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The effect of an electric field on the ordering is studied in a square lattice gas exhibiting anisotropic
ground states. Below T, the particles form parallel chains directed horizontally or vertically. Monte
Carlo simulations show that these chains prefer the orientation parallel to the applied field. This
phenomenon is analytically investigated by using a simple mean-field approximation and determining
the exact solution on a 2 x 2 lattice. The application of an electric field as a tool for producing an

oriented phase is discussed.

I. INTRODUCTION

In partially occupied lattice-gas models the ordered
state always has some degeneracy corresponding to
the symmetry which is broken at the transition. In
the ordered state the particle distribution may become
anisotropic in spite of the cubic symmetry of the host lat-
tice. For example, the particles can form parallel chains
along one of the crystallographic directions. In this case
the ordered states specified by the chain orientation are
equivalent. In the presence of an electrical field, how-
ever, the equivalence between the principal directions is
no longer valid. In a two-dimensional lattice-gas model
we have shown that the chains prefer the orientation par-
allel to the electric field.! More precisely, by applying an
electric field we can modify the chain direction. Such a
technique has already been used successfully to prepare
a monodomain Si(001)2x1 surface by applying a direct
current for the wafer annealing.?

This phenomenon is of interest to a large variety of
systems. Theoretical investigations suggest anisotropic
particle distributions in several two-dimensional lattice-
gas models introduced to describe phenomena in mono-
layers at single crystal surfaces.3™® In fact, the lattice
gases corresponding to the Ashkin-Teller model®™8 pos-
sess all the features necessary for exhibiting the reorien-
tation process. Furthermore, a very similar symmetry
breaking is observable in the formation of antiferromag-
netic spin density waves along one of the cubic axes in
chromium (for a review see the paper by Fawcett®).

Driven lattice-gas models have been extensively stud-
ied in the last few years. Katz, Lebowitz, and Spohn!®
have investigated the effect of an electric field on the par-
ticle distribution in a half-filled system characterized by
an attractive nearest neighbor interaction. They found
that the system segregates into two phases with inter-
faces parallel to the field at low temperatures and a large
electric field. The electric field induces anisotropic long
range order and enhances the critical temperature. Dif-
ferent approaches and mathematical methods have been
developed to investigate this system.!! Models with a re-
pulsive nearest neighbor interaction have also been stud-
ied by several authors, who found that the critical tem-
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perature decreases with increasing field and the transi-
tion becomes first order when the field exceeds a thresh-
old value.'?13 Observation of the above phenomenon re-
quires sufficiently strong fields whose potential energy
difference between two adjacent sites is comparable to the
nearest neighbor interaction. In contrast, the reorienta-
tion process may be observed at lower fields, particularly
in the vicinity of the critical temperature. By this means,
our study may be considered as an extension of previous
work thereby providing some opportunity for comparison
between the nonequilibrium theories and experiments.

Andersen and Mouritsen'? have recently studied
square lattice-gas models driven by a chemical-potential
gradient. In principle the chemical-potential gradient can
also induce a reorientation process because the equiva-
lence between the principal directions is broken. In this
case the particle distribution becomes inhomogeneous
and its analysis goes beyond the ability of our present
approach which is restricted to homogeneous states. It is
worth mentioning that the field-assisted manipulation of
adsorbed atoms on a surface by using a scanning tunnel-
ing microscope'® may be considered as a potential tool
for the realization of the present phenomenon.

Here, as a continuation of our previous work,! we con-
centrate on the simplest model and we assume a uniform
electric field. Although it is not directly applicable to
any real system, the choice of this model is reasonable
as its static properties and the kinetics of the ordering
process have been studied in detail.#> The ordering un-
der the electric field is investigated by a Monte Carlo
(MC) simulation and analytical calculations that include
a simple mean-field approximation and an exact solution
on a (2 x 2) lattice. These methods make evident that
one of the chain orientations is favored in the presence
of an electric field. In addition, using these methods we
are able to analyze the efficiency of proposed techniques
such as slow cooling or thermalization at constant tem-
perature under an electric field.

