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Evolutionary 2 X2 games are studied with players located on a square lattice. During the evolution the
randomly chosen neighboring players try to maximize their collective income by adopting a random strategy
pair with a probability dependent on the difference of their summed payoffs between the final and initial states
assuming quenched strategies in their neighborhood. In the case of the anticoordination game this system
behaves like an antiferromagnetic kinetic Ising model. Within a wide region of social dilemmas this dynamical
rule supports the formation of similar spatial arrangement of the cooperators and defectors ensuring the
optimum total payoff if the temptation to choose defection exceeds a threshold value dependent on the sucker’s
payoff. The comparison of the results with those achieved for pairwise imitation and myopic strategy updates
has indicated the relevant advantage of pairwise collective strategy update in the maintenance of cooperation.

DOI: 10.1103/PhysRevE.82.026110

I. INTRODUCTION

Most of the games represent simplified real-life situations
and help us to find an optimum decision (action). Due to the
simplifications the players have only a few options to choose
and the corresponding incomes are quantified by a payoff
matrix allowing us to apply the tools of mathematics. The
theory of games has been used successfully both in econom-
ics and political decisions since the pioneering work of von
Neumann and Morgenstern [1]. Subsequently the concept of
payoff matrix is adopted by biologists to quantify the effect
of interactions of species on their fitness (characterizing the
capability to create offspring) in the mathematical models of
Darwinian evolution [2]. Since that time the evolutionary
game theory provides a general mathematical framework for
the investigation of multiagent systems used widely in
economy and other social sciences where imitation is substi-
tuted for the offspring creation [3-5].

In traditional game theory selfish and intelligent individu-
als try to maximize their own payoff irrespective of others.
In evolutionary game theory players repeat the games and
sometimes imitate (adopt) the neighbor’s strategy if the
neighbor received a higher score. It turned out that assuming
local interactions among players the imitation supports the
maintenance of altruistic behavior even for Prisoner’s Di-
lemma (PD) games where the individual interest is in conflict
with the common one and the selfish individual behavior
drives the well-mixed community into a state (called “trag-
edy of the commons”) with players exploiting (instead of
helping) each other [5-9].

In parallel with theoretical investigations game theory is
also used to study human and animal behaviors experimen-
tally [10-17]. These experiments have motivated the exten-
sion of evolutionary games to study the effect of different
types of mutual help, e.g., charity [18], inequality (inequity)
aversion [19-21], and emotions [22] including juvenile-adult
interactions [23]. In generally, the modeling of human deci-
sion dynamics is one of the most important open problems in
the behavioral sciences [24]. The examples mentioned raise
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the possibility that a player tries to optimize not only per-
sonal but also his or her local neighborhood’s payoff as well.
Motivated by this option we consider the simplest case and
introduce a collective pairwise strategy update rule provided
that two randomly chosen neighbors upgrade their strategies
simultaneously in order to increase their summarized payoffs
each coming from games with all their neighbors on the
spatial system. This way of strategy update can be consid-
ered as an extension of cooperative games toward the spatial
evolutionary games. Originally, in cooperative games groups
of players (coalitions) may perform coordinated behavior
within the group to enhance the group’s payoff. On the other
hand, the present model implies a connection between the
theory of kin selection [25,26] and spatial models of viscous
population of altruistic relatives helping each other [27-29].

As a consequence of the proposed strategy update rule, it
will be shown that the previously mentioned tragedy of the
commons state can be avoided even in the hard condition of
Prisoner’s Dilemma game. In the latter case both analytical
and numerical approaches indicate the existence of an or-
dered structure of cooperator and defector players on square
lattice at sufficiently low noise level. (This arrangement of
alternative strategies resembles the sublattice ordering of an-
tiferromagnetic Ising model.) It is worth mentioning that
similar formation of strategies was also reported by Bon-
abeau er al. [30] and by Weisbuch and Stauffer [31] within
the framework of social models. To explore and identify the
exclusive consequence of the proposed strategy update rule,
we will compare the results with the outcomes of two previ-
ously applied dynamical rules. These are the imitation of a
better neighbor and the so-called myopic strategy update
rules.

