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The multiagent evolutionary games on a lattice are equivalent to a kinetic Ising model if the uniform pair
interactions are defined by a two-strategy coordination game and the logit rule controls the strategy updates. Now
we extend this model by allowing the players to use additional neutral strategies that provide zero payoffs for
both players if one of them selects one of the neutral strategies. In the resulting n-strategy evolutionary games
the analytical methods and numerical simulations indicate continuous order-disorder phase transitions when
increasing the noise level if n does not exceed a threshold value. For larger n the system exhibits a first order
phase transition at a critical noise level decreasing asymptotically as 2/In(n).
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I. INTRODUCTION

In the traditional coordination game [1-5] two players have
two options to choose from, independently of each other. In
the simplest case they get 1 (unit of payoff) if both choose the
same option and lose 1 otherwise. In the multi-agent spatial
evolutionary games [6-9] the players are located on the sites of
alattice, they play games with their neighbors, and are allowed
to choose another strategy following a dynamical rule. It was
recognized previously by many authors [10-15] that these
models become equivalent to Ising-type models [16,17] for a
certain set of dynamical rules.

The above models can be extended by introducing addi-
tional strategies. In these systems the uniform interactions
between the equivalent players are characterized by an n x n
payoff matrix A [18]. One of the well-investigated extensions
is represented by the family of Potts models [19], where A is
an n X n unit matrix. For the voluntary version of these games
[20,21], we introduce a third option corresponding to declining
to play games. In this case, the original 2 x 2 payoff matrix is
extended by a third row and column consisting of zeros.

The decomposition of the payoff matrix into a linear
combination of orthogonal matrices (see Refs. [22-27]),
representing basis games, has thrown light on the importance
of matrices describing coordination-type interactions between
the ith and jth strategies of the two players. All these
matrices, as well as their linear combinations, are symmetric
(Aijj = Aj;). Consequently, these matrices define potential
games [28-31] for which we can apply the tools of statistical
physics for the investigation of the macroscopic behavior.
More precisely, these systems evolve into the Boltzmann
distribution [28,32] if the dynamics of strategy distribution
is controlled by a logit rule.

In this paper, our attention will be focused on the general
features of the above-mentioned set of n x n basis games
possessing a coordination-type interaction between the first
and second strategies, whereas the rest of the strategies provide
zero income for both players. It will be shown that these
evolutionary games on a square lattice exhibit Ising-type
order-disorder phase transitions if the number of strategies
is less than a threshold value. For larger n, however, we can
observe a first-order transition at a critical noise level going
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to zero in the limit n — oo. The formalism and the general
features of these models are described in Sec. II. In Sec. III
we briefly survey the methods used in the present work. The
results of the different approaches are compared in Sec. III D,
and in Sec. IV we summarize the main conclusions and raise
some questions.

II. THE MODELS

We study spatial evolutionary games with equivalent play-
ers located at the sites x of a square lattice with N = L x L
points in the limit N — oo. Each player x has n pure strategies
that are denoted by the standard n-dimensional unit vectors as

1 0
0 0

Sy =81 = s Sk = .- (1)
0 1

Using one of their strategies the players play games with their
four nearest neighbors, and the total income of player x is
given as

fiy(s) =) s+ Ascis, )
8

where the summation runs over the nearest neighbors located
at the sites x + § and the payoffs are defined by the following
n X n matrix:

1 -1 0 0
—1 1 0 0
0 0 o --- 0

In words, the components A;; are zero except for four
ones, namely A;; = Ay = —Ajp = —Ay = 1. Forn = 2 the
present payoff matrix represents a two-strategy coordination
game when the rational players are forced to choose the same
strategy. For n > 2, if one of the players chooses her ith
strategy (2 < i < n), then both players receive zero income.
Henceforth, the latter strategies are called neutral strategies.
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Similar games can be introduced when deriving a payoff
matrix from A by exchanging its ith row and column with
the first (or second) one simultaneously. All these games have
similar features. Namely, the payoff matrices are symmetric
(Ajj = Aj;) and there exists coordination-type interactions for
a suitable 2 x 2 subgame when both players are constrained
to use the same strategy pair providing 41 or —1 income for
them. Evidently, in the latter cases the rest of the strategies are
neutral.