II. THE MODEL
We consider a lattice gas on a square lattice with
L x L = N sites under periodic boundary conditions. We
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assume repulsive nearest and next-nearest neighbor in-
teractions with equal strength. For simplicity we choose
many parameters (i.e., coupling and lattice constants,
electric charge, Boltzmann constant) to be unity. Our
study is restricted to a fixed number of particles corre-
sponding to a half-filled lattice. The equilibrium prop-
erties of this model were studied by Sadiq and Binder.3
The system undergoes an order-disorder phase transition
at a critical temperature T, ~ 0.525.4 In this system the
ground state is fourfold degenerate, in the correspond-
ing states the columns (or rows) are alternately occupied
or empty. From these ground states four types of or-
dered state, A, B,C, D, originate at finite temperature
below T.. Following the notation by Sadiq and Binder?
the appropriate long range order is characterized by di-
viding the lattice into four sublattices and introducing
us (s = 1,2,3,4), the average sublattice occupations.
For example, in states A and B the chains are vertical,
ie, p1 = pg = 0.5+ x and po = pg = 0.5 — z, where
0<z<05(-05< z < 0) for state A (B). Similar
parametrization may be introduced for states C and D
characterized by horizontal chains: yy = ps = 0.5+ and
i3 = p4 = 0.5 — z. In the high temperature state F all
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the sublattices are occupied with the same probability,
ie., p1 = p2 = p3 = pg = 0.5.

The stochastic dynamics of the system is described
by Kawasaki dynamics'® characterized by single particle
jumps to one of the empty nearest neighbor sites. The
jump rate is biased by an electric field.! Our analysis is
restricted to electric fields parallel to one of the princi-
pal axes. In the present MC simulations the electric field
strength is also limited, |ei|, |e2| < 0.5.

This system exhibits anisotropic diffusion (and con-
duction) in the ordered state because the parallel chains
indicate the preferred direction for particle motion. The
difference between Dy and D, vanishes at T' = T, and
both coefficients become zero at T = 0. Judging from our
MC simulations D| — D) has a maximum at T =~ 0.51
where D /D) ~ 1.7.

III. MEAN-FIELD APPROXIMATION

The effect of the electric field on the sublattice occupa-
tions has already been studied by using a simple mean-
field approximation.! For later convenience we recall the
time dependence of y;:

7—= = —p1{(1 — p2) [ f(E21 —e1) + f(E21 + e1)] + (1 — pa)[f(Ea1 — e2) + f(Es1 + €2)]}
+(1 = pa){p2 [ f(Er2 — e1) + f(Er2 + e1)] + pa[f(Er4 — e2) + f(Erq + €2)]}, (1)

and the remaining three equations may be derived by
cyclic permutation of indices. In these equations

1

fz) =1 + exp(Bz)
and E,; is the energy difference between the sublattices
r and s. In our previous paper! E,, is determined by
a simple mean-field approximation. In the absence of
an electric field this method reproduced the results of a
Bragg-Williams approximation. Now, however, the eval-
uation of E,., is modified by considering the very fact
that the jump takes place from an occupied site to an
empty one. This modification results in a lower T, leav-
ing qualitative features unchanged.

The system has a set of stationary solutions. The ap-
propriate solutions may be considered as modified equi-
librium states (4,...,F). Instead of analyzing all the
possible solutions for a given electric field we study only
state A under an electric field which is parallel or per-
pendicular to the chain direction. This simplification is
based on the assumption that state A (B) under a verti-
cal field is equivalent to state C' (D) in a horizontal field
with the same strength, etc. By this means we can avoid
a more complicated formulation.

