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Evolutionary games are studied here with two types of players located on a chessboard or on a bipartite random
regular graph. Each player’s income comes from matching-pennies games played with the four neighbors. The
players can modify their own strategies according to a myopic strategy update resembling the Glauber dynamics
for the kinetic Ising model. This dynamical rule drives the system into a stationary state where the two strategies
are present with the same probability without correlations between the nearest neighbors while a weak correlation
is induced between the second and the third neighbors. In stationary states, the deviation from the detailed balance
is quantified by the evaluation of entropy production. Finally, our analysis is extended to evolutionary games
where the uniform pair interactions are composed of an anticoordination game and a weak matching-pennies
game. This system preserves the Ising type order-disorder transitions at a critical noise level decreasing with the
strength of the matching-pennies component for both networks.
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I. INTRODUCTION

Evolutionary games give us a general mathematical back-
ground for the investigation of multiagent social and biological
systems even in the cases where the pair interactions do
not possess the symmetries characteristic to many-particle
physical systems. For the simplest systems, the pair interaction
is described by two-player two-strategy games. Among these
so-called 2 × 2 matrix games, the matching-pennies game
represents an interaction that is missing in physical systems.
Despite it, the effect of this type of interaction can be well
investigated with the concepts and tools of nonequilibrium
statistical physics. The successes of these approaches are well
documented by the large number of papers published in the
literature of physics (for a general survey and references, see
the book [1] and review [2]).

In the multiagent evolutionary games, the players are
distributed on a lattice or network, and their interactions
with the connected neighbors are described by the payoff
matrix introduced in traditional game theory [3]. In these
models, each player chooses one of her possible strategies
in all the games in which she participates. For most of the
cases, we assume that the players, their strategy sets, and the
games are identical. Furthermore, for the evolutionary games,
the players can modify their own strategies with following
a (uniform) dynamical rule that may be deterministic or
stochastic, synchronized or random sequential update, based
on imitation of a more successful neighbor or myopic selection
of those strategies providing higher individual gain for the
given surrounding.

In the present paper, we restrict our analysis to those
evolutionary games where two types of players (X and Y )
are distinguished who are located on bipartite networks.
More precisely, first we study these evolutionary games on
a square lattice that can be divided into two equivalent
sublattices (using the analogy of the white and black squares
on a chessboard) occupied by players of types X and Y ,
respectively. Additionally, we will study this model on a
bipartite random regular graph where each player of type X

interacts with four connected neighbors of type Y as happens
on a chessboard.

In order to clarify the effects of matching-pennies inter-
actions, first we study spatial distribution of the two choices
called heads (H ) and tails (T ). For the traditional matching-
pennies game, the two players first agree who will be the
winner if the sides of the coins are the same or different
(henceforth, representing the types X and Y ). Then they
conceal a coin in their palms with the side heads or tails
upward and reveal their choices simultaneously. The winner
receives the opponent’s penny. It is evidently a zero-sum game,
and the outcomes with the suitable payoffs are illustrated
within the boxes in the flow diagram plotted in Fig. 1. In this
flow diagram, the boxes illustrate the four possible strategy
pairs (called strategy profiles), and the arrows on the horizontal
and vertical edges point toward the strategy profile where the
strategy reversing player receives a higher individual payoff.
The directed loop indicates that the strategy profile changes
cyclically if the players are allowed to modify their own
strategy alternately or even in a random sequential order.
This inherent feature of the matching-pennies game can be
considered as a driving force creating a constant probability
current along the directed loop in the stationary state.

Here it is worth mentioning that the matching-pennies
game, as a driving force for the Red Queen mechanism, was
proposed by van Valen [4,5] in the years when the concept
of evolutionary game theory emerged [6]. Similar interaction
was suggested to describe the competition between buyers and
sellers [7] or property owners and criminals [8].