Several linear combinations of these basis games have been
investigated previously on a square lattice for n =3 and 4
[24-26]. Now we study evolutionary games with pair interac-
tions [Eq. (3)] for larger n.

In the present multiagent system the potential of the whole
system is given as

1
Ues) = ;sx - AS 45, 4)

for any strategy profile s = {s, } defining the individual strategy
s, for each player, because the two-player potential matrix
is equivalent to A. This potential summarizes the individual
incentives for the unilateral strategy changes. More precisely,
if player x modifies her strategy from s, to s, then

iy (sy) — iix(sy) = U(s) — U(s), (5)

where s, = s/, for all y # x in the strategy profiles s and s'.
The random sequential strategy updates for the players are
defined by the logit rule, when the randomly selected player x
modifies her strategy to s, with a probability

(/K
Zs eﬂx(sx)/K ’
favoring exponentially her higher individual income with
assuming fixed strategies in the neighborhood [33-37]. The
value of K quantifies the strength of noises. The application
of this evolutionary rule drives the system onto a stationary

state where the probability p(s) of the strategy profile s is
determined by the Boltzmann distribution [28,32], that is,

UO/K

p(s) = W' @)

(6)

w(s,) =

On the analogy of the ferromagnetic Ising model the
present system has two equivalent ordered preferred Nash
equilibria (ground states) when U (s) reaches its largest value.
In these states all the players choose the first (s, = s, 1)
or second (s, = S, ) strategy in the limit K — O for any
finite n. If K is increased then these systems exhibit an
Ising-type order-disorder phase transition at K.(n) for n = 2,
3, and 4 [16,24,26,38]. These critical transitions are generally
quantified by evaluating the frequencies p; for all the strategies.
In the mentioned cases, |p; — pz| vanishes algebraically if K
approaches K .(n) from below. More precisely, |p; — p2|
(K.(n) — K)? (with 8 = 1/8) in the close vicinity of the
critical points.

ForK > K.(n) p; = p2 > p; (2 < i < n)whenall the neu-
tral strategies are present with the same frequency. Evidently,
all the strategy frequencies become equivalent (p; = 1/n for
1 € j < n)inthe limit K — oo when the strategy selections
are not influenced by the payoffs.
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III. METHODS
A. Mean-field and pair approximations

The cluster variation methods (for details see Refs. [27,39—
41]) give a general framework for both the mean-field and pair
approximations. In these approximative methods the homo-
geneous lattice system is described by one-site probabilities
p1(i) = p; of finding strategy i at any sites (on the translation
invariant lattice) and by two-site configuration probabilities
p2(i, j) of finding strategy pair (i, j) on two neighboring sites.
Due to the translation and rotation symmetries, the condition
of normalization,

Y o p)=1, ®)
and compatibility conditions,

pi@) =Y pai.j) =Y pajsi), ©)
j j

the number of independent parameters can be reduced dras-
tically. For example, in the present systems the one-site con-
figuration probabilities can be expressed by two independent
parameters (p,, and p3 for n > 2) as

pi(l) =1—=p2—(n—2)ps3,
P1(2) = p2, (10)
p1() = p3, ifi>2.

Similarly, for the pair approximation we have five independent
two-site configuration probabilities to evaluate.

