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Extended mean-field study of a stochastic cellular automaton
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Extended mean-6eld theory is used for studying the one-dimensional stochastic cellular automa-
ton with Rule 18 defined by Wolfram [Rev. Mod. Phys. 55, 601 (1983)].The analysis is carried out
at diferent levels taking n-point and n-pair correlations explicitly into consideration. The pair ap-
proximations reproduce the exact results in the deterministic limit. The critical behavior is studied

by the Pade approximant method and the predicted critical probability and exponent agree with
previous data within a few percent.

PACS number(s): 05.40.+j, 64.60.—i

I. INTRODUCTION

Cellular automata (CA) have general applications in
mathematics, nonequilibrium physics, chemistry, and bi-

ology [1]. In these systems the dynaxnics is defined in
discrete time steps with rules depending on local neigh-
borhood. Most of the analyses are restricted to station-
ary states if the system has been started from a random
configuration. The local rules may be stochastic. These
stochastic CA, even the one-dimensional ones, exhibit
continuous phase transitions with universal critical ex-
ponents and scaling laws [2]. For example, in a two-state
model the site variable may be 0 or 1. Here, the concen-
tration of 1s (henceforth called particles) may decrease
continuously when decreasing the probability parameter
and the transition to the empty state may be critical. It
is known that a large variety of nonequilibrium models
including CA belong to the same universality class [2,3].
Recently, however, several authors [4,5] have introduced
stochastic CA by permitting random jumps between two
steps. In these systems the long range correlations are
"washed out" therefore this type of mixing drives the
system towards a mean-field behavior which differs sig-
nificantly from previous ones. Here the application of
mean-field theory suggests itself. In a previous paper [6]
this method describes how the continuous transition be-
comes first order when increasing the effect of mixing.
Very recently Dickman has discussed the models exhibit-
ing unusual phase diagrams and new kinds of critical be-
havior [7].

In this work we concentrate on the mean-field analy-
sis of the one-dimensional stochastic cellular automaton
with Rule 18 [1]. For this purpose the traditional mean-
field analysis [1,8] has been extended to take the 3- and
4-point correlations explicitly into consideration. This
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technique has already been used successfully to study
the stationary states in driven lattice-gas models [9—12].

Grassberger has observed that several deterministic
cellular automata exhibit a kind of spontaneous symme-
try breaking [13] on an infinite lattice. Namely, one can
observe increasing domains in which the particles reside
at odd (or even) sites. This behavior is not affected if the
creation of a particle (permitted by rule) is occasional.
Consequently, the stationary state may be characterized
by (00) and (10) [or (00) and (01)) pairs in the thermody-
namic limit. This observation has inspired us to develop a
mean-field approximation allowing correlations between
the neighboring pairs.

The above pair approximations reproduce the exact
result [1] in the deterministic limit. The results become
more and more accurate if we increase the number of
subsequent neighbors taking all the correlations between
them into consideration. The situation is analogous to
the low temperature series expansions. This is the reason
why we have determined the Pade approximants for the
investigation of critical behavior. The suggested critical
probability and exponent agree very well with previous
results and confirm that the model belongs to the univer-
sality class of directed percolation (DP) or Reggeon field
theory [14].

Section II describes the model and in Sec. III we detail
the n-point and n-pair mean-field analyses. The results
of Pade approximation are given in Sec. IV. The last
section presents the conclusions.

II. THE MODEL

We consider a one-dimensional lattice on which the site
variables s;(t) may be 0 or 1 (empty or occupied site) at
a discrete time t. In the subsequent time s;(t + 1) will
be 1 with a probability p if s; i(t) = s;(t) = 0 and
s,+i(t) = 1 or s, i(t) = 1 and s, (t) = s,+i(t) = 0,
otherwise s;(t + 1) = 0. In the limit p i 1 the model is
equivalent to the deterministic cellular automaton Rule
18 introduced by Wolfram [1]. In the stationary state
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of the deterministic model the average concentration of
particles c = 1/4 if the system is started from a random
configuration. The average concentration decreases with