In the present paper, we study the effect of the matching-
pennies game on the strategy distribution for two types of
networks when varying the noise level at a Glauber type
dynamical rule. It will be demonstrated that this interac-
tion develops a random strategy distribution with a weak
correlation for the spatial connectivity structure while this
correlation changes slightly on the bipartite random regular
graph. In the stationary state, the most striking feature of
the matching-pennies game is related to the maintenance of a
cyclic strategy variation that breaks the detailed balance. The
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FIG. 1. Flow graph for the two-player matching-pennies game.

strength of the latter effect will be quantified by the evaluation
of the entropy production. Subsequently, we will consider the
effect of a weak matching-pennies game on the order-disorder
transition when the chessboardlike arrangement of strategies
is supported by anticoordination games (or antiferromagnetic
interactions) at low noise levels. The relevance of these models
is justified by the strong analogy between the Ising models
[9,10] and the social [11–14] or [15] biological systems. It will
be demonstrated that the main features of this critical transition
remain unchanged, whereas, the critical noise level decreases
with the strength of the matching-pennies component.

II. MODELS, FORMALISM, AND METHODS

We study multiagent evolutionary games with players
located on the sites of bipartite regular graphs. These structures
can be divided into two sets (denoted as X and Y referring
to the types of players) of nodes x ∈ X and y ∈ Y . The
analysis is restricted to networks where each site x (and y)
is connected to k = 4 neighboring sites denoted as x + δ ∈ Y
(or y + δ ∈ X ). Each player’s income comes from two-player
matrix games with the neighbors. Following the traditional
notation, the strategy for both types of players is denoted by
two-dimensional unit vectors as

sx,sy = H =
(

1
0

)
, T =

(
0
1

)
. (1)

For this formalism, the player’s income is expressed by a sum
of matrix products,

ux =
∑

δ

sx · Asx+δ, uy =
∑

δ

sy · Bsy+δ, (2)

where the summation runs over the four nearest neighbor sites
belonging to the opposite sublattice. The matrix elements Aij

and Bij (i,j = 1,2) tabulate the payoffs for players of types
X and Y . For the matching-pennies game, the payoff matrices
are defined as

A =
(+1 −1

−1 +1

)
, B =

(−1 +1
+1 −1

)
. (3)

It is known that this zero-sum game has only one mixed Nash
equilibrium when both players choose the two strategies (H
and T ) with the same probability (1/2) independent of each
other.

We also study systems when the payoffs are composed of
anticoordination and matching-pennies games as

A =
(

0 + ε 1 − ε

1 − ε 0 + ε

)
, B =

(
0 − ε 1 + ε

1 + ε 0 − ε

)
. (4)

Contrary to the matching-pennies game, the anticoordination
game [with payoff matrices (4) for ε = 0] has two pure
Nash equilibria when sx = H and sy = T or sx = T and
sy = H . For the spatial multiagent model, the corresponding
strategy arrangements are equivalent to the chessboard or
antichessboard spatial arrangement of the two strategies.
Within the terminology of bipartite graphs, we can say that
sublattices X and Y are occupied uniformly by opposite
strategies, that is, sx = H and sy = T (or sx = T and sy = H )
∀ x ∈ X and ∀ y ∈ Y .

Henceforth, we assume that the evolution of the strategy
distribution is governed by the same random, sequential, and
stochastic strategy reversals (e.g., sx → s ′

x) on both sublattices.
Within an elementary step, a randomly chosen single player
(e.g., at site x) modifies her strategy with a probability,

W (sx → s′
x,s−x) = 1

1 + exp[(ux − u′
x)/K]

, (5)

dependent on her payoff variation, whereas, the strategy profile
for the rest of players (denoted traditionally as s−x) remains
unchanged. This strategy modification is similar to the Glauber
dynamics [16] used in the kinetic Ising model and favors the
payoff increase for the given player, and K characterizes the
magnitude of noise.

It is already well known that this transition rule [2]
and the logit rules [17,18] drive evolutionary games into a
Boltzmann distribution if the payoff matrices are equivalent
and symmetric (i.e., A = B = AT ) or if we can derive a
potential matrix [19,20] summarizing the individual gain of
the player modifying her strategy. Consequently, for the pair
interactions given by the matrices (4) at ε = 0, the system
becomes equivalent to the antiferromagnetic Ising model
without a magnetic field that exhibits a continuous phase
transition from the antiferromagnetic state to the paramagnetic
phase at a critical point if the temperature (noise) is increased.
The second model [defined by payoffs (4) for 0 < |ε| � 1]
allows us to study how the presence of a weak matching-
pennies component affects the order-disorder transition.