In the spirit of cluster variation methods the values of the
independent configuration probabilities can be determined by
finding the extremum of a thermodynamic potential,

d=U+KS, an

where U/ and S are the average value of the potential

U = Y, p($)U(s)) and the entropy (S = — Y p(s) In p(s)),
respectively. In the one-site approximation ® can be approxi-
mated by

oV =2N Y pi()pi(j)Aij — NK Y pi(i)In pi(i). (12)
i,j i

The equilibrium values of p, and p3; can be obtained by
finding the maximum of ®! with respect to these quantities.
In general, the equations

Rrol Rrol
=0 and
002 03

have several solutions. In the latter cases we should select the
solutions providing the highest values of &,

The above method can be straightforwardly extended for
the two-site approximation when the corresponding thermo-
dynamic potential is given as

2 = 2N pa(i j)Ai; —2NK Y pa(i.j)In pa(i. )
i,j i,j

+3NK Y pi()In pii), (14)

1

=0 (13)
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FIG. 1. Strategy frequencies vs. K show a continuous order-
disorder phase transition for n = 4. The symbols indicate MC data,
the predictions of the one- and two-site approximations are illustrated
by solid and dashed lines. Thick (thin) lines represent stable (unstable)
solutions.

in the limit N — oo. The equilibrium values of the inde-
pendent two-site configuration probabilities p,(i,j) can be
evaluated in the same way as drafted above.

The results of numerical solutions are compared with
the MC data (discussed later) in Figs. 1 and 2 for n =4
[26] and 6. In both cases the approximations reproduce the
MC data qualitatively well. Namely, these systems undergo
a continuous order-disorder phase transition when K is
increased.

For n = 4 the three methods predict the following critical
noise levels: K19(4) = 2, K®(4) = 1.65(2),and KMO(4) =
1.4076(2). For n =6 the same results are: K{!9(6) =
4/3, K®(6) = 1.25(2), and KMO(6) = 1.102(2). The K-
dependence of the strategy frequencies refers to continuous
order-disorder phase transition as shown in Fig. 2.

These results illustrate some general properties that remain
valid for larger n. For example, if p; — 1 in the low noise

strategy frequency

FIG. 2. Strategy frequencies as a function of K for n = 6.
Notations are the same as described in the caption of Fig. 1. Notice the
agreement between the predictions of pair approximation and Monte
Carlo data (closed and empty diamonds denote the frequencies of
the first and second strategies) obtained for N = 160000 sites on a
random regular graph.

PHYSICAL REVIEW E 93, 052108 (2016)

strategy frequency

FIG. 3. Variations in strategy frequencies for n = 20. Notations
are the same as described in the caption of Fig. 1.

limit then p, < p; = p3 for 2 < i < n in agreement with the
expectation. In the disordered phase (K > K.(n)), however,
p1 = p2 > p; = ps. Furthermore, K .(n) decreases with n for
all three approaches.

In light of the previous results (for references see Ref. [27]),
the pair approximation can exactly describe the K -dependence
of strategy frequencies on sufficiently large random regular
graphs. This expectation is confirmed by Monte Carlo data in
Fig. 2.

The above numerical calculations have also been performed
for several larger n values when the one- and two-site
approximations predict a first-order phase transition as it is
illustrated in Fig. 3 if n = 20. Here the thin lines show all the
possible solutions of Egs. (13) while the thick lines denote the
preferred ones where the ®V (or ®@) reaches the maximum
value. The vertical thick lines refer to step-like changes in the
strategy frequencies. Notice that here the MC data indicate a
continuous phase transition. The numerical solutions of the
mean-field approximation indicate that the continuous phase
transition becomes a first-order one for n > 6. At the same
time the pair approximations predict a first-order transition
if n > 10. On the contrary, the MC simulations indicate
Ising-type critical transitions for both threshold values of n
as discussed later.