The present work is structured as follows. In Sec. II we
define the spatial evolutionary games with the mentioned
dynamical rules. The main results for these types of dynami-
cal rules are compared for the anticoordination (AC) game in
Sec. III. Subsequently we will discuss the weak Prisoner’s
Dilemma games with using Monte Carlo (MC) simulations
and mean-field analysis. In Sec. V we present and compare
the MC results for the three dynamical rules within a rel-
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evant region of payoff parameters describing social dilem-
mas [32]. As the dynamical rules influence significantly the
sublattice ordering process, therefore, some aspects of do-
main growth are considered numerically in Sec. VI. Finally,
we summarize the main results in Sec. VII.

II. MODELS WITH DIFFERENT DYNAMICAL RULES

In the studied models each player follows one of the pure
cooperate or defect (C or D) strategies. According to pair-
wise interaction a player’s payoff is calculated by means of
2 X 2 payoff matrix. For a given pair of equivalent players
the possible strategy-dependent payoffs are given by the pay-

()ff matr I.X as
c d ’

where a (d) is received by the C (D) player if his or her
coplayer follows the same strategy. On the other hand, if the
players choose opposite strategies the C players receive b
while D’s are rewarded by c¢. The AC game will be consid-
ered when a=d=0 and b=c=1. In this case the players re-
ceive the maximum payoff if they choose opposite strategies.
For the social dilemmas we also use a rescaled payoff matrix
[33] in such a way that a=1 and d=0, that is, the mutual
choice of C is better for both players. Despite it the players
can favor the choice of D if either c=T>1 or b=5<0,
where 7 refers to the temptation to choose defection and S is
the sucker’s payoff. For the PD both conditions are satisfied
and the players are enforced to choose D yielding the second
lowest individual income for them. The Hawk-Dove (HD,
also called as Snowdrift or Chicken) game describes the situ-
ation when 7> 1 and §>0 while the Stag-Hunt (SH) game
corresponds to the case 7<<1 and S<<0. The fourth quadrant
of the 7-S parameter plane is represented by the Harmony
game where mutual C is the best solution for the players. In
the mentioned four quadrants of the 7-S plane the two-
person one-shoot games have different sets of Nash equilib-
ria [4,5,8,34].

In the present spatial models players are located on the
sites x of a square lattice consisting of L X L nodes under
periodic boundary conditions. Initially each player follows
an s,=C or D strategy chosen at random. The payoff P, is
collected from the mentioned matrix games with his or her
four nearest neighbors. According to the proposed pairwise
collective strategy update the evolution of strategy distribu-
tion is based on the following protocol. First, we choose two
neighboring players (x and y) at random and we evaluate
their payoffs (P, and P,) depending on their own s,,s,, and
also on the neighboring strategies. Subsequently we evaluate
the payoffs P and P assuming that the given players follow
randomly chosen s and s; strategies while the neighborhood
remains unchanged. As a consequence of randomly chosen
s;,sy’ strategy pair, there are cases when only one (or none)
of the two players will modify his or her strategy. Notice,
however, that this strategy choice allows the pair of players
to select all the possible four strategy pairs. Finally, the strat-
egy pair s.,s, is accepted simultaneously with a probability
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where K characterizes the average amplitude of noise dis-
turbing the players’ rational decision.

The results of the above evolutionary process will be con-
trasted with the consequence of two other dynamical rules
used frequently in previous studies [5,8]. If the evolution is
controlled by stochastic imitation of the more successful
neighbor then player x adopts the neighboring strategy s,
with a probability

1
W, = ,
" 1+exp[(P,— P))/K]

3)

dependent on the current payoff difference between players x
and y. Besides it, we also study a so-called myopic strategy
update when a randomly chosen player x changes his or her
strategy s, to a random strategy s, with a probability

1
"~ 1+exp[(P,-PIK]

m (4)
where P, and P, are the income of player x when playing s,
and s, for the given neighborhood. Notice that the latter
strategy update is analogous to the Glauber dynamics used in
the kinetic Ising models [35]. Consequently, for symmetric
payoff matrices, b=c (or potential games), the myopic strat-
egy update drives the spatial system into a thermal equilib-
rium (at temperature K) that can be described by the Boltz-
mann statistics [8,36]. This means that an antiferromagnetic
ordering process is expected for the AC games with myopic
strategy update when decreasing the noise parameter K.