The above systems are analyzed by performing Monte Carlo
(MC) simulations on square lattices of N = L × L sites with
periodic boundary conditions and bipartite random regular
graphs (of site N ) generated by an algorithm prohibiting
the presence of double edges. During the simulations, N is
varied from N = 2.5 × 105 to 4 × 106. For most of the cases,
the simulations are started from a random initial state, and
after a suitable thermalization time tth, the statistical data are
obtained by averaging over a sampling time ts . These values are
adjusted to the system behavior and are changed typically from
tth = 2000 Monte Carlo steps (MCSs) and ts = 50 000 MCSs
to tth = 106 MCSs and ts = 3 × 106 MCSs where, within the
time unit (MCS), each site has a chance, once on average,
to modify its state. The larger sizes and longer times are
used when we have to achieve high accuracy (e.g., for the
determination of correlations) or in the vicinity of the critical
transitions to suppress the undesired effects of fluctuations.
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Using MC simulations, we have determined the correlation
functions, the entropy production, the order parameter, and
the fluctuations as a function of noise K .

Besides the MC simulations, we have used the so-called
dynamical cluster methods to obtain approximate analytical
results. Here we do not wish to describe the details of these cal-
culations as the well-documented dynamical cluster methods
(frequently called generalized mean-field approximations) are
already applied successfully for many other systems [21,22],
including evolutionary games [2,23]. For these methods, we
evaluate all the configuration probabilities on a compact cluster
built up from n sites on translation invariant lattices. Evidently,
increasing n improves the accuracy and the number of variables
we have to evaluate when applying this approximate method
[24]. For example, at the nine-site level of these approxi-
mations, we have to numerically solve a set of equations
of motion where the 2 × 29 = 1024 variables describe the
probability for each possible strategy configuration on the
two distinguishable 3 × 3 blocks of sites. With the knowledge
of these configuration probabilities, we can give analytical
predictions for the above-mentioned quantities.

III. CORRELATIONS FOR THE MATCHING-PENNIES
GAMES

According to the MC simulations, the system with the
matching-pennies interactions evolves into a stationary state
where both strategies in both sublattices are present with
the same probability. These results are in accordance with
symmetries predicting equivalence between strategies H and
T and sublattices X and Y . When displaying the strategy
distribution on the square lattice, we cannot visually observe
correlations.

In order to get a more quantitative picture, we have
determined the one-time correlation functions defined as

c(z,t) = 〈nH (x,t)nH (x + z,t)〉x − 〈nH (x,t)〉2
x (6)

among the first [z = (1,0)], second [z = (1,1)], and third
neighbor [z = (2,0)] sites, where 〈· · · 〉x denotes the average
over the whole lattice and the occupation numbers nH (x,t) = 1
if sx = H and zero otherwise at time t . In the stationary state,
c(z,t) fluctuates around its mean value [denoted shortly as
c(z) and determined by averaging over a sufficiently long
time period] with a magnitude dependent on size N and noise
K . Due to the symmetries, the same average correlations are
expected if we consider the distribution of the T strategies. It is
noteworthy that we do not need to distinguish the sublattices.

The MC simulations have quantitatively confirmed the
absence of correlations between the nearest neighbor sites for
any values of K as indicated in Fig. 2 where the statistical errors
are comparable with the symbol size. On the other hand, weak
negative correlations are found between the second and the
third neighbors. Evidently, the magnitude of these correlations
vanishes if K → ∞.

The two-site (pair) approximation has predicted no cor-
relations, that is, all the possible two-site configurations ap-
peared with the same probability. Similar results are obtained
for the four-site approximation when 24 = 16 configuration
probabilities are determined on a 2 × 2 block of sites on the
square lattice. The failure of the latter approach has motivated

−0.00016

−0.00012

−0.00008

−0.00004

 0

 0  0.5  1  1.5  2

C
or

re
la

tio
n 

fu
nc

tio
ns

K

FIG. 2. Average correlation functions vs K for the matching-
pennies games on a chessboard. Pluses illustrate the absence of
correlation between the nearest neighbor sites; crosses (diamonds)
show c(δ) for the second (third) neighbors, respectively. The solid,
dashed, and dotted lines illustrate the theoretical predictions based
on the nine-site dynamical cluster method for the correlations among
the first, second, and third neighbors.

us to evaluate the nine-site configuration probabilities too.
This level of the dynamical cluster methods has clearly
indicated the differences in the configuration probabilities,
meanwhile, all the relevant symmetries (rotation, reflection,
and equivalence among the two strategies and sublattices)
are clearly exhibited. From these data, we could determine
the values of the correlation function for the same distances
as above by averaging over a suitable set of configurations.
The predictions are evaluated for different noise levels and
are compared to the results of the MC simulations in Fig. 2.
Notice the qualitative agreement between the results of the
two methods. Evidently, one can achieve better agreement
by performing this approach for higher levels (e.g., on 4 × 4
clusters). Unfortunately, this time-consuming analysis exceeds
the capacity of our computers.

