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Derivation of potential for group interactions in evolutionary games
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For spatial evolutionary games, a potential can be derived if the interaction is described by two-player,
two-strategy, symmetric games that yield thermodynamical behavior for a suitable dynamical rule. Here, we
show the existence of a potential for two-strategy group interactions in which the players with identical strategies
receive equal payoffs. This type of group interaction includes some extended versions of the public goods
game. Some peculiar consequences of these group interactions are illustrated in a simple model in which the
players are located at the sites of a square lattice with periodic boundary conditions. This five-player group
interaction supports the formation of striplike arrangements of the two strategies. Monte Carlo simulations,
however, indicate the existence of many other ground states and the relevance of frustration in shaping the
macroscopic behavior when the effect of noise is taken into consideration.
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I. INTRODUCTION

The application of the methods of statistical physics in
the investigation of multiagent social [1-3] and biological
[4-6] systems was initiated by the successful adaptation of
the concepts and methods introduced for the investigation
of Ising-type models [7-9]. In the original Ising models, the
atoms that are in either a 41 or a —1 spin state are arranged in
a crystal structure, and their attractive nearest-neighbor inter-
actions result in the formation of ordered spin states at low
temperatures that transform into a disordered macroscopic
phase if the temperature exceeds a critical value. Similar phe-
nomena can also occur in spatial evolutionary games in which
the two-player interactions, the connectivity networks, and the
dynamical rules are similar.

In game theory [10], however, group interactions have also
been considered for a long time because these play an impor-
tant role in the macroscopic behavior of social [11-16] and
biological [17-20] systems. One of the most well-investigated
examples is the public goods game (PGG) in which n players
independently decide whether to pay a cost ¢ for a benefit the
other players enjoy, too. In this game, the total investment (the
sum of the cost paid by the cooperative players) is multiplied
by a factor of r (r < n) and then shared equally among the
players. This game represents a social dilemma, because their
individual interests dictate that they choose to defect (not to
pay the cost) to all players, who ultimately receive nothing as
a result. This group interaction can be built up as a sum of
symmetric two-player two-strategy games between all pairs
of players [21-23]. Thus, this system has a potential [24-26]
and exhibits thermodynamical behavior [24,27] for a suitable
dynamical rule and an infinitely large number of players. At
the same time, some generalized versions of the public goods
game (e.g., threshold public goods games) cannot be consid-
ered as a sum of two-player games [28—32]; consequently, the
existence of a potential is not guaranteed.
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In the next section, we show that a potential can be derived
for the generalized PGGs introduced by Broom, et al. [22]
and also discussed by Li, et al. [23]. In these group inter-
actions, the players are not distinguishable. More precisely,
players with identical strategies get the same payoff, similarly
to many-particle systems. These group interactions, however,
can exhibit a wide range of interesting behaviors if the players
are distributed on a square lattice (or any other connectivity
network) and their total income comes from several group
interactions. In Sec. III we consider a simple spatial model
that exhibits many optimal strategy arrangements (or, in other
words, strict Nash equilibria). Using the logit rule [24,33,34],
we study the stationary states via Monte Carlo simulations. As
part of these analyses, we found interesting combinations of
phenomena related to the existence of many optimal strategy
arrangements and the presence of frustration, which have al-
ready been observed and studied in minority games [35-38], a
simple subset of group interactions. We survey these complex
phenomena, whose components were analyzed previously
in several physical systems involving four-spin interactions
[39,40] or relationships among ordering, metastability, and
topological features [41-44].

II. POTENTIAL FOR GROUP INTERACTIONS

Now, we turn to the study of a generalized public goods
game discussed by Refs. [22,23] in which n players have
to choose between strategies A and B independently of the
others. In these models, the players with strategy A or B
receive payoffs a; and b; (i = 0, 1, ..., n) respectively, if strat-
egy B is chosen by i players. Evidently, in this notation, the
values of a, and b, are irrelevant parameters. We have to
emphasize that this group interaction model is characterized
by 2(n — 1) payoff parameters, while we can distinguish 2"
strategy distributions s = (s, $2, ..., 5, ) defined by s; = A or
B for player k (k = 1, 2, ..., n) within the group.