II1. RESULTS FOR ANTICOORDINATION GAME

Motivated by the above-mentioned connection to the
Ising model, we first consider the anticoordination game and
study the consequences of different strategy update rules.
The presented results of MC simulations were obtained typi-
cally for L=400 size but we used significantly larger system
size in the vicinity of the critical transitions to suppress un-
desired fluctuations. During the evolution we have deter-
mined the average portion p of players following the C strat-
egy in the stationary state. To describe the expected
antiferromagnetic ordering the square lattice is divided into
two sublattices (A and B) on the analogy of white and black
boxes on the chessboard. In fact two equivalent types of
completely ordered structure exist in the limit K— 0. For
both cases the C and D strategies are present with the same
frequency (p=1/2). In the first (second) case all the C strat-
egies are located on the sites of sublattice A (B). The sublat-
tice ordering will be characterized by an order parameter
M=|p,—pg|, where p, and pg denote the portions of C strat-
egy in the sublattices A and B. In a finite system the sublat-
tice ordering develops throughout a domain growing process
within a transient time.

Starting with myopic strategy update, defined by Eq. (4),
the MC data coincide with the exact results of Ising model
[37] if the noise parameter (temperature in the latter case) is
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FIG. 1. (Color online) Order parameter M as a function of K in
the anticoordination games for myopic (green open squares) and
pairwise collective strategy updates (blue closed squares). The solid
line shows the theoretical result obtained by Onsager [37] for the
two-dimensional Ising model.

rescaled by a factor of 2. Accordingly, a long-range ordered
state appears in the zero-noise limit where cooperator and
defector players form a chessboardlike pattern. The order
parameter M varies from 1 to 0 if K is increased from zero to
K.=1/In(1+ \2) and M=0 if K> K, as illustrated in Fig. 1.
When considering the analogy between the kinetic Ising spin
systems and evolutionary AC games one should keep in
mind that the Glauber dynamics [35] favors spin flips de-
creasing the total energy and the opposite flips are generated
by the external noise (temperature). On the contrary, for the
evolutionary games the myopic individuals wish to increase
their own payoffs and the opposite decisions are caused by
noisy effects. The necessity of the temperature rescaling is
related to the fact that in the kinetic Ising model for Glauber
dynamics the individual spin flips are controlled by the total-
energy difference while for the evolutionary games the
changes are influenced by the individual payoff increase
(AP,) that is half of the total payoff increase (if the payoff
matrix is symmetric) because the coplayers share the income
equally.

In the following we study the evolutionary AC game with
pairwise collective strategy update rule defined by Eq. (2). In
agreement with our expectation this strategy update is ca-
pable to find the optimal global state and the long-range
sublattice ordering is established again when varying the am-
plitude of noise.

Figure 1 indicates a striking qualitative similarity between
the behaviors controlled by the myopic and pairwise collec-
tive strategy updates. The slight difference between the out-
puts is related to the fact of how payoffs change due to
different update processes. As we already mentioned, the
change in individual payoff is half of the global change for
myopic rule. This is not necessarily true for pairwise collec-
tive rule because neighboring players receive nothing from
the game played between the focal x and y players. In a
special case, when focal players adopt each of others’ strat-
egies simultaneously, the exact relation between the changes
in individual and global payoffs is restored. This special pro-
cess, when s =s, and sy’zsx, resembles the Kawasaki spin
exchange of statistical mechanics. As a consequence, this
“limited” pairwise collective dynamics reproduces the results
of myopic update.
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To close this section, we should stress that the application
of the third type pairwise imitation strategy update is unable
to find the optimal solution when cooperator and defector
players form a long-range ordered state. In the following we
will study the consequences of different updating rules when
the payoff matrix is not symmetric.

IV. RESULTS FOR WEAK PRISONER’S DILEMMA

We start with a simple and popular parametrization of the
weak PD game when (§=-0). If we fix the noise level, the
only free parameter is the 7" temptation to defect payoff ele-
ment. In the rest of the paper we use K=0.25 noise value that
is proved to offer an almost optimal cooperation level in case
of pairwise imitation strategy update model [38].