As the above calculations have not clarified the effects
of the topological features of the connectivity network on
the emerging weak spatial correlations, therefore, the above
analyses are repeated on bipartite random regular graphs for
the same number of neighbors (k = 4). Figure 3 illustrates
the MC results on the bipartite random graphs that show
some differences in comparison to those obtained on the
square lattice (see Fig. 2). The most striking results are the
smaller magnitudes of the correlations on the bipartite random
regular graphs and their absence between the third neighbor
sites.

Before discussing the above results, first we emphasize
that, at the level of pair approximation, the square lattice
cannot be distinguished from the Bethe lattice we assumed
for the analytical calculations. The loop-free Bethe lattice can
be considered as an adequate network locally similar to a
sufficiently large random regular graph where the shortest
loop size (involving a node) increases with the logarithm
of size N [25]. Previous investigations [26] have clearly
demonstrated the applicability of this approach for systems
where the presence of sufficiently long loops has not modified
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FIG. 3. Correlation functions vs K for the matching-pennies
games on bipartite random regular graphs. Symbols illustrate the MC
results as in Fig. 2. The solid and dashed lines show the approximative
results extracted from the eight-site dynamical cluster method.

the macroscopic behavior of the system. The dynamical cluster
method on a starlike five-site cluster has predicted a weak
deviation from the uniform configuration probabilities. These
differences, however, have not explained the presence of a
weak correlation between the second neighbors found by
Monte Carlo simulations for any noise levels. The more
sophisticated eight-site dynamical cluster method, however,
is capable of qualitatively reproducing the features found by
MC simulations among the first, second, and third neighbors
as illustrated by the solid and dashed lines in Fig. 3.

The differences between the correlation functions indicate
the relevance of the short loops in the connectivity structures,
although they are not the only source of the observed
correlations. Additionally, we mention that significantly larger
correlations are found in the zero noise limit if we block the
frustrated transitions (ux = u′

x).

IV. BREAKING OF DETAILED BALANCE

Besides the weakly correlated spatial randomness, the
breaking of detailed balance can also be quantified in the
stationary states of the evolutionary matching-pennies games.
For this purpose, we consider the entropy production (for
a survey, see Ref. [27]). This quantity summarizes the
contributions coming from the breaking of detailed balance
between all the possible elementary transition pairs when only
one player (e.g., at site x) changes her strategy from sx to s ′

x

and backward (from s ′
x to sx) while all the other strategies are

fixed. The frequency of this elementary transition from the
strategy profile (sx,s−x) to (s′

x,s−x) will be denoted as

w(sx → s′
x,s−x) = f (sx,s−x)W (sx → s′

x,s−x), (7)

where f (sx,s−x) is the probability of finding the system in the
given strategy profile in the stationary state and the probability
of strategy reversal W (sx → s′

x,s−x) is given by (5). In such
types of systems, the deviation from the detailed balance can
be quantified by the evaluation of entropy production defined

as

I = 1

2

∑
sx ,s

′
x

s−x
,

[w(sx → s′
x,s−x) − w(s′

x → sx,s−x)]

× ln
w(sx → s′

x,s−x)

w(s′
x → sx,s−x)

, (8)

where the summation runs over ∀ sx,s′
x,s−x . Notice that this

quantity is always positive (I > 0) except in the case where the
conditions of detailed balance are satisfied, namely, if w(sx →
s′
x,s−x) = w(s′

x → sx,s−x) ∀ sx,s′
x,s−x .

Within the concept of dynamical graphs [27], the nodes
represent the possible strategy profiles. Edges connect those
strategy profiles that can be transformed into each other by
a strategy change for a single player. Along these edges, we
can define a probability current (as a difference between the
forward and the backward transition frequencies) that should
satisfy the Kirchhoff laws [28] in the stationary state.