©2025 American Physical Society
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FIG. 1. Dynamical graph for two-strategy group interactions
with four players. The possible strategy distributions are represented
by black and white circles standing in for individual A and B strategy
choices, respectively.

To derive and investigate the potential, we use the con-
cept of dynamical graphs, introduced by Schnakenberg [45],
the nodes of which represent the strategy distributions (or
microscopic states in statistical physics) and edges connect
nodes that differ only in a single player’s strategy choice.
In other words, the edges denote transitions generated by
unilateral strategy changes between the possible strategy
distributions.

The corresponding dynamical graph can be visualized by
a suitable two-dimensional projection of an n-dimensional
hypercube (Fig. 1 shows the n = 4 case). In this graph rep-
resentation, the uppermost node represents the single state
where all players choose strategy A (i = 0) and receive identi-
cal payoff ap. For i = 1 the states are arranged horizontally
and connected to the node in the previous i = 0 layer by
edges identifying the unilateral strategy changes that transfer
the corresponding strategy distributions into each other. In
the next row of strategy distributions, i = 2 and the edges
are obtained similarly. This process can be repeated, until all
strategy distributions and unilateral strategy changes are enu-
merated. Note that along the edges between two neighboring
rows of strategy distributions, the incentives driving the unilat-
eral strategy changes are identical. Quantitatively, the payoff
increase of the active player is (b;+1 — a;) if i — (i 4+ 1). This
feature simplifies the derivation of the potential V (s) that sums
up the driving forces of the active players for consecutive
unilateral strategy changes [24-27]. Namely, for this group
interaction, the values of the potential depend on the strategy
distribution s only through the composition of the group as
represented by i, the number of players choosing strategy A,

and are given by the function

n—1 i

v(i) = a;+ Y _bj, (1
j=i j=1

for 0 < i < n when choosing

n—1
v(0) = Z aj. (2)
j=0
As a result,
v(n) =Y b;. (3)
j=1

It is worth mentioning that the existence of the potential
is intimately related to the requirement that the individual
driving forces add up to zero along all directed closed loops
on the dynamical graph. This condition is trivially satisfied
for these games, because the closed loops include forward and
backward transition edges between states of two neighboring
rows [i <> (i 4+ 1)]. Furthermore, the four-edge loops (repre-
senting a side of the hypercube) in these dynamical graphs
define a symmetric two-strategy game between the two active
players, and for this type of interaction the existence of a
potential is guaranteed [27].

Using this parametrization, the traditional public goods
game is reproduced when strategy A and B describe defec-
tive and cooperative behaviors with their payoffs expressed
as a; =irc/n and b; = a; — c. For this interaction each
player with strategy B has an incentive [a payoff increase of
c¢(1 —r/n)] to modify her strategy to A. Consequently, if
v(0) = O1is chosen, then v(i) = —ic(1 — r/n). Due to this fea-
ture, traditional public goods games have a single strict Nash
equilibrium in which all selfish players choose strategy A.

Other simple examples are partnership [46] (or fraternal
[27]) games, in which the players receive equal payoffs [inde-
pendently of the chosen strategy, that is, a; = b; if 0 < i < n]
for all strategy distributions. Interestingly, for these interac-
tions the potential can be given as v(i) =a; (if 0 < i < n)
and v(n) = b,, which directly relates the potential to the total
income of the players [nv(i)].

In general, the highest value of the potential [max V (s)]
determines an optimal strict Nash equilibrium. For these part-
nership games, however, the system can possess many Nash
equilibria if max V (s) is reached for some 0 < i < n. Even
more interesting examples are those types of interactions for
which the v (i) function itself has two (or more) local maxima.
Further peculiar consequences of these interactions occur for
spatial evolutionary games we discuss in the next section.

III. A SPATIAL MODEL

Now, we consider a spatial evolutionary game in which the
players are located at the sites of a square lattice with L x L
sites. We assume periodic boundary conditions to preserve
translation invariance. In this spatial evolutionary game, the
payoff of the player at site x [u,(s,)] comes from five group
interactions in which the player uses the same strategy (s, = A
or B). Each group is formed by a focal player and their four
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nearest neighbors, as was considered in many previous evolu-
tionary public goods games [47—49].