A. Mean-field theory

The pairwise imitation strategy update rule was already
investigated by means of mean-field theory (for a brief sur-
vey see [5,8] and further references therein). Within this ap-
proach the stationary state is characterized by the average
fraction p of cooperators that drops suddenly (at 7=1) from
1 to 0 if T is increased for arbitrary values of K. For com-
pleteness, we note that the results for arbitrary values of S
are surveyed in a recent review [39] using replicator dynam-
ics in the imitation of the better strategies, too.

As expected, the application of the other two strategy up-
date rules, such as myopic and pairwise collective, may al-
low the possibility of sublattice ordering. To catch this be-
havior we extend the mean-field analysis and introduce two
sublattices (A and B) where the fraction of cooperators can
be different (p, and pg, respectively). Using the general pay-
off parameters given by Eq. (1) the average payoffs of coop-
erator and defector players in the sublattices A and B can be
approximated as

PO =4[apy+b(1 - pp)],
PP =d[cpy +d(1 - pp)],
PO = 4[apy + b(1 - py)],

PP =4[cpy+d(1 - py)], (5)

for the present connectivity structure where each player in
sublattice A has four neighboring players belonging to sub-
lattice B, and vice versa.

For the myopic strategy update [defined by Eq. (4)] the
time derivative of cooperator frequency p, can be expressed
as

1
T PAY f expl (PO - PP K]

1
1 +exp[(P? - POYK]

Pa=

+(1=py) (6)

and a similar expression can be derived for pg by substituting
B for the sublattice index A. Inserting expressions (5) into
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FIG. 2. (Color online) Density of cooperators in the sublattices
as a function of T for the weak PD game on a square lattice at K
=0.25. The upper plot shows solutions predicted by mean-field
theory. Solid (red), dashed (green), and dotted (blue) lines illustrate
the stable solutions for pairwise imitation, myopic, and pairwise
collective strategy update rules, respectively. Unstable solutions of
the mean-field equations at high 7" values are denoted by spaced
dashed and dotted lines for the last two dynamical rules. Lower plot
shows the corresponding MC results. Using the same color coding,
red open circles are for pairwise imitation, green open squares for
myopic, and blue closed squares are for pairwise collective rules.

Eq. (6) and after some mathematical manipulations one finds

, 1

Pa= 1+exp{d[(b+c—a-d)pg—b+d]J/K} ~ P

) 1

P= -pg. (7)

1+exp{d[(b+c—a—-d)pys—b+d]|/K}

The stationary values of cooperator densities p, and pg
can be determined numerically from Eq. (7) when p,=pg
=0. For the case of the weak PD (a=1, b=5=0, ¢=T, and
d=0) the T dependence of the stationary solution exhibits
two types of behaviors as illustrated by green lines in the
upper plot of Fig. 2. Below a threshold value (depending on
K) the distribution of cooperators is homogeneous, that is,
pa=pg- Above the threshold temptation value the mean-field
solution predicts a (twofold degenerated) sublattice ordering.
For one of the ordered structures (at sufficiently high values
of T) sublattice A is occupied dominantly by defectors and in
sublattice B the players alternate their strategies between co-
operation and defection (i.e., pz=0.5) because both strate-
gies yield the same payoff for them (notice that P%C)=P§3D )
=0 if p,=0). For the second (equivalent) ordered structure
the roles of sublattices A and B are exchanged. We should
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mention that there is an unstable symmetric solution without
sublattice ordering (ps=pp) for high T values as illustrated
by spaced dashed green line in the upper plot of Fig. 2.

The mean-field analysis can also be performed for the
pairwise collective strategy update although the correspond-
ing formulas become more complicated because of the larger
number of elementary events (single and simultaneous two-
site strategy flips for two neighboring players). Neglecting
the technical details now we only present the numerical re-
sults by blue lines in the upper plot of Fig. 2. Similarly to the
myopic case, the stable solution is a homogeneous state for
low T values and a sublattice ordering appears above a
threshold temptation. In the latter case, one of the sublattices
is occupied dominantly by cooperators while the other sub-
lattice is occupied by defectors. Naturally, this solution is
twofold degenerate if we substitute the roles of sublattices A
and B. An unstable symmetric solution also exists at high T
values that is marked by spaced dotted blue line in the upper
plot of Fig. 2. In the following we will check the predictions
of mean-field theory by using MC simulations.