In lattice systems, the entropy production can easily be
estimated if we recognize that the transition frequency w(sx →
s′
x,s−x) depends dominantly on the close neighborhood of

player x if the dynamics is controlled by short range inter-
actions. Besides it, we can exploit the translation invariance of
the system that means that all these transitions are independent
of x. As a result, the specific entropy production (I/N )
can be well estimated by determining the average transition
frequencies for all possible local strategy configurations only
within a close neighborhood of site x. Accordingly, in MC
simulations, I/N is determined by considering the transition
frequencies w(sx → s′

x,s−x) as a function of the 24 = 16
possible strategy configurations on the four nearest neighbor
sites. In general, a better approximation can be obtained
if we distinguish 28 = 256 configurations on the first and
second neighbor sites around the focal player. In this way,
we can deduce two approximative results for the specific
entropy production (I/N) whose comparison can indicate
the relevance of the second neighbors, although they do

 0
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I/N

K

FIG. 4. Approximative results for the specific entropy production
as a function K in the matching-pennies games on a chessboard. The
MC data are denoted as symbols when only the first (pluses) and first
and second neighbors (open boxes) are taken into consideration. The
analytical result in the absence of correlations is illustrated by the
solid line.
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not directly influence the transition in the present model
[29].

Figure 4 shows the MC results for the above-mentioned
two approaches. Assuming the absence of correlations, I/N

can easily be evaluated analytically. It is noteworthy that the
nine-site approximation allows us to give a more accurate
estimation for the specific entropy production. This calculation
indicates that the weak correlation results in an extremely
small deviation from the uncorrelated case (the difference is
significantly less than the line thickness). In agreement with
the expectations, the specific entropy production vanishes in
the limit K → ∞ when the effect of payoffs is suppressed
by the noise. On the other hand, I/N diverges when K → 0
due to the fact that some transitions become one way [e.g.,
w(H → T ,s−x) → 0 while w(T → H,s−x) → c > 0]. The
analytical calculations in the absence of correlations show
that the specific entropy production diverges as I/N ∝ 1/K

in the zero noise limit. On the contrary, this quantity vanishes
as I/N ∝ 1/K2 if K → ∞.

V. EVOLUTIONARY ANTICOORDINATION GAME
WITH DISTURBANCE OF MATCHING PENNIES

Now we consider the second model when the ordering effect
of the anticoordination type interactions is disturbed by a weak
matching-pennies component [as defined by the payoff (4) for
|ε| � 1] in the spatial evolutionary games. For the absence
of the matching-pennies component (ε = 0), this model is
equivalent to the well-known antiferromagnetic Ising model
that has two equivalent ordered strategy arrangements in the
zero noise limit as mentioned in the Introduction. For low
noise levels, point defects will decorate the ordered structure,
and these defects become larger and more frequent when K is
increased. Above a critical noise level (K > Kc), the strategy
frequencies cannot be distinguished in the two sublattices.
This order-disorder transition usually is quantified by the
introduction of an order parameter φ that is expressed by the
difference in average occupation numbers,

m(t) = 〈nH (x,t)〉x − 〈nH (y,t)〉y, (9)

as

φ = |〈m(t)〉t |, (10)

where 〈· · · 〉t denotes averaging over time in the stationary
state. The noise dependence of the order parameter is well
discussed in the literature of Ising models [10,30,31], and it
represents a universal class of critical phase transitions occur-
ring in many other systems. One of the main characteristics of
these systems is that the order parameter exhibits power law
behavior in the close vicinity of the critical point, namely,

φ ∝ (Kc − K)β, (11)

if 0 < Kc − K � Kc. For the Ising model with nearest
neighbor interactions on the square lattice, the values of the
critical point and the exponent are known exactly. For the
present parameters, the numerical values are Kc(ε = 0) =
1/ ln(1 + √

2) = 1.134 593 and β = 1/8.