Using the previous notations for n = 5, the payoff parame-
ters within a partnership group interaction are defined as

L p = 1 ifi=2o0r3
4 =D=10 otherwise

where i = 0, 1, ..., n. Notice that the roles of strategy A and
B are interchangeable. This game has 2°> = 32 microscopic
states, 20 of which provide all players with a unit payoff;
otherwise, the players receive no payoff. The former, finite-
payoff states, however, are not strict Nash equilibria, since
one of the three players with identical strategies can reverse
their choice without modifying the payoff of any of the play-
ers. In this group interaction, the expected average payoff is
20/32 = 0.625 if the players select their strategy at random.
This setup is reminiscent of ice-type or six-vertex models
[50,51], which can be solved exactly on a square lattice
[52-54], in that they also define the energy via a restricted
number of possible contributions based on the configuration
of the nearest-neighbor bonds of each site.

The evolution of the spatial strategy arrangement is con-
trolled by consecutive strategy updates that allow a randomly
selected player (at site x) to modify their strategy unilaterally
from s, to s/, with a probability exponentially favoring higher
individual incomes. More precisely, this logit rule [24,33,34]
defines the probability of a strategy update as

) 4)

o )/K

[e-A/K { e B/K]’

w(sy —> s.) = (5)
where K quantifies the amount of noise influencing the
decision processes, and u,(s).), u,(A), and u,(B) are the pay-
offs player x receives when playing strategy s, A, and B,
respectively. For the kinetic Ising model [55], a similar dy-
namical rule drives the spin system toward thermodynamic
equilibrium characterized by the Boltzmann distribution at
temperature K. Thermodynamic behavior (including order-
disorder phase transitions, critical phenomena, etc.) was
observed in many evolutionary games in which two-payer
n-strategy potential games define the pair interactions (for
further references, see Ref. [27]). To compare these results,
however, we have to take into consideration the fact that in
physical systems the Hamiltonian summarizes the contribu-
tions of pair interactions (and not how, if at all, they are shared
between the interacting particles) while the game theoretical
potential summarizes the variations of individual payoffs that,
in general, may or may not be equally beneficial for all in-
teracting participants. In short, the group size n and possibly
other details of the interaction should be taken into consider-
ation when comparing noise and temperature dependence.
The selection of the group interaction given by Eq. (4)
was originally motivated by a desire to create a horizontally
(or vertically) oriented striplike arrangement of strategies A
and B on the square lattice in ground states [see Fig. 2(a)],
as the group formed by the nearest neighbors of any focal
player in such an ordered arrangement maximize the payoff
and the potential in this interaction. It turned out, however,
that this group interaction also supports the formation of
many other, tilted fibrous strategy arrangements. For exam-
ple, Fig. 2(b) shows another translation invariant structure,

(a) (b)

o

(d)

FIG. 2. Optimal spatial arrangements of two strategies for group
interactions represented by white and black boxes corresponding to
strategy A and B, respectively. Further fibrous strategy arrangements
may be created via exploiting symmetries (e.g., translation, rotation,
reflection, and strategy exchange, i.e., A < B).

while Fig. 2(c) exemplifies a partially ordered optimal strategy
structure. These spatial arrangements share a common feature:
Strategies A and B represent equivalent roads of unit width
that form closed loops on the surface of a torus. This topolog-
ical constraint limits the number of states that realize this type
of optimal arrangement.

Figure 2(d) also shows a partially ordered arrangement
composed of parallel road segments with different lengths.
Note the absence of closed loops. In contrast, the chess-
boardlike arrangement Fig. 2(e) is formed by 2 x 2 blocks of
strategies A and B, which can be considered as periodically
arranged four-edge loops. These four-edge loops, however,
can be surrounded by another opposite square loop, and
this expanded arrangement can be repeated many times, too.
Figure 2(f) illustrates that one can build further periodic struc-
tures from such identical concentric loops for suitable values
of L. Evidently, many other optimal strategy arrangements
can be constructed in which two or three participants choose
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FIG. 3. Spatial arrangements of strategies in the stationary state
at low noise level K = 0.1 in a section of 40 x 40 sites of a large
system (L = 1000) after 10° MCS. The system was started from
a random initial state. xs with opposite color inside the black and

white boxes indicate frustrated sites, that is, sites at which a strategy
reversal results in no payoff change for the active player.