In state A (or B) this assumption yields an implicit
expression of the order parameter z(T'), viz.,

(1 + 2:1:)2 _ cosh(Be) + exp(68z)
1-2x) = cosh(BeL) + exp(—643z)’

(@)

3)

f

which depends on e; = e} , the perpendicular component
of the electric field. This equation demonstrates that the
temperature dependence of the order parameter depends
on the direction of the applied field. For the parallel
electric fields the equilibrium states remain unchanged
and the appropriate solution is obtained from Eq. (3) for
el = 0. If the chain orientation is perpendicular to the
applied field then the particle distribution [or z(T")] is
affected by e, as plotted in our previous paper.! Evi-
dently, if z(T) is an explicit solution of (3) then —z(T)
is also a solution, i.e., the states A and B (as well as C
and D) remain equivalent to each other. In addition, (3)
has a trivial solution (z = 0) corresponding to the high
temperature state E.

The high temperature state E is expected to trans-
form into one of the ordered states A, B, C, and D when
decreasing the temperature. The critical temperature of
the continuous order-disorder phase transitions can be
determined by the series expansion of Eq. (3) with re-
spect to z. In the limit £ — 0 this manipulation yields
the following implicit equation:

%ﬂc =1+ coshfee,, (4)

where B, = 1/T,. In the presence of a vertical field
(eL = 0) the E — A phase transition appears at a tem-
perature T = Ty = % independently of the value of e.
At the same time, the above equations suggest another
critical temperature T¢ o if the chains are perpendicular
to the applied field. According to Eq. (4) T, decreases
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with increasing e, and the change is proportional to €2 .
This equation has no real solution if e; > ey, = 0.6717.
Detailed analysis of the above equations has shown that
this phase transition becomes first order when the electric
field exceeds the threshold value ey,. Similar behavior
was found by Leung et al.!2 and Dickman!® in a driven
lattice gas characterized by repulsive nearest neighbor
interaction.

To summarize, we have two distinct solutions, one of
them is certainly preferred to the other. In thermody-
namic equilibrium the stable state is selected by the min-
imum of free energy. In the presence of an electric field,
however, we are not able to define an adequate ”nonequi-
librium free energy” to be minimized. This difficulty may
be circumvented by standard linear stability analysis.

IV. LINEAR STABILITY ANALYSIS

Equation (1) allows us to determine the time depen-
dence of the sublattice occupations around the stationary
solutions discussed in the previous section. For this pur-
pose the time dependence of the sublattice occupations
is written in the following form:

pr(t) = pl®) + Spp exp(At), (5)

where uﬁs) is a stationary solution of (1) and |[6u,| < pr-
In a linear approximation this assumption yields a simple

eigenvalue problem, namely,

4
Abdpr = ZMrsélsty (6)

s=1

where M, is the derivative of the right-hand side of the
corresponding element of (1) with respect to ps. After
some algebraic manipulation one arrives at the following
eigenvalues for the stationary state A:

A =0,
Ay =—2+24B(3 — 2%) f(e2) f(—e2)

(7)
A3 =—2[(3 + z)h(6z,€1) + (3 — T)h(—6z, €1))]
+128(% + 22)g(6z,€1) ,
Ay =—2—2[(} + z)h(6z,€1) + (5 — z)h(—6z,€1)],
where
h(6z,e1) = f(6x + 1) + f(6x — e1) (8)
and
g(6z,e1) = f(6x + e1) f(—6z — e1)
+f(6$L‘ — 61)f(—6.’13 + 61) . (9)

In these expressions the value of z is determined by (3).

The first eigenvector 6u(!) = (1,1,1,1) represents a
constant perturbation in agreement with the conserva-
tion of particle number. It is easy to check that Ay < 0
for arbitrary T', consequently, any perturbations propor-
tional to §u® = (1,-1,1,—1) decrease rapidly. The re-
maining two eigenvalues may be positive indicating the
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instability of the given state.