B. Simulations

Similarly to the AC model, the typical system size was
L=400 during the simulations. In the vicinity of phase-
transition point, however, we had to use larger systems (up to
L=2000) to gain the sufficient accuracy. The results for dif-
ferent strategy updates are summarized in the lower panel of
Fig. 2. For completeness, we quote here the known MC re-
sults of pairwise imitation update [38]. These results are
marked by red open circles in the plot. In contrast to mean-
ﬁeld prediction, C and D strategies can coexist if 7, <T

T, [where T,;=0.942(1) and T,,=1.074(1) for K= 0.25].
For lower values of T only the C strategy can remain alive in
the final stationary state while C becomes extinct if 7>T,,

In the case of myopic strategy update, qualitatively simi-
lar behavior was found (marked by green open squares in the
lower plot of Fig. 2). The only difference is a relatively high
portion of cooperator players in the high-T region. The sur-
vival of the C strategy is caused by the appearance of solitary
C’s in the sea of D’s because this event does not modify the
payoff of the given individual if S=0. Evidently, the prob-
ability of the mentioned process decreases if S becomes
negative, as it happens in the real PD situations.

In contrast to the prediction of mean-field calculation the
MC simulations do not justify the presence of long-range
ordering. Instead of it the simulations give p,=pp
=(.2265(2) if T is sufficiently high. It is worth mentioning
that the more sophisticated pair approximation (the results
are not indicated in the figure) reproduces the absence of
sublattice ordering in the case of S=0. For slightly higher
values of S (in the region of HD game), however, the predic-
tion of mean-field calculation becomes qualitatively correct
because MC simulations indicate sublattice ordering as de-
tailed later on.

Closing by pairwise collective update, MC data (blue
closed squares) fully support the prediction of mean-field
calculations and show a similar sublattice ordering as we
observed for AC game previously. Namely, the portion of C
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FIG. 3. (Color online) Average payoff versus 7T for three dy-
namical rules at K=0.25 in the case of weak PD. The MC results
are illustrated by red open circles for pairwise imitation, green open
squares for myopic, and blue closed squares for pairwise collective
strategy adoption rule. The dashed line denotes the maximum aver-
age payoff available in the system.

strategy is distinguishable in the sublattices A and B if T
>T,(K=0.25)=1.41(1). Notice furthermore that the average
density of C’s is significantly higher for this strategy update
in comparison with those provided by the pairwise imitation
and myopic rules.

The pairwise collective strategy update promotes the
chessboardlike arrangement of cooperators and defectors be-
cause this constellation provides the highest total income for
the neighboring coplayers (as well as for the whole commu-
nity) if 7+S>2R, where 2R is the total payoff of a coopera-
tor pair. This feature can be clearly recognized for the weak
PD game where the ordered structure is disturbed rarely by
point defects if 7>2 and the average payoff increases lin-
early with T as illustrated in Fig. 3. It is well known that the
traditional game theory [9] suggests the players to alternate
C and D in opposite phases to receive (T+S)/2 on average
for the repeated two-person games. The sublattice ordering
in the spatial evolutionary game can be considered as an
alternative solution to achieve the maximum average payoff.

From the viewpoint of the pair of players (or the whole
society) the chessboardlike arrangement of cooperation and
defection has an advantage over the state of the homoge-
neous defection favored by several dynamical rules within a
wide payoff region of PD. As a result, the ordered structure
is observable in the spatial strategy distribution even for 7
<2 for the weak PD. Below a threshold value of T, however,
the long-range ordered strategy distribution is destroyed by
the noise and both types of ordered structures are present
within small domains. Simultaneously, the further decrease
in T increases the frequency of cooperators approaching the
saturation value p=1. The quantitative analysis of the pair’s
payoff (P,+P,) shows that the homogeneous cooperation re-
mains stable against the appearance of a solitary D if T
<5/4 for the case of weak PD. Similarly, in the perfect
sublattice ordered state (ps=1 and pg=0) the appearance of
an additional cooperator is preferred if 7<<5/4. At the same
time the homogeneous defection is not stable because any
new cooperator increases the income of his or her neighbors
(and also the income of pairs he or she belongs to). From the
above features one can conclude a sharp transition at 7
=5/4 from the homogeneous C state (py=pg=1) to one of
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the chessboardlike structure (e.g., ps=1 and pz=0) if T is
increased in the limit K— 0. This expectation is confirmed
by MC simulations performed for several low values of noise
K. In the following we extend the payoff parametrization to
general social dilemmas and explore how robust is the ob-
served long-range ordering in the whole 7-S plane.