p and vanishes at p, . Below p, only the empty chain

(c = 0) is stable.
It is easy to see that the above rule excludes all the con-

figurations in which three subsequent sites are occupied
simultaneously. Grassberger has shown that the proba-
bility of the simultaneous occupation of two neighboring
sites vanishes for large times [13]. In some deterministic
models, Grassberger has observed the formation of large
domains within particles to be separated by odd empty
sites. In other words, inside the domains the particles
reside at odd (or even) sites. The boundary between
two domains is considered as a kink which walks ran-
domly [15—17] and it may annihilate with an antikink
leading to the collapse of a domain. Finally, the density
of kink goes to zero and the system remains locally in an
"ordered" state. The annihilation of a particle does not
produce a new domain therefore the above statements re-
main valid for stochastic CA too. In the "ordered" state
the evolution is equivalent to Rule 90 [1]. Domany and
Kinzel [18] have shown that this stochastic CA is equiv-
alent to directed percolation and to an Ising model, i.e.,
these models belong to the same nonequilibrium univer-
sality class. Consequently, the concentration decreases as
c (p —p )~ if the critical probability p, is approached.
The critical exponent P is expected to be equivalent to
PDP = 0.277 6 0.001 obtained for directed percolation
[19].Results from computer simulations have shown that
Pc" = 0.285 + 0.005 [4

III. MEAN-FIELD THEORY

The particle positions are described by a set of site vari-
ables as given above. The present analysis is restricted
to the stationary states therefore the notation of time
dependence is omitted. In the stationary state the parti-
cle distribution is assumed to be symmetric with respect
to translation and reflection. In mean-field theory the
stationary state is characterized by the probabilities of
n-point configurations P„(ai, ..., a„) on subsequent sites.
These quantities satisfy the following conditions:

Pz(0, 0) = (1 —c) + z,
P2(1,0) = P2(0, 1) = c(1 —c) —z,

Pz(1, 1) = c +z .

For higher levels we follow the parametrization intro-
duced in a previous paper [ll] (further details therein).

The above parameters are determined by a set of non-
linear equations relating block probabilities of the sta-
tionary state by the CA rule. According to the above
rules, for a one-point configuration

Pi(1) = p[Ps(1, 0, 0) + Ps(0, 0, 1)], (4)

for a two-point configuration (n = 2)

Pz(1) 1) = p P4(1, 0, 0, 1) ) (5)

and the continuation is straightforward. These equations
become more and more complicated with increasing n

At the level of k-point approximation the correlations
are neglected for n ) k, that is, P„(ai, ..., a„) is expressed
by using the Bayesian extension process [8,11],

j=n —k
Pk(ai+, , ",ak, )

P„(ai, ..., a„) =
Pk —1(a1+j " ak 1+ )—'

[c(l —c) —z)[(l —c)' + z)c=2P—
1 —c

[c(1—c) —z]'[(1 —c) + z]c +z=p
(1 —c)

(7)

(8)

Besides the trivial solution (c = z = 0), these equations
suggest that

2(2 —7p+ p'+ p/8 —4p+ p&)c=
4 —20p+ 5p2

(9)

The one-point approximation assumes z = 0 in Eq.
(3), and Eq. (4) leads to the well known solutions: c = 0
and c = 1 —1/~2p for p ) 1/2.

In two-point approximation the particle distribution
is described by two parameters c and z whose value is
determined by Eqs. (4) and (5), which obey the following
forms:

P„(ai, ..., a„) Pra+1(al~ "~ an) an+1)
Bn+1

and

Pn(ai) ."i4)

P„(ai, ..., a„)

Pm+1(a0) al) "~t an)
Bo

P (are " ai) .

P(0)=1 —c, P(1) =c, (2)

where c is the average particle concentration. The prob-
abilities of two-point configurations may be given by in-
troducing a single parameter z, namely

In principle, 2" —1 parameters are required to define the
probability of all the n-point configurations. This mem-

ber, however, is drastically reduced by the above condi-
tions. For example, at a single lattice point

P, (1,1) =
2(1 —c) + pc

(10)

It is emphasized that the critical probability is not
changed, i.e. , p, = 1/2.

For three- and four-point approximations we have four
and seven parameters to be determined by solving the
corresponding equations. In both cases the critical prob-
ability is equal to 2/3. The results of numerical solu-
tion are plotted in Fig. 1 in comparison with Monte
Carlo data indicated by bullets. This figure demonstrates
clearly that the convergence towards the exact result is
slow when increasing the level of approximation. The co-
incidences of p at difFerent levels refer to the fact that
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too. For example, at the level of three-pair configuration
we need the following relations:

0.2— Ps(l, 1, 1) = p [P4(1,0, 1, 0) + P4(Q, 1,0, 1)] (14)

0.1—
and

0.5 0.6 0.7 O, B 0.9 j. .0

Ps(1, 0, 1) = p (1 —p)[P4(1, 0, 1,0) + P4(0, 1, 0, 1)]

+p [P4(1,0, 0, 1) +P4(0, 1, 1, 0)] .

FIG. 1. Average concentration vs p suggested by n-point
approximations {labels refer to n).