strategy A (or B) within each five-player neighbor group: One
way to find arrangements like the ones mentioned above is
to either come up with or observe in simulations (see the
next section) compatible local strategy patterns that can be
placed next to each other without lowering maximized player
payoffs, such as the road segments highlighted in the pre-
vious descriptions. We have to emphasize that all strategy
arrangements in Fig. 2 represent stable ground states (i.e.,
strict Nash equilibria) because any unilateral strategy reversal
would result in a payoff decrease for all players in one or more
groups that include the active player.

IV. RESULTS

To quantitatively analyze the macroscopic behavior of this
spatial evolutionary game, we performed Monte Carlo (MC)
simulations (see Supplemental Material [56]) on large lattices
(L > 800) after a sufficiently long thermalization time (z,).
The simulation time was measured in MC steps (MCS), the
time it takes for each player to have a chance to modify their
strategy once on average. The MC simulations indicated that
7, increases significantly when K is decreased. More quan-
titatively, 7, < 103> MCS if K > 0.15, and 7, > 10°> MCS if
K <0.1.

First, we show a typical strategy arrangement in the sta-
tionary state at a low noise level (K = 0.1), when the average
payoff is 4.99990(2) in the stationary state. In spite of the
very small number of unsatisfied players, the observed spatial
snapshot of the strategy distribution (see Fig. 3) resembles
a labyrinth (similar to those reported in [38,57-59]) rather
than one of the fibrous optimal structures shown in Fig. 2.

45t ]

average payoff
N

3.5

0 1 2 3 4 5
Temperature

FIG. 4. Average payoff versus noise. The MC data (filled boxes)
were obtained for L = 800, 7, = 10°, and 7, = 10* MCS in the
K > 0.1 region. For lower noise levels, a larger system size (L =
1400) and a longer thermalization time (7, > 10° MCS) were used
in order to mitigate finite-size and slowing-down effects that typi-
cally accompany the increase of the correlation length in ordering
processes. The dotted, dashed, and solid lines show the predictions
of the mean-field, pair-, and four-site approximations.

Additionally, the visualization of the time-dependent strategy
distribution indicated clearly that the typical strategy reversals
occur at the frustrated sites (sites at which a strategy reversal
results in no payoff change for the active player) denoted
by x symbols in the snapshot. Strategy reversals at solitary
frustrated sites can be repeated many times. Within a group
of neighboring frustrated sites, however, an individual local
strategy change can relieve or introduce frustrations within
a small neighborhood of the active player. Consequently, the
consecutive complex strategy reversals at frustrated sites can
modify their spatial patterns and also their density via a com-
plex branching-annihilating phenomenon.

Another characteristic feature of these spatial structures is
related to the interchangeability of strategies A and B: They
occur with the same probability at the sites of the lattice for
any value of K.

In order to have a quantitative picture about the macro-
scopic behavior, we determined the average payoff (Fig. 4)
and the frequency of frustrated sites (Fig. 5) over a sampling
time 7, in the stationary state for different noise levels. Fig-
ure 4 shows that the average payoff decreases monotonously
from its maximum value (5) and goes to the mentioned com-
binatorial prediction (5 x 20/32 = 3.125) as K — oo and the
local correlations are suppressed by the noise. This latter value
also coincides with the prediction of the mean-field approxi-
mation, shown by the dotted line in Fig. 4. In agreement with
expectations, this approach predicts the two strategies to be
present in equal frequency, that is, p4 = pp = 0.5.

The effect of local correlations on the spatial strategy distri-
butions can be investigated using dynamical cluster methods
(details are given in [34,60-62]). These standard methods
generalize the mean-field approximation by estimating the
probabilities of possible configurations on clusters of mul-
tiple, in the present case two or four, sites via numerical
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FIG. 5. Noise dependence of the average frequency of frustrated
sites. The parameters of the MC simulations and line types used
to show the results of the approximative methods are given in the
caption of Fig. 4.

integration of a set of differential equations derived from the
dynamical strategy update rule.