Figure 5 compares the order parameters φ as a function
of K for ε = 0 and 0.2. Notice that, for ε = 0, the MC
data (closed boxes) coincide with the exact result found
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FIG. 5. MC results for the order parameter φ as a function of K

in the upper plot for the evolutionary anticoordination game on the
square lattice in the absence (closed boxes) or presence (open boxes
at ε = 0.2) of the matching-pennies component. The solid line shows
the exact result for the corresponding antiferromagnetic Ising model.
The same data are illustrated on a log-log plot of φ vs Kc − K at the
bottom.

by Onsager [32]. The results of the numerical simulations
indicate similar order-disorder transitions for ε = 0.2 too.
The similarity becomes more striking on the bottom log-log
plot used frequently to demonstrate the power law behaviors.
For the latter case, the order parameters are considered
as a function of [Kc(ε) − K]. A nice coincidence emerges
if we choose Kc(ε = 0.2) = 0.9274(1). Similar universal
critical behavior occurs in the antiferromagnetic Ising model
in the presence of a homogeneous external magnetic field
[33,34]. This universal behavior is justified for many other
two-dimensional equilibrium systems. At the same time, the
appearance of this behavior is not evident in the present
nonequilibrium system where the detailed balance is broken
as demonstrated in Fig. 6. According to the MC results, the
specific entropy production refers to a relevant deviation from
the detailed balance particularly within a wide region around
the critical transition point. Notice, furthermore, the difference
between the two approaches that refers to the relevance of
the second neighbors in the elementary strategy reversals that
is operating via some memory effects in the spatiotemporal
patterns.

For low levels of noise, the formation of the sublattice
ordered strategy arrangement reduces the frequency of strategy
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FIG. 6. Estimations for specific entropy production vs K on the
square lattice for ε = 0.2 when only the first (+) and the first and
second neighbor configurations (×) are taken into account during
the counting of elementary events. The arrow indicates the transition
point at Kc(ε = 0.2).

reversals as quantified in Figs. 5 and 6. The visualization
of the time-dependent strategy distributions indicates that, in
the ordered structure, isolated players rarely adopt undesired
strategy and reverse back to the favored state within a short
time. This phenomenon weakly reduces the order parameter
and does not contribute to the specific entropy production. The
frequency and size of these defects increase with the magnitude
of noise K , and the sublattice ordered structure is completely
destroyed above the critical point Kc(ε), whereas, the emerging
specific entropy production is suppressed by the dominance of
randomness at high noise levels.

Using MC simulations, we have evaluated the order param-
eter φ for this model on bipartite random regular graphs when
varying the noise level. The results are shown in Fig. 7 where
φ2 is plotted as a function of K . One can recognize that φ2

vanishes linearly at the critical transition points for both ε = 0
and ε = 0.2. These features refer to a mean-field type behavior
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FIG. 7. Square of order parameter vs K for the anticoordination
game on a bipartite random regular graph. Symbols + and × show MC
data for ε = 0.0 and ε = 0.2, whereas, solid and dashed lines illustrate
the prediction of two-site approximation for the same strength of the
matching-pennies component.

(β = 1/2) that is predicted by theories for sufficiently high
spatial dimensions and small-world structures [35]. Notice
that the MC data (for ε = 0) reproduce the exact results
provided by the two-site dynamical cluster method [10,35,36].
Additionally, this approach gives an adequate description for
the disturbance of matching-pennies contribution. The small
differences between the results of MC simulations and pair
approximations refer to the emergence of additional long range
correlations occurring for ε = 0.2.

For the Ising type critical behaviors, there are other quan-
tities (e.g., susceptibility, correlation length, and relaxation
time) exhibiting power law divergence when approaching the
critical transition point Kc. The corresponding exponents,
however, are related to each other via the scaling laws as
justified theoretically and by simulations [30]. At the same
time, for the clear identification of the Ising universality class,
one needs to determine another critical exponent too. This is
the reason why we have evaluated the power law divergency
of the order parameter fluctuations defined as

χ (K) = N〈[m(t) − 〈m(t)〉t ]2〉t , (12)

where m(t) is given by (9). This quantity becomes independent
of N if N → ∞ and diverges as