Pi(1) = 2c, Pi(0) = 1 —2c,

where c is the concentration introduced above.
In this subset of configurations the original Rule 18 be-

comes simpler [1,15,16]. This simplified rule gives mod-
ified relations among pair configurations. Namely, the
probability of the (1,0) pair is related to two-pair proba-
bilities as

Pi(i) = p[P2(1, o) + P, (0, i)] (12)

Pg(1, 1) = p [Ps(1,0, 1) + Ps(0, 1,0)] . (13)

Further relations may easily be derived for higher levels

the parameters are not equivalent from the viewpoint of
criticality.

At the same time P2(1, 1) decreases in agreement with
the expectation mentioned above. It is also observed that
the probability of those configurations containing neigh-
boring particles or even empty sites between two particles
remains finite although these quantities vanish in simu-
lations for long times [13].

The long-time limit, however, may be explicitly taken
into consideration. In the stationary state the particles
reside at odd sites for odd [even] times and at even sites
for even [odd] times. Consequently, the configuration
may be composed of (00) and (10) [(00) and (01)] pairs.
In n-pair approximations our analysis will be restricted
to this subset of the configurations. For this purpose
we introduce a pair variable s; = (s2;, s2;+i) which may
be 0 = (0, 0) or 1 = (1,0) where the tilde above fig-
ures and variables refers to pairs henceforth. It is as-
sumed that the distribution of the mentioned pairs is
independent of the parity of time. On the analogy of
P„(si, ..., s„) we introduce P„(si, ..., s„) which describes
the probability of the given configurations on subsequent
sites. For example, the two pair probability P2(0, 1) is

equivalent to P4(0, 0, 1,0). The quantities P„(ai, ..., s„)
also satisfy the conditions (1). Consequently, we can use
the same method for determining pair correlations as for
point correlations described above. The only difference
in parametrization we suggest for practical reasons is the
following:

The relations are more complicated at higher levels. No-
tice that the right hand side of these relations does not
change when substituting 1 —s; for each 8;. This symme-
try is a striking consequence of the simplified rule men-
tioned above.

In one-pair approximation we neglect all the correla-
tions appearing between the pairs. In this case the non-
trivial solution of Eq. (12) is the following:

(16)

This solution reproduces the exact result in the deter-
ministic limit [c(p = 1) = 1/4]. In this approximation
the critical probability (p, = 1/2) is equivalent to those
suggested above by the one- and two-point approxima-
tions.

The two-pair approximation takes the correlation (z)
between the neighboring pairs into consideration. In this
case we have two parameters (c and z) to be determined
by solving Eqs. (12) and (13). The nontrivial solution
suggests that the concentration is

= 2-3J'
c =

4 —8p
(17)

and the first neighbor pair-pair correlation defined by (3)
is given as

The concentration in the deterministic limit (p = 1) is
the same as for the one-pair approximation case [see Eq.
(16)]. This is not surprising because the first neighbor
pair correlation vanishes for p = 1. According to this
approximation p, = 2/3 which agrees with the prediction
of three- and four-point approximations.

At the level of three-pair approximation the probabil-
ity of the pair configurations is expressed by four param-
eters whose value is evaluated by the numerical solution
of Eqs. (12)—(15). At the next level we have determined
seven parameters using the same method. The suggested
critical probabilities are p = 0.7094 and 0.7413 at these
levels. At higher levels, however, the application of this
method is limited by the computer capacity. To avoid
this difBculty we have concentrated on the efFect of rele-
vant parameters. Systematic analysis of the above results
shows the existence of irrelevant parameters whose eRect
on p is extremely weak. The existence of such param-
eters has already been illustrated in Fig. 1. It is found
that the relevant parameters (correlations) are related
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O. i— 0.6—

0.5 0.6 0.7 0.8 0.9 1.0

FIG. 2. Average concentration vs p for the level of 1-, 2-,
3-, 4-, 5'-, and 6'-pair approximations (from left to right).
The bullets come from simulations.

0.0 0.5 i.o
1/n

FIG. 3. Dependence upon I/n of critical probability p, sug-
gested by the Pade approximants Q,'(o) and Qs (0). The
bullet represents the simulation result.

1) (1 )s (19)

where ao ———aq ——1 and the values of coefficients as
()'c ) 1) depend on the level of pair approximation. Equa-
tions (16) and (17) determine the values of as at the level
of one- and two-pair approximation. For higher levels,
however, the accuracy of numerical calculation limits the
number of ap available. For example, a2 ———3, a3 ———7,
a4 ———21, and a5 ———67 in the case of four-pair approx-
imation. In the knowledge of these coefficients we are
allowed to determine the Pade approximants.