V. RESULTS FOR SOCIAL DILEMMAS

To reveal the possible sublattice ordering we carried out
series of MC simulations for different S values by using the
same K=0.25 noise level. The results are summarized by
consecutive curves in Fig. 4 allowing us to compare the ter-
ritories of 7-S parameters where cooperators, defectors, or
sublattice ordering prevails the stationary state for the three
dynamical rules we studied. It can be clearly seen, for ex-
ample, that the defector-dominated area of the 7-S region
shrank significantly if the evolution is controlled by pairwise
collective strategy update. For this dynamical rule players
favor to choose cooperation in the sea of defectors if T+4S
>(. This is the reason why the fraction of cooperators is
sufficiently high in the case of weak PD. Notice furthermore
that the pairwise collective strategy update provides the best
condition for the cooperators to prevail the system within the
region of SH game. Referring to the previously discussed
connection between AC model and antiferromagnetic Ising
model, SH game allows comparison with ferromagnetic or-
dering. The application of pairwise collective update reveals
this possibility and highly extends the C-dominated phase in
the SH quadrant.

Figure 4(a) illustrates that sublattice ordering occurs over
a large region of 7-S payoff parameters within the territory
of HD and PD games if the evolution is controlled by pair-
wise collective strategy update. The critical temptation pa-
rameter T,(K) varies monotonously with the sucker’s payoff
S.

For myopic strategy update the sublattice ordering can be
observed only within the HD region of the payoff parameters
as shown in Fig. 4(b). It is emphasized that this behavior is
predicted by the mean-field calculation for the case of weak
PD that is at the boundary separating the territories of HD
and PD (see the lower plot of Fig. 2). Comparing the p(7,S)
surfaces of Figs. 4(a) and 4(b), it is worth noting that myopic
update does not support cooperation in the SH quadrant as
effectively as it is done by pairwise collective update.

Finally, Fig. 4(c) indicates clearly that the imitation of the
nearest neighbors on a square lattice does not support the
emergence chessboardlike sublattice ordering. On the other
hand, the upper and lower plateaus (at py=pg=0 and 1) rep-
resent absorbing states and the continuous transitions to
these homogeneous states belong to the directed percolation
universality class [40,41]. Within the Stag-Hunt region the
system exhibits a first-order phase transition for all the three
rules.

Evidently, the sublattice ordering is prevented if the noise
level K becomes sufficiently high for any values of 7 and S.
Simultaneously, the region of disordered coexistence of C
and D strategies (where, e.g., 0.01 <p, and pzp<<0.99) in-
creases with K.
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FIG. 4. (Color online) Fraction p of cooperators in the two
sublattices of the square lattice as a function of 7 and S for a fixed
noise level (K=0.25). Plots from top to bottom illustrate the MC
results when the evolution is controlled by (a) pairwise collective,
(b) myopic, and (c) pairwise imitative strategy updates. Dotted
(blue) and dashed (green) lines denote distinguishable p’s in the
sublattices A and B while the solid (red) lines indicate p’s in the
absence of this symmetry breaking. The four quadrants of the 7-S
plane correspond to games denoted by their abbreviation, namely,
H=*“Harmony”, HD=*“Hawk-Dove”, SH=*“Stag Hunt”, and PD
=“Prisoner’s Dilemma”. Thicker lines indicate data illustrated in
the lower plot of Fig. 2.

VI. DOMAIN GROWTH FOR SUBLATTICE ORDERING

The above simulations justified the appearance of sublat-
tice ordering for two of the three dynamical rules we studied.
It is emphasized, however, that many versions of similar spa-
tial social dilemmas were investigated previously without re-
porting long-range ordering. Most of these investigations are
based on imitation [42-45] preventing the formation of this
type of ordered strategy distribution as mentioned above.
The sublattice ordering is observable within small domains
in the snapshots published previously by several authors
[46,47]. Sysi-Aho et al. studied HD game with myopic
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FIG. 5. The upper and lower solid lines illustrate the time de-
pendence of the average payoff for the myopic (for K=0.25) and
pairwise collective strategy adoption rules (for K=0.25) at T=1.5,
§=0.5, and L=4000. The dashed lines denote the time dependence
when the adoption of disadvantageous strategies is forbidden for the
same parameters.

agents on a square lattice with first- and second-neighbor
interactions [46]. In the latter model the randomly chosen
agents are allowed to modify their strategies only if these
actions increase their own payoffs (in contrary to the present
stochastic myopic rule [Eq. (4)] allowing players to use of
unfavored strategy with a low probability). Similar (short-
range ordered) patterns were reported by Wang er al. [47]
who used a more complicated synchronized strategy update.

