose of the pre
work. Instead of it we have studied the model involvin
second-neighbor interactions.

The generalization of our techniques to investigate
density of cooperators in the second model is straight
ward. The results of these calculations~see Fig. 6! refer to a
behavior similar to those of the previous version. There
some minor differences. For example, the threshold val
(bc1 andbc2) are definitely smaller than those of the prev
ous model. Furthermore, the convergence of the result
the generalized mean-field approximation is slow. This f
indicates that the short-range correlations become more
evant if we take the second-neighbor interactions into
count.

The steps of the continuousc(b) function ~for b58/7,
7/6, 6/5, and 5/4) become sharper when decreasing the v
of K. For high noise levels the function becomes smooth a
exhibits a power-law behavior with exponents close to
DP value at both ends of the active region. Inside the ac
phase the difference between the mean-field results and
simulations decreases with increasingK.

IV. CONCLUSIONS

We have studied the evolution of cooperation amo
players who can follow only two simple strategies (C and
D) and are placed on a square lattice. The individual
ceives payoffs from interactions with each of its neighbo
and itself in a PD confrontation. An evolutionary rule is in

FIG. 6. Density of cooperators as a function ofb for the model
taking the second neighbor interactions into account atK50.02.
Results are indicated as in Fig. 1.s
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troduced by slightly modifying the model suggested
Nowak et al. @6#. Namely, a randomly chosen player is
adopt one of its neighboring strategies with a probabi
dependent on the payoff difference. Two versions of
model have been investigated. In the first case the neigh
hood is limited to the first neighbors. In the second case
have increased the number of neighbors by taking into c
sideration the second neighbors too.

The MC simulations have given direct evidence of t
existence of two absorbing states (c51 if b,bc1 andc50
if b.bc2). It is remarkable that the homogeneous coope
tion proved to be stable against the temptation to defect
1,b,bc1 due to the randomness and possibility of irrat
nal choice. We have found significantly differe
(K-dependent! threshold values in the models we are inte
ested in. It is expected thatbc1 tends to 1 if we increase th
number of neighbors.

For a high density of defectors the cooperators form
compact blocks can spread ifb,bc2. Comparing the presen
models with the corresponding deterministic versions@5#, we
can state that the active region is reduced by the stocha
ity. For example, in the deterministic version of our seco
model a competition between theC and D invasion pro-
cesses can be observed if 9/5,b,2 because the cooperato
invade along straight lines, while the defectors win alo
irregular boundaries. In this parameter range Mukherjiet al.
@22# have observed that the cooperation is eliminated w
introducing stochastic elements. This is not surprising
cause theC invasion along straight lines is not permitted
the stochastic models. At lower value ofb, however, the
spatial effects can facilitate the survival of cooperat
,
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@6,23#. In the present stochastic model the second thresh
value ofb is decreased by the randomness, namely, we h
found bc2,1.4 for K50.02, 0.1, and 0.5.

The generalized mean-field approximations have clarifi
the importance of short-range correlations for both versi
of the stochastic evolutionary PD game inside the coex
ence region. Unfortunately, this technique is not applica
in the critical regions (c→0 and 1) where long-range corre
lations and fluctuations play a dominant role.

In these critical regions the MC simulations indicat
clearly a power-law behavior, namely,c}(bc22b)b and
12c}(b2bc1)b at sufficiently high noise levels. The value
of b deduced from the MC data agree well with the D
exponent for both versions. These findings corroborate
conjecture according to which the transitions in all on
component models to an absorbing state belong to the
universality class in the absence of conserved symmet
The curiosity of the present model is that here we have
different ~nonsymmetric! absorbing states whose stability r
gions are separated by the active phase. For low valuesK
the appearance of a power-law behavior againstb is distorted
by the strongly nonlinearb dependence of the diffusion an
annihilation. Due to the robustness of the DP universa
class, similar critical behavior is expected for many oth
versions of stochastic evolutionary rules.
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@17# F. Schlögl, Z. Phys.253, 147 ~1972!.
@18# T. M. Liggett, Interacting Particle Systems~Springer, New

York, 1985!; J. L. Cardy and U. C. Ta¨uber, Phys. Rev. Lett.
77, 4780~1996!.

@19# P. Grassberger, Z. Phys. B47, 365 ~1982!.
@20# H. K. Janssen, Z. Phys. B42, 151 ~1981!.
@21# R. C. Brower, M. A. Furman, and M. Moshe, Phys. Lett.76B,

213 ~1978!; I. Jensen, H. C. Fogedby, and R. Dickman, Ph
Rev. A 41, 3411~1990!.

@22# A. Mukherji, V. Rajan, and J. R. Slagle, Nature~London! 379,
125 ~1996!.

@23# M. A. Nowak, S. Bonhoeffer, and R. M. May, Nature~Lon-
don! 379, 126 ~1996!.