These approaches also predict p4 = pp = 0.5 and the aver-
age payoff going to 3.125 while the spatial distribution of the
strategies becomes entirely random as K — oo. At the same
time, these methods cannot reproduce the low-noise behavior
observed in the Monte Carlo simulations, which clearly indi-
cates the presence of more complex local correlations.

The MC simulations show that the average frequency of
frustrated sites has a wide local maximum at K = 2.9(1) and
goes to 0.19433(1) in the K — oo limit, in general agreement
with the predictions of the approximative analytical methods.
In the opposite, K — O limit, this quantity reaches its min-
imum value [0.0795(3)]. It is worth noting that the cluster
variation methods cannot reproduce the extent of the decrease
found in the frequency of frustrated sites via MC simulations.
(See the low-temperature, K < 1, regime of Fig. 5.) We con-
jecture that this shortcoming of these approximative analytical
methods is related to the abovementioned interplay between
the spatial distribution of the strategies and frustration. This
phenomenon also seems to cause extremely slow relaxation
(t, > 10° MCS) toward the stationary states at low noises
(K <0.1).

Finally, let us underline the absence of spontaneous sym-
metry breaking from our results, which we would typically
expect to occur in spatial systems with just a few ordered
ground states. In general, ordering processes in spatial ther-
modynamic game systems are initiated by the formation of
clusters that maximize the potential of the local (be it pair or
group) interactions of all involved sites. Usually there are only
a few different strategy arrangements capable of this, which
are related to each other by the symmetries of the interaction;
for example, the two kinds of coordinated domains in the
Ising model [7-9], which can be transformed into each other
by flipping all constituent spins. When the temperature is
low enough, this nucleation process can develop a number
of larger domains of each locally maximizing arrangement,
which keep growing (increasing the correlation length) until

one of them eventually percolates and then spreads through
the whole system, displacing the other, symmetry-related
arrangements. Here, in the present group interaction model,
no such symmetry breaking seems to take place. In particular,
the four-site configuration probabilities confirm the presence
of rotation and reflection symmetries. This is probably caused
by the high number of potential maximizing local strategy
arrangements and their high degree of compatibility, which al-
lows them to touch or overlap without lowering the potential.

V. SUMMARY

In the present work we proved the existence of a po-
tential in evolutionary games in which a generalized group
interaction of n players [22,23] controls the evolutionary dy-
namics. In these two-strategy group interactions, the existence
of a potential is intimately related to the equivalence of the
players: Those of them who choose identical strategies receive
equal payoffs that are determined by the number of the players
that selected each strategy. We exploited the simple topo-
logical structure of the dynamical graph (an n-dimensional
hypercube) that becomes visible on a suitably chosen two-
dimensional projection to evaluate the potential. In the light of
the present results, we can imagine that games with different
sets of payoffs that conform to other (possibly orthogonal)
two-dimensional projections of the hypercube representing
the dynamical graph [63] may also admit a similarly easily
determinable potential.

To explore what kinds of phenomena may occur in spatial
systems with this type of group interaction, we investigated
a very simple example supporting the formation of a wide
range of strategy distributions on a square lattice. In the
low noise limit, the MC simulations indicated the dominance
of labyrinthlike, slowly evolving strategy arrangements sim-
ilar to those observed in oscillatory media [58,59]. In these
chemical-reaction systems, however, transitions are observed
between the topologically different patterns when the param-
eters are tuned. We think that a modified version of this group
interaction may allow us to study similar transitions using the
Ising formalism.

MC simulations and analytical approximations demon-
strated the relevant effects of the temperature on both the
stationary states and the relaxation processes. In the low
noise limit the players receive the maximal payoff, while the
resultant strategy arrangements contain frustrated sites. The
interplay between the large number of optimal (ground) states
and frustrated sites causes extremely slow evolution toward
the stationary state, similar to the slowing down found in
spin glasses [64] or other frustrated spin systems [65,660].
Different variants of this model could possibly be used to
clarify mechanisms underlying similar phenomena in ice-type
models [50,51] including metamaterials [67—70] and other
evolutionary games.
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