In order to clarify the importance of possible disadvanta-
geous strategy change in the framework of myopic update,
we compare the domain growth processes for two different
cases. In the first case the evolution is controlled by the
myopic rule as defined by Eq. (4). In the second case we
used the same strategy adoption probability (4) but only if
the new strategy increases the player’s income [P, <P,];
otherwise, the adoption of the new strategy s, is forbidden.
In other words, the second rule can be considered as a re-
striction of the first one when strategy change with payoff
increment is allowed only. The visualization of the time-
dependent strategy distribution indicated clearly that after a
short ordering process the evolution is ended in a frozen
pattern in the (restricted) second case if the simulation is
started from a random initial state within the region of HD
game. The difference between the time evolutions can be
demonstrated if we compare the time dependence of average
payoffs U(r) for both cases. As Fig. 5 shows, the evolution of
U(z) stops very early (at about 15 MC steps) in the second
case. In the first case, however, when disadvantageous strat-
egy change is also allowed, U(#) evolves continuously and
saturates at U,=2(T+S)=4 that corresponds to a mon-
odomain (long-range ordered) state.

Regarding the restricted feature of the second update rule,
a frozen pattern of strategy distribution can be considered as
a state where every player is satisfied with his or her own
strategy. In other words, a frozen state is analogous to a Nash
equilibrium in the sense that the unilateral deviation from
this strategy profile would reduce the income of the given
player. As we demonstrated, a frozen state that is the com-
position of two types of (equivalent) small ordered domains
can be avoided by applying the first rule because irrational
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FIG. 6. Log-log plot of U;—U(¢) versus time ¢ for (full) myopic,
restricted, and full pairwise collective strategy adoption rules (from
top to bottom). The MC data and parameters are the same as those
plotted in Fig. 5. The dashed line denotes the slope (—1/2) of the-
oretical prediction.

strategy change along the interfaces helps to find global op-
timum.

The above-discussed phenomenon has inspired us to in-
vestigate what happens for the pairwise collective strategy
update [defined by Eq. (2)] if the disadvantageous strategy
adoptions are prohibited as earlier for myopic update. Sur-
prisingly, the restriction of pairwise collective update does
not block the domain growth process. The visualization of
the evolution of strategy distribution indicates that strategies
are not changed in the bulk of ordered domains but vary
exclusively along the boundaries separating the ordered re-
gions. Consequently, as Fig. 5 illustrates, U(r) can increase
continuously until reaching the value U;=4 whether the
strategy change is restricted to payoff increment cases or not.

During the domain growth process the deficiency of aver-
age payoff is located along the boundaries separating the
ordered regions; therefore, U,— U(t) decreases proportionally
to the total length of interfaces. This behavior resembles the
domain growth of solid-state physics systems where the
growth kinetics is driven by reducing interfacial energy. In
the latter, the so-called curvature-driven growth, the excess
domain-boundary energy decays algebraically with n=1/2
exponent [48]. The time evolution of payoff difference in
Fig. 6 supports our argument and shows algebraic decay with
the mentioned exponent whether myopic or pairwise collec-
tive update was applied.

Figure 6 illustrates that the deficiency of average payoffs
vanishes algebraically, that is, U,—U(r)=T/\t for all the
three cases exhibiting growing domains. The speed (prefac-
tor I') of ordering decreases fast with the noise level K be-
cause the disadvantageous strategy updates become rarer and
rarer for sufficiently low values of noise. In the opposite
case, when K approaches its critical value K. dependent on
the payoff parameters (ordering exists only if K<K,), the
domain growth also slows down due to the diverging fluc-
tuations. In the quantitative comparison of domain growth
for different