We have to emphasize that the mean-field approximations
predict an uncorrelated random strategy distribution (p; =
1/n) for any values of n. The latter feature is related to the fact
that the average value of the potential remains zero ({ = 0) in
these states. Considering the Taylor series expansion at these
solutions, we can deduce the following analytical formula for
the critical points:

8
KM™(n) = -, (15)
n

in agreement with the numerical values given above for n = 4
and 6, when this approach predicts a mean-field-type con-
tinuous phase transition. Notice, furthermore, that quadratic
deviations in p; and p, are predicted by the mean-field
approximation for the unstable solutions at K''(n) defined
by Eq. (15).

The above results also imply the possibility of deriving
an asymptotic estimation of K{!¥(n) for large values of n.
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Namely, we may assume that the ordered phase (with p;(1) =
1 and p;(i) =0 for i > 1 when U/N =2 and S/N =0)
transforms into an uncorrelated disordered state (p;(i) =
1/n Vi witht/'V/N = 0and SV/N = Inn) at a noise level K
where the contribution of entropy to ®!) exceeds the average
value of the potential in the ordered phase. This approach
predicts a first-order phase transition at

KM (n) ~ —

, 16
Inn (16)

if n > 1. Notice that the high entropy stabilizes the disordered
phase at a low noise level for sufficiently large n. A similar
mechanism is utilized for high entropy alloys [42-44] con-
sidered a promising family of materials for several technical
purposes.

B. Monte Carlo simulations

Monte Carlo (MC) simulations are performed on a square
lattice of N = L x L sites with periodic boundary conditions.
The linear size of the system is varied from L = 300 to
1000. During the simulations we have determined the strategy
frequencies (p;) by averaging over a sampling time ¢, after a
relaxation time #,. The values of 7, and ¢, are varied from 10*
to 103 Monte Carlo steps (MCS) where in 1 MCS each player
receives a chance to modify her strategy once on average.
The larger system sizes and the longer run times are used in
the close vicinity of the critical phase transitions in order to
suppress the undesired effects of the diverging fluctuations,
correlation lengths, and relaxation time. Additionally, we
have used different initial states to achieve adequate results
characterizing the system behavior in the final stationary state
in the limit N — oo.

We have performed a series of MC simulations varying the
noise level K and the number of strategies. The numerical
results are illustrated in Fig. 4 for four different values of n.
Notice that, contrary to the results of mean field and pair
approximations, the MC data indicate a continuous phase
transition at n = 20. Additionally, one can observe a fast

strategy frequency

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 4. Monte Carlo results for the strategy frequencies as a
function of K for n = 6 (circles), 10 (boxes), 20 (diamonds), and
50 (triangles). Open (closed) symbols indicate the frequencies of
strategy 1 [Eq. (2)]. The frequencies of the neutral strategies are
denoted by thick solid, dotted, dashed, and thin lines.
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FIG. 5. Log-log plots of the order parameters |p; — p,| versus
K.(n) — K. The MC results are illustrated by boxes, diamonds, and
circles for n = 6, 10, and 20, respectively. The dashed line illustrates
the exact (Onsager [38]) result for n = 2.

decrease of p; = p; in the disordered phase in the close
vicinity of K (n) for both n = 10 and 20.

The Ising-type behaviors [|p; — po] o (K.(n) — K)/®
[16,45] in the limit (K.(n) — K) — +0] are demonstrated by
a log-log plot in Fig. 5 for several values of n.

The numerical results refer to a critical phase transition that
belongs to the Ising universality class in agreement with the
results obtained previously for n = 3 and 4 [24-26].

In order to give a suitable estimate for the threshold
value of n we have performed further systematic numerical
investigations. In the close vicinity of the phase transitions we
used larger system sizes (L > 1400) and longer run times
(t, = t; > 2 x 10> MCS) in the simulations. According to
the Monte Carlo data (see Fig. 6) one can conclude that
the continuous phase transition becomes a first-order one if
n > ng = 27. We emphasize, however, that we need further
time-consuming numerical investigations if we wish to clarify
the details of how the Ising-type critical transition turns into
a first-order transition. In agreement with our expectations the
presence of a first-order phase transition is accompanied with