Assuming a vertical electric field (e; = 0,e; # 0) in
the high temperature state (z = 0) Ay > 0if T < Teo
and A3 > 0 if T' < T,;. Consequently, state E is unsta-
ble if T' < T.;. More precisely, if Teo < T < T,; then
A2 < 0 and Az > 0, therefore any perturbation propor-
tional to the eigenvector 6u(® = (1,—1,—1,1) increases
exponentially. In this case the particle distribution tends
toward state A or B in which the chains are parallel to
the applied field. The present result suggests a direct
way to produce an ordered state with the desired chain
direction. When cooling the system slowly from the dis-
ordered state, we can prescribe the chain orientation in
the final ordered phase by the application of an electric
field. Although X; is also positive if T' < T¢a, A3 remains
larger than A;. Thus, in the presence of a vertical electric
field the present analysis predicts the transformation of
state E to states A or B rather than to states C or D.

As expected, in the ordered state all the eigenvalues
are negative when the applied field is parallel to the ac-
tual chain direction. The effect of the perpendicular field
is more complicated. The situation may be visualized
by investigating the effect of the horizontal field on state
A or B. At low temperatures the eigenvalues are neg-
ative. In the close vicinity of Ty, however, Ay becomes
positive as shown in Fig. 1. The corresponding eigen-
vector 6u® = (1,1,—1,—1) indicates a rearrangement
towards state C or D. In agreement with the subsequent
MC simulation these results may be explained by the
metastable character of the perpendicular chain orienta-
tion which becomes unstable in the close vicinity of the
order-disorder phase transition.

V. MONTE CARLO SIMULATIONS

To study the driven lattice gas, MC simulations have
been carried out on a square lattice at different electric
fields. For details of MC simulations see the review by
Binder and Stauffer.!” Although we produce most of our
data with sample sizes 60 x 60 and 120 x 120, we have
used different sizes to test the reliability of our data. For
practical reasons a MC simulation is restricted to a tem-
perature region in which the diffusion was high enough to
reach the equilibrium or steady state within a reasonable
run time.
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To characterize the “average chain orientation” we in-
troduced an angle ¢ = arctan(by/b,) where by and b,
denote the number of horizontal and vertical bonds. The
value of ¢ vanishes in states A, B and it is 90° in states C,
D for T = 0. The deviation from ¢ = 0 (or 90°) indicates
the density of defects characteristic to the states at finite
temperatures. This quantity is much less sensitive to the
appearance of a mixed state (e.g., polydomain structure
of states C' and D) compared with the order parame-
ters introduced in the literature.3* Although we rarely
observed the mixed state in our MC simulations, its role
becomes more significant when increasing the lattice size.

A. Ordering at fixed temperature

First we studied the instability of the high temperature
phase (E) below the critical temperature in a half-filled
lattice. Each run was started from a completely disor-
dered state E corresponding to T' = co. The time evolu-
tion of ¢ was monitored at a fixed temperature T = 0.5
for various values of the vertical electric field. In these
processes the time is measured in units of Monte Carlo
steps (MCS) per particle. Figure 2 shows the average
behaviors determined from 100 runs for electric fields in-
dicated in the figure caption. In the absence of an electric
field, the average ¢ fluctuates around ¢¢ = 45° because
the chains are oriented horizontally and vertically with
the same probability in the final (equilibrium) state. This
kind of symmetry is broken when switching a vertical
field on.