IV. PADE APPROXIMANTS

to the appearance of large empty regions which become
dominant in the limit c -+ 0. According to Eqs. (1)
the configurations [P„(0,0, . . . , 0, 0)] are connected lin-

early with P„(1,0, . . . , 0, 1) and P„(1,0, . . . , 0, 0), where

dots indicate empty regions [11].These quantities exhibit
power law behavior in the close vicinity of p, . Introduc-
ing one (two) additional parameter(s) we could extend
our analysis to the level of 5'- and 6'-pair approximations
where the prime refers to reduction in the number of pa-
rameters. More precisely, we have taken all the param-
eters appearing in Ps(0, 0, 0, 0, 0) and Ps(0, 0, 0, 0, 0, 0)
into consideration while the remaining correlations of 5-
and 6-pair approximations are neglected. At the level
of 5'- and 6'-pair approximations we have determined
the p dependence of eight and nine parameters, and the
numerical calculations suggest p, = 0.7551 and 0.7650,
respectively.

The results of pair approximations are summarized in
Fig. 2. As expected, the convergence of pair approxi-
mations towards the exact result is faster in comparison
with n-point approximations. For all the levels c ~ p/4
if p -+ 1. The Taylor series of c with respect to (1 —p)
may be written as

convergence (for detailed description see [20]). The Pade
approximant Q&(z) to the function F(z) is simply the
ratio of two polynomials of orders N and D,

no+ nyz+ + nNz N

D 1+d,z+ "+d&z~ (20)

Here we choose the function I" (z) to be the logarithmic
derivative series of Eq. (19) because then the power law

singularity of c obeys the following form:

i.o—

0.4—
1l

0.2—

where z = 1 —p. This logarithmic derivative series has
a simple pole at z, = 1 —p, with a residue equal to P.
In other words, if we determine the Pade approximants
to the logarithmic derivative series of (19) then one of
the roots of the denominator polynomial gives a predic-
tion for p, and the corresponding residue is the critical
exponent P.

Following the work by Baker [20] we have determined
the Fade approximants Q~ and Qzsfor each level of the n-
pair approximation. The evaluation of Q2s demands the
determination of five coefBcients in Eq. (19). Due to the
numerical errors the additional coefBcients are accessible
with low accuracy precluding the determination of the
Pade approximants for higher orders.

The suggested critical probabilities and P exponents
are plotted versus I/n in Figs. 3 and 4. As a comparison

The method of Pade approximants proved to be a suc-
cessful tool in obtaining the critical temperature and ex-
ponents for the Ising model. This method continues ana-
lytically the truncated power series beyond the radius of

0.0 0.5 1.0
1/n

FIG. 4. Critical exponents vs 1/n suggested by the Pade
approximants Q~ (o) and Q~ (0).
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the bullets represent the simulation data [4]. Notice that
Q2zreproduces the logarithmic derivative of (16) and (17)
for n = 1 and 2. If n ) 4 then the Pade approximants Qii
and Q2zresult in similar data. For example, Q2zsuggests
p, = 0.7795 and P = 0.3355 at the level of 4-pair ap-
proximation. As expected, the best results are obtained
for the level of 6'-pair approximation: p, = 0.7986 and

P = 0.2900.

V. CONCLUSIONS

Systematic mean-field analysis was performed to study
the stochastic cellular automaton with Rule 18. The tra-
ditional mean-field analysis is extended to take into con-
sideration the e8'ect of n-point and n;pair correlations on
subsequent sites. In n-point approximation the solution
tends slowly towards the exact result when increasing n.

The long-time correlations found by Grassberger re-
duce the number of possible configurations drastically.
The n-pair approximations are based on the finding that
the stationary state may be built from (0,0) and (1,0)
pairs. This simplification summarizes a portion of con-
tributions coming from n-point correlations for arbitrary
large n. Consequently, the n-pair approximations pre-
dict more accurate results in comparison to n-point ap-

proximations. In fact, the pair approximations reproduce
the exact result in the deterministic limit (p -+ 1). In
this limit the correlations disappear between the pairs in
agreement with previous results.

As a means of studying the critical behavior, our mean-
field analysis is extended by determining the Pade ap-
proximants to the results of n-pair approximation. This
method suggests values for the critical probability and

P exponent in close agreement with data obtained Rom
simulations. In the light of the present results one can
think that the Pade approximants of low order fit the
exact solution extremely well.

In summary, the present mean-field analysis is proved
to be a useful tool for investigating stationary states in
a stochastic CA. This method may be easily adapted for
other CA including the consideration of the efFect of mix-
ing.
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