strategy frequency

FIG. 6. Monte Carlo results of frequencies for the first and second
strategies are illustrated by empty and closed symbol pairs for n = 30,
28,27, 26, 25, and 24 (from left to right).
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FIG. 7. These snapshots illustrate how the metastable (disor-
dered) states evolve toward one of the stable (ordered) phases
throughout a nucleation process on a square lattice for n = 50. For
both pictures the white and black boxes refer to strategy 1 and
2, whereas all the neutral strategies (2 < i < n) are denoted by a
uniform gray color. On the left snapshot the system is started from
a random strategy distribution at K = 0.5 < K.(50) and after the
formation of islands with the preferred ordered strategy arrangements
the system evolves into a pattern composed dominantly of black and
white domains with growing sizes. For the right-hand snapshot the
simulation is started from a homogeneous ordered (white) phase at
a noise level K = 0.52 > K.(50) and here one can observe several
(gray) domains of the disordered phase that grow at a constant radial
velocity if their sizes are sufficiently large.

the appearance of hysteresis phenomena when increasing or
decreasing K through the critical points.

Previous systematic investigations have already clarified the
dynamics of the ordering processes especially for the Ising and
Potts models [17,19,46-50]. The nucleation theorems [51-53]
are developed to describe the formation of domains of the
thermodynamically preferred phase that are sufficiently large
to grow with a constant average radial velocity. In the present
models the relevance of these phenomena are illustrated in
Fig. 7. The snapshots show the strategy distributions at the
times when the sufficiently large domains of the emerging
phases are well recognizable.

The left-hand snapshot demonstrates the appearance of two
types (black and white) of domains in the sea of the neutral
strategies in the nucleation period of the evolutionary process
when the expansion of the preferred domains is sustained
by the suitable motion of steps along the horizontal and
vertical interfaces. The right-hand snapshot of Fig. 7 illustrates
an opposite process when the neutral phase expands to the
disadvantage of the ordered strategy arrangement(s). Both
processes are preceded by the formation of sufficiently large
islands of the thermodynamically preferred phases.

In agreement with the theoretical predictions [51-53] the
appearance of sufficiently large domains requires longer time
in the vicinity of K.(n) for larger n and this phenomenon
causes technical difficulties in the determination of K.(n).
These troubles can be avoided by starting the simulations from
an artificial initial state containing large domains of all the
possible final states. In those cases we can quantify the invasion
velocity between the competing phases as it is used for the
determination of phase diagrams in many other evolutionary
games [37,54-61].

PHYSICAL REVIEW E 93, 052108 (2016)

FIG. 8. Two competing elementary processes along a step-like
interface separating the homogeneous ordered (white) phase and the
disordered phase composed of neutral (gray) strategies.

C. Average invasion velocity

The visualization of the microscopic variation in patterns
plotted in Fig. 7 indicates clearly that the most relevant
processes occur at the steps located along the horizontal and
vertical interfaces. Figure 8 illustrates a horizontal interface
with one step that separates the (white) ordered (s, = s, 1)
and (gray) disordered (s, = s,,; with 2 < j < n) territories.
Along this step the pair interactions favor the transition
Sy — Sy.1 that occurs with a probability

oK

Y, e

at a noise level K for the logit rule, Eq. (6). On the other hand,
player y will choose one of the neutral strategies from the
(n — 2) options with a probability

w(sy = Sx1) = 7)

n—2
X, e

Notice that the denominators of Eqs. (17) and (18) are
equivalent as both players x and y have two neighbors each
belonging to the competing phases and at low noises we can
neglect the roles of the transitions s, — s, > and/ors, — s, .
At a low noise level (K < K0(n)) the ordered phase will
expand on average if w(sy — sy, 1) > (n — 2)w(s, — s; ;). In
the opposite case the disordered phase will conquer the ordered
phase. However, there is a balance between these processes at
the critical point K (n) that can be estimated as
@if) ~ _2