For low electric fields the chains tend to be oriented
vertically rather than horizontally in the final state. Con-
sequently, the average value of ¢ decreases with the
strength of the vertical field. In a few final states we have
observed a polydomain structure with a slow spread of
vertical domain(s). The linear stability analysis showed
that state E definitely tends toward state A or B when
the field exceeds a threshold value dependent on temper-
ature as demonstrated by the lowest curve corresponding
to ez = 0.25 in Fig. 2. In other words, for a given elec-
tric field there exists a temperature region in which the
state E transforms into the state of vertical chains. This

45
b 30
)
=z
&15’ TTr———
O 1 1 1
0 5 10 15

time (units of 1000 MCS)

FIG. 2. Average evolution of ¢ at T'= 0.5 under different
electric fields: ez = 0, 0.05, 0.08, 0.1, 0.13, 0.25 (from top
to bottom). In the initial state the system was completely
disordered (T = oo).
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fact provides a way to produce an ordered phase with
prescribed orientation. The practical application of this
method is difficult because in the low field limit the ex-
tension of the suitable temperature region is proportional
to e3. This shortcoming inspired us to study the system
when it is cooled slowly through the critical temperature
under the electric field.

B. Cooling through T,

In the analogy of the above runs the simulations are
started from a disordered state corresponding to the ini-
tial temperature (7; = 0.55) above T.. The temperature
is decreased step by step to reach the final temperature
Tt = 0.5 in time of 16 000 MCS. The time evolutions of
the average ¢ (from 100 runs) are plotted in Fig. 3 for
different electric fields. The curves clearly demonstrate
the significant effect of the electric field on the particle
distribution above the critical temperature. This result
confirms the preference of the “vertical clusters” in the
critical region above T.

Comparing to the previous method, the slow cooling
technique seems to be more effective to produce a state
with the desired orientation. This advantage is domi-
nant in the low field limit which is important for practi-
cal uses. Evidently, the slower the cooling the lower the
electric field required to have vertical chains. The nu-
merical analysis of the scaling law, however, goes beyond
the scope of the present paper.

C. Reorientation below T

In these cases each run was started from a state A
following a thermalization of 3000 MCS at a temperature
T < T.. We studied the time evolution of the thermalized
state when switching on a horizontal or vertical electric
field.

The effect of the electric field on the particle distribu-
tion depends on the relative direction of the chains. We
found that the parallel field causes no significant change

Temperature
0.55 0.525 0.50
\LTC
45
“ap
o 30
=
S5
O 4 L I
0 5 10 15

time (units of 1000 MCS)

FIG. 3. Time dependence of ¢ in a slow cooled system
under different electric fields: e; = 0, 0.05, 0.08, 0.1, 0.25
(from top to bottom). The arrow indicates the time when the
critical temperature is reached.



11 436

%
25 50 75 100
time (units of 1000 MCS)

FIG. 4. Time evolution of direction ¢ in five subsequent
simulations for T'=0.51, L =60, and e; = 0.1 .

in the particle distribution if ey < 0.5. By way of con-
trast, the application of a perpendicular field results in a
complete rearrangement: in the final state the chains are
parallel to the electric field. In other words, the initial
state A transforms into a steady state C or D. Dur-
ing this process the real time monitoring of the particle
distribution demonstrates clearly that the reorientation
is analogous to recrystallization including nucleation and
growth of the preferred domain(s).

Figure 4 shows some typical time evolutions of ¢ under
the same conditions (" = 0.51 and e; = 0.1). In each
curve three regions may be distinguished: the nucleation;
the growth of preferred domains; and the stationary state
characterized by ¢y, the average value of ¢ in this final
state. In the nucleation interval ¢ fluctuates around a
value close to the initial (or equilibrium) value ;. If
the electric field is increased the nucleation interval be-
comes shorter and it disappears above a threshold value.
On decreasing the electric field the nucleation interval
becomes so long that we are unable to observe the re-
orientation within the run time. In agreement with the
mean-field calculations this behavior may be explained
by the metastable character of the states having chains
perpendicular to the applied field.

