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Evolution and extinction of families in cellular automata
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In a large class of cellular automata a unique "parent" particle of the previous state can be
assigned to each particle of the present state. This allows us to define families and study their
evolution and extinction in one-dimensional cellular automata. The size density of families is found
to tend towards a universal function for large times. The evolution of the average family size,
proportional to +t, is strongly related to the ordering mechanism found by Grassberger [Phys. Rev.
A 28, 3666 (1983)].

PACS number(s): 87.10.+e, 06.40.+j, 64.60.Cn

Cellular automata (CA) theory is applied in a great
variety of physical, chemical, and biological systems [1].
The simplest such automaton is defined on a regular one-
dimensional lattice with two states per lattice point at
a discrete time t. We can say that site i is empty or
occupied by a particle. The discrete time evolution is
determined by a rule dependent on the local neighbor-
hood. For example, in a set of one-dimensional mod-
els S;(t + 1) depends on three sites, i.e. , S;(t + 1)
Ii [S; i (t), S;(t), S;+i (t)]. In this case there can be 2
rules numbered from 0 to 255. Some general features
of these models are clarified by Wol&am [1] and Martin
et al. [2]. For a given class of CA the particles created
by the transition rule may originate &om a single "par-
ent. " This feature permits the particles to be grouped
into families, a family being the set of all particles origi-
nating from the same particle of an earlier state.

Henceforth we restrict ourselves to investigating the
one-dimensional CA with Rule 18 [1]on a lattice of I sites
when I ~ oo. For simplicity, the families will be denoted
by positive integers, i.e. , S,(t) = 1, 2, . . . for occupied
sites and S;(t) = 0 for empty sites. Evolution according
to this notation is expressed as

S; i(t) for S,(t) = 8;+i(t) = 0
S;(t+ 1) = i S,+ (t) for S, (t) = S,(t) = 0

0 otherwise .

This rule reproduces the traditional Rule 18 [1] when all
the particles belong to the same family, i.e. , S,(t) = 0 or
1.

If this system is started from a single-particle state (at
t = 0) then the configurations at successive time steps

.form the lines of Pascal's triangle modulo 2 [1]. In this
case the size of the family grows linearly with time, i.e.,
s =2k+1.

If the initial state contains more than one ancestor,
then the growing families will meet sooner or later. Ac-
cording to (1) this contact prevents the expansion of both
families at this point. Occasionally, these processes may
result in the extinction of a family and the neighboring
ones will occupy the deserted territory. As a consequence,
the number of families decreases and their average size
increases with time.

In our analysis we will concentrate on systems started

&om a random initial state. In order to visualize the
evolution and extinction of families we display a part of
the configuration:

0010020
0101202
1000000
0100000
1010000
0001003
0010130
0100000
1010000
0001000

00304000050006000700000
03000400505060607070008
00304045000000000007080
03000000500000000070008
30300005050000000707080
00030050905000007000008
30303505050500070700080
00000000000050700070808
00000000000500070700000
00000000005050700070000.

The first line illustrates a random configuration at t = 0,
where 0 indicates an empty site and the numbers from
1 to 8 refer to the family names of the particles. In the
initial state each particle represents an ancestor. The
particle configurations at successive time steps are shown
line by line. During this process the particles inherit their
family name as denoted.

Some features are preserved in the family. For exam-

ple, if an ancestor is at an even site for t = 0, then
its descendants reside at odd sites for odd times and
even sites for even times. This type of "ordered" re-

gion is called phase A. There exists another phase (B)
in which the particles reside at odd (even) sites for even

(odd) times. Each family belongs to one of the ordered
phases. Neighboring families may form a larger ordered
domain of phase A or B. If the phase of consecutive
families is randomly A or B then the number of families
is twice the number of domains when I ~ oo. Grass-
berger has shown that the average density of domains
decreases as 1//4vrt for t ~ oo [3]. Consequently, the
density of families should be equal to 1/~vrt for t —+ oo.
To demonstrate it we have performed simulations on a
lattice (I = 30000) with a periodic boundary condition.
In the random initial state we have chosen the density of
particles (and family ancestors) to be equivalent to the
stationary value (c = 1/4). In Fig. 1 the closed boxes
and circles demonstrate the density of families and do-
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FIG. 1. Log-log plot of average family (D) and domain (Q)

densities vs time for simulations starting from a random con-
figuration. The filled triangles indicate family densities vrhen

starting from a monodomain state.
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(2)

where bi, ~ is the Kronecker symbol. This jump rate is
symmetric, that is, p( —k) = p(k) and

) k p(k) = 2D = 1.

If x(t) is the position of a boundary (or kink) then the
above expression leads to (hx2) = t because the subse-
quent jumps are independent of each other.

In this system the motion of kinks and antikinks may
be considered as an annihilating random walk [6]. The

mains as a function of time, and dashed lines represent
theoretical results.

The above simulation was repeated by choosing a mon-
odomain (stationary) initial state. In other words, the
particles (ancestors) are positioned randomly (c = 1/4)
at even sites for t = 0. The open circles in Fig. 1 clearly
show that the density of families tends towards the same
asymptotic behavior as above while the number of do-
mains remains 1 (corresponding to zero density). This
observation has inspired us to study the evolution and
extinction of families in more detail.