K. W(n) >~ =2 (19)
for large values of n. This asymptotic behavior is similar
to those we obtained from the mean field calculations and
the small difference is related to the neglected correlations
occurring in both the ordered and the disordered phases.

w(s, — Sy ;) = (18)

D. Comparison of asymptotic behaviors

In order to check the asymptotic values of K.(n) we
have run additional MC simulations for n» = 100 and 500
predicting first order transitions at K.(100) = 0.435(3) and
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FIG. 9. Critical points versus 1/In(n) for n > 3. Open and
closed circles denote MC results for the first- and second-order
phase transitions. Pluses and crosses as well as open boxes and
diamonds show the corresponding predictions of the mean-field and
pair approximations. Solid and dashed lines illustrate the predictions
of Egs. (16) and (19).

K .(500) = 0.322(2). Figure 9 compares the results we have
deduced by using the approaches discussed above. The most
striking message of this plot is that the mean-field results can
be used as a rule of thumb for the estimation of the critical
transition points for n > 3.

IV. SUMMARY

Using different methods we have studied the order-disorder
phase transitions in a special set of evolutionary potential
games on a square lattice when the dynamics is controlled
by a logit rule. The linear combinations of similar pair
interactions span the class of coordination-type interactions
in symmetric n x n games [26,27]. The latter set of games
are orthogonal to the other three classes of symmetric matrix
games characterized by self- or cross-dependent payoffs, or
by cyclic dominance among the strategies. The present games
are located along n(n — 1)/2 lines (within the subset of
coordination type interactions) in the n?-dimensional space
of payoff parameters. All these systems have a coordination-
type interaction between a strategy pair while the remaining
strategies provide zero payoffs for the interacting players.
When varying the noise level K these games exhibit universal
properties dependent on n. Due to the mentioned symmetry our

PHYSICAL REVIEW E 93, 052108 (2016)

analysis is restricted to the models where the coordination-type
interaction exists only between the first and second strategies
while the other (n — 2) strategies are neutral.

For n = 2 the present system is identical to the Ising model
that undergoes a critical phase transition representing the
Ising universality class [45]. For larger n the same power-law
behavior is observed in the K-dependence of |p; — p2| when
approaching the critical point K.(n) if n does not exceed a
threshold value ny, that could be estimated by the mean-field
and pair approximations. The MC simulations, however,
have indicated a higher threshold value, namely ng = 27.
For n > ny, a first-order phase transition occurs at K.(n)
decreasing asymptotically as K.(n) >~ 2/In(n) in the limit
n — oo. The mean-field calculations have clearly indicated
that this asymptotic behavior is related to the logarithmic
divergence of entropy (S/N = Inn) in the disordered phase.

Finally, we emphasize that within the class of coordination
interactions two typical behaviors can be distinguished [26].
In the first type of cases, the single maximum value of V;;
is located in the main diagonal of the payoff matrix (e.g.,
max (V;;) = Vi1) when the corresponding strategy forms a
homogeneous phase at low noises that varies smoothly toward
the disordered phase if K is increased. In the second type
of cases, max (V;;) =V, = V,, (p # q) when the strategy
pair (p,q) can form two equivalent sublattice-ordered strategy
arrangements (at low noises on the square lattice) reminiscent
of an antiferromagnetic spin system. A similar strategy
distribution can occur on other lattices (or bipartite graphs),
which can be divided into two equivalent sublattices. These
systems can be transformed into a ferromagnetic system if the
labels p and g are exchanged in one of the sublattices. The
latter systems possess an Ising-type critical phase transition
due to the mentioned symmetry relation.

In addition to the present set of coordination-type games
one can distinguish other curious games that are analogous to
the Q-state Potts models. In the latter cases, however, one can
introduce additional neutral strategies, too. It is conjectured
that most of the above conclusions can be adapted when
analyzing the latter models.
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