To investigate the rate of reorientation quantitatively
we have adopted the definition of relaxation time ¢, in-

_ 5
2
= b
S 4 | i .
12}
Z ¢
E Lot
Nal 3 I3
g . ‘

047 049 _ 051 0.53

T

FIG.5. Reorientation time ¢, as a function of temperature
for e, = 0.2 . Average values and standard deviations were
determined from 100 runs. The solid lines serve to guide the
eye.
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FIG. 6. Rate of reorientation as a function of electric field
at fixed temperature 7' = 0.51 for different concentrations:
c=0.5(0); c=0.54 (e); and ¢ = 0.56 (O) .

troduced by Binder and Miiller-Krumbhaar,8

1
Pr—Pi

where ¢, is the equilibrium value of ¢ in the initial state,
@y is the stationary value in the final state, and we chose
t; =~ 4t, in the MC simulations. The reorientation time
decreases with increasing electric field as expected.! On
the other hand, when the temperature was increased the
reorientation process became faster at a fixed value of
the electric field as shown in Fig. 5. This effect may
be explained by the higher diffusion and by the larger
size of the preferred domains in the close vicinity of the
critical temperature. In the presence of domains whose
size exceeded a critical value the nucleation process is of
no importance for the reorientation. Consequently, the
metastable states become unstable in the close vicinity
of T, in agreement with the prediction of the mean-field
approximation.

In MC simulation the rate of reorientation was charac-
terized by t,. Its inverse is analogous to Az in the region
where Ay > 0. This analogy allows us to make a qual-
itative comparison between the MC simulation and the
stability analysis based on the mean-field approximation.
In Fig. 6 the results of MC simulations are plotted at
T/T. = 0.972 for three different concentrations. In con-
trast to the MC simulations the linear stability analysis
predicts no reorientation in the metastable region (A < 0
if ey < 0.27). In this region the nucleation mechanism
provides a tunnel for the system to reach the stable state.

In order to study the role of nucleation, simulations
were performed with extra particles (or holes) added to
the system. It was found that when increasing the de-
viation from the stoichiometric concentration, the nucle-
ation process becomes faster as demonstrated by data
(see Fig. 6) for ¢ = 0.54 and 0.56 . Similar results were
obtained for concentrations ¢ = 0.46 and 0.44 in agree-
ment with the particle-hole symmetry.

r

/0 s — () dt, (10)

VI. EXACT SOLUTION ON A 2x2 LATTICE

The exact solutions provide very effective ways of
reaching a better understanding. For this purpose the
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present model is investigated on a 2 x 2 lattice with pe-
riodic boundary conditions. In this case there exist six

particle configurations labeled by n = 1,...,6 as shown
in Fig. 7. The configurations from 7 = 1 to 4 may be con-
sidered as the ground states A, ..., D, and configurations

5 and 6 as excited states with the equal energy.

The time dependence of the distribution function
p(n,t) is determined by a master equation which may
be written as

d 6
7P t) = Lop(n',1), (11)
n'=1

where the matrix elements are defined by the elementary
jumps. Namely,

—22 0 0 O 2—a 2—a
0 —2¢ 0 O 2—-a 2—-a
L=| 0 0 -2b 0 2-b 2-b
- 0 0 0 -2 2-b 2-b !
a a b b 2a+20—-82a+2b-8
a a b b 2a+26—-82a+2b-8
(12)
where a and b are expressed by the function (2) as
a=f2+e)+f2-e1),
(13)
b=f(2+e2)+ f(2—e2).
The solution of (11) may be written in the form
6
p(m,t) =3 cspa(n) exp(st), (14)
s=1

where 7, and p,(n) are the eigenvalues and eigenvectors

of the matrix L. The coefficients ¢, are determined by

the initial conditions satisfying the normalization.
Fortunately, the eigenvalues can be evaluated,

71=0, ’74:2a+2b~8y

Yo=-2a, v5=-4++V4+ab—2a-2b, (15)
v3=—-2b, v¢=—-4—+V4+ab—2a—-2b.

It is easy to check that all the eigenvalues are negative ex-
cept v1. Consequently, the stationary state correspond-
ing to the first eigenvector is definite, i.e.,

W, o), (5).