The boundary between the neighboring families is de-
fined as the center of the empty region separating them.
This boundary is equivalent to a kink (or antikink) [3]
if the families belong to different phases (i.e., the no-
man's land consists of an even number of empty sites).
Its motion has already been investigated by several au-
thors [3—5]. The kink walks randomly with a diffusion
constant D = 1/2. It is easy to see that the motion
of the boundary remains unchanged when inserting an
empty site at the center of the boundary region. Con-
sequently, the motion of the boundary is independent of
the phase of families concerned.

For large times this system tends towards a stationary
state built up from a random series of (10) [or (01)] and
(00) blocks appearing with the same probability. In this
limit, straightforward calculation gives that the bound-
ary jumps k sites with a probability

annihilation of a kink-antikink pair is accompanied by
the disappearance of the domain between them and the
union of the neighboring domains. This process results in
a complicated domain growth mechanism. Similar pro-
cesses have already been investigated by Sekimoto [9] and
Alexandrowicz [10] by studying the time evolution of size
density functions (further references therein).

The situation is di8'erent for families. Here the bound-
aries undergo a coalescing random walk [6—8] and simul-
taneously the corresponding family disappears without
leaving a trace. In comparison to the previous case, the
growth mechanism is much simpler now because of the
absence of family aggregation.

Introducing a continuous size variable s we define the
size density function f(s, t) of families such that the num-

ber of families with sizes (s, s+ ds) is f(s, t)ds normed
to the length of the system. Evidently, f(s, t) & 0, for
s & 0 and it satisfies the following condition:

sf(s, t)ds = 1.
0

(4)

For sufficiently large family sizes the time variation of
f(s, t) is determined by the random walk of the bound-
aries, that is,

Bif (s, &) = ) p(ki)p(k2) [f(s —ki + k2, t) —f (s, &)],

(5)

where Bi refers to derivation with respect to time. As-

suming that f(s, t) is a smooth function of s, f(s —ki +
kz, t) can be replaced by its Taylor series with respect to
(kz —ki). The leading term yields a differential equation
analogous to the one-dimensional Fick's law,

Bif(s, t) = B„f(s,t), (6)

where B„denotes the second derivative with respect to
s and the unit value of the "difFusion coefficient" comes
f'rom Eq. (3). In fact, this equation is valid if s is much
larger than the typical boundary jump comparable to 1
[see Eq. (3)]. For the sake of simplicity we extend the
validity of this equation to arbitrary s & 0.

The disappearence of families with zero extension rep-
resents a boundary condition, namely,

(7)

Equation (6) with this boundary condition provides
that the normalization expressed by (4) remains valid
if sB,f(s, t) and f(s, t) tend to zero for large s.

The solution of Eq. (6) with the boundary condition

(7) is equivalent to a diffusion phenomenon with antisym-
metric initial state [f( s, t = 0) = —f(s, t = 0)). The-
general solution is given as

OO

f(s, t) = — a(q)e ~ '+'~ dq, (8)

where a(q) is an odd imaginary function of q and its value
is determined by the initial distribution for t = 0. The
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the system at the beginning and we have not excluded
those jumps which would result in negative family sizes
in Eq. (6). This former simplification does not affect the
results for large times.

With the knowledge of f (s, t) we can easily determine
the average density of families, i.e. ,

&~I I I I ) I I I I
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FIG. 2. Scaled size density function for t = 100 (~), 400
(Cl), 900 (Q), and 1600 (&&). The solid line represents the
theoretical result.

function a(q) is prescribed by Eq. (4) for small q, namely,

a(q) —2iq. As a consequence, we can evaluate f(s, t)
for large times because the exponential factor suppresses
the contributions belonging to large q. Thus, the asymp-
totic behavior can be expressed as

—a'/'4~e
4mt3

or

(10)

where y = s/~4t. The same result has been obtained
by Bramson and Griffeath [8] using more rigorous tech-
niques. This agreement confirms the validity of the as-
sumption made in the derivation of Eq. (6). This univer-
sal behavior has also been checked by simulations on a
lattice of 30000 sites with a random initial configuration
of stationary concentration (c = 1/4). The results plot-
ted in Fig. 2 have been obtained by averaging over 100
runs. Slight deviation from the theory (dashed line) can
be observed for small sizes and short times. These devi-
ations come from the fact that small families dominate

OO 1
g(t) = f(s, t)ds =

p 7rt

for large times. This result agrees with the expectations
sketched above and shown in Fig. l.

Although the present analysis is restricted to the CA
with Rule 18, the concept of family may successfully be
applied for investigating other CA (e.g. , Rule 22) men-
tioned by Grassberger [3].

It is worth mentioning that the growth of families is
analogous to a particular problem of the gambler's ruin

[ll] where each gambler sitting around a table can win

(or lose) a certain sum from his neighboring adversaries.
A gambler's capital is equivalent to the family size and
gamblers losing their capital leave the game. In this case,
f(s, t) gives the time dependence of capital distribution
among a large number of players.

In summary, we have generalized the one-dimensional
CA with Rule 18 by distinguishing the particles and
recording their descendants. This generalization has al-
lowed us to introduce the concept of a family whose
growth is strongly related to the ordering mechanism
found by Grassberger. The continuous description of the
time evolution of the family size density function suggests
a universal behavior for large times independent of the
initial state. Simulations have con6rmed this theoreti-
cal prediction. The present concept of a family seems to
play a significant role when analyzing domain dynamics
for other systems.
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