χ (K) ∝ |K − Kc|−γ , (13)

if K approaches Kc from both sides of the critical point. The
values of the exponent γ are known for the Ising model on
both the square and the Bethe lattices, namely, γ = 7/4 and
1, respectively. The MC results confirm the same universal
behavior within the statistical error (comparable with the
symbol size for the plotted data) in the case of ε = 0.2 with
Kc(ε = 0.2) = 1.2185(2) as demonstrated in Fig. 8. Similar
results are found for ε = 0 when Kc(ε = 0) = 1.442 72(1).
The justification for this universal behavior for smaller values
of |K − Kc| is prevented by the technical difficulties due to
the diverging correlation length and time if K → Kc(ε).
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FIG. 8. Log-log plot of the order parameter fluctuation χ (K) vs
|K − Kc(ε)| on the square lattice (boxes) and bipartite random regular
graph (diamonds) for ε = 0.2. The closed and open symbols denote
MC data collected below and above the critical points. The solid
and dashed lines (with two different slopes) illustrate the theoretical
predictions for the asymptotic behaviors.
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VI. SUMMARY

We have studied multiagent evolutionary games on bipartite
regular networks with a Glauber type dynamical rule when the
effect of the anticoordination type interactions is disturbed
by the presence of matching-pennies games. First it is shown
that the matching-pennies game itself drives this system into
random strategy distribution decorated with weak correlations
between the second and the third neighbors on the spatial
system. These weak correlations depend on the topological
features of the network and can be qualitatively well described
by the dynamical cluster methods if we use sufficiently large
clusters.

The appearance of these correlations may be related to the
breaking of detailed balance producing probability currents
between most of the forward-backward transitions between
suitable pairs of microscopic states. These probability currents
satisfy the Kirchhoff law in the stationary state and distort the
probability distribution of states. As a result, the emerging
correlations depend on the topology of network the game
is investigated on. Now we have compared only two regular
networks of the same degree.

In light of the above results, the matching-pennies compo-
nent for the given dynamics can be considered as a microscopic
driving force creating entangled probability current loops

within the microscopic states. This phenomenon becomes
more striking when studying its effect on the ordering governed
by an anticoordination game. Our numerical and analytical
methods support that a weak matching-pennies component
does not destroy the formation of the sublattice ordered
strategy arrangement at low noise levels. If the noise is
increased, then this system exhibits an order-disorder transition
at a critical point decreasing with the strength of the matching-
pennies component. Despite the breaking of detailed balance,
these transitions seem to belong to the Ising universality class
on both the square lattice and the bipartite random regular
graph.

Finally, we briefly mention that the preliminary investi-
gations indicate further interesting and unexpected results
when studying the effect of the matching-pennies game on
the ordering phenomena for other types of games.
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[2] G. Szabó and G. Fáth, Phys. Rep. 446, 97 (2007).
[3] J. von Neumann and O. Morgenstern, Theory of Games and

Economic Behaviour (Princeton University Press, Princeton,
1944).

[4] L. van Valen, Evolutionary Theory 1, 1 (1973).
[5] L. van Valen, Evolutionary Theory 4, 129 (1980).
[6] J. Maynard Smith and G. R. Price, Nature (London) 246, 15

(1973).
[7] D. Friedman, Econometrica 59, 637 (1991).
[8] R. Cressman, W. G. Morrison, and J.-F. Wen, Can. J. Econ. 31,

1101 (1998).
[9] E. Ising, Z. Phys. 31, 253 (1925).

[10] C. Domb, in Phase Transitions and Critical Phenomena, edited
by C. Domb and M. S. Green (Academic, London, 1974), Vol. 3,
pp. 357–484.

[11] S. Galam, Y. Gefen, and Y. Shapir, Math. J. Sociol. 9, 1
(1982).

[12] G. Weisbuch and D. Stauffer, Physica A 384, 542 (2007).
[13] S. Grauwin, D. Hunt, E. Bertin, and P. Jensen, Adv. Complex

Syst. 14, 529 (2011).
[14] S. M. Krause and S. Bornholdt, Physica A 392, 4048 (2013).
[15] A. V. M. Herz, J. Theor. Biol. 169, 65 (1994).
[16] R. J. Glauber, J. Math. Phys. 4, 294 (1963).
[17] L. E. Blume, Games Econ. Behav. 5, 387 (1993).
[18] L. E. Blume, Games Econ. Behav. 11, 111 (1995).

[19] D. Monderer and L. S. Shapley, Games Econ. Behav. 14, 124
(1996).

[20] D. Monderer and L. S. Shapley, J. Econ. Theory 68, 258 (1996).
[21] H. A. Gutowitz, J. D. Victor, and B. W. Knight, Physica D 28,

18 (1987).
[22] R. Dickman, Phys. Rev. A 38, 2588 (1988).
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