L] [ ]
(@) (4) (6)
. ° . . . °

FIG. 7. Configurations on a 2 x 2 lattice.
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p1(1)=p1(2) =

p1(3)=p1(4) =

p1(5) =p1(6) =

W?

where W is the normalization factor. These components
of the first eigenvector give the temperature dependence
of the probability of each configuration in the stationary
state. Figure 8 demonstrates these functions (a) in the
equilibrium state and (b) in the presence of a vertical
field (e; = 0,e; = 0.5).

The chain configurations (n = 1,...,4) have the same
probability in equilibrium (a = b). In this small system
the symmetry of the distribution function is not broken
because the chain configurations can easily transform to
each other via two elementary jumps. The analysis of
this finite size effect goes beyond the scope of the present
paper. The difference between Figs. 8(a) and 8(b), how-
ever, demonstrates clearly the preference of states whose
chain direction is parallel to the electric field. More pre-
cisely, the probability of configurations 3 and 4, as well as
5 and 6, vanishes at zero temperature. This behavior can
be explained by the finding that according to the master
equation (11), 2a may be identified as the decay rate of
states A and B. Similarly, 2b describes the decay rate of
states C and D. In the presence of a vertical field a < b
in which case configurations 1 and 2 are preferred to 3
and 4 as a consequence of their slower decay.

Finally, it is worth mentioning that similar results are
obtained when considering the driven lattice gas first
studied by Katz et all® In this half-filled system, at-
tractive nearest neighbor interaction was assumed, i.e.,
JNN = —1 and Jynn = 0. At low temperature the system
decomposes into two phases with low and high concen-
trations. The degeneracy of the ground state is caused
by the uncertainty in the position and direction of the

o 1,2,3,4 (a)
0.2 }
L0
(o]
S0.1
& 5.6
0.0
0.4

Probability
o
N

o
o

0 1 2 3

FIG. 8. Temperature dependence of a distribution func-
tion for configurations displayed in Fig. 7; (a) in equilibrium,
(b) under vertical electric field e; = 0, ez = 0.5.
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boundary separating the two phases. In equilibrium the
direction of the boundary may be either horizontal or ver-
tical. Under a finite electric field, MC simulations have
proved that the phase boundary is parallel to the field in
the stationary state. Additional (parallel) phase bound-
aries were observed under sufficiently high fields. On a
2 x 2 lattice configurations 1,...,4 may be considered
as different phase boundaries, therefore the above results
offer a hint as to why the boundary lines are parallel to
the applied field.

VII. CONCLUSIONS

We have studied the stationary states in a half-filled
square lattice-gas model with interactions which support
the formation of anisotropic particle distribution. The
system is driven by a uniform electric field with a di-
rection parallel to one of the principal axes. Different
approaches (MC simulations, mean-field approximation,
linear stability analysis, and exact solution on a 2x2
lattice) have been used to investigate the effect of the
electric field on the stationary particle distribution. The
symmetry causing the fourfold degeneracy of the ground
state is broken when the electric field is switched on. In
the driven system the states with chains parallel to the
field remain stable whereas the other two states (with
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perpendicular chains) become metastable or unstable be-
low the critical temperature. Consequently, a reorienta-
tion from the vertical chain state to the horizontal one
may be induced by the application of a horizontal electric
field. This phenomenon is not restricted to the half-filled
system; it may be observed in the concentration range ex-
hibiting uniaxial ordering. The reorientation process is
analogous to recrystallization. We found that the reori-
entation time depends strongly on the temperature and
strength of field. The application of the electric field may
be very useful for the preparation monodomain struc-
tures. According to our MC simulations the slow cooling
technique seems to be the most effective way to produce a
homogeneous phase with a desired orientation. A better
understanding of this nonequilibrium process requires the
adaptation of more sophisticated techniques as there is
only qualitative agreement between the MC simulations
and the present analytical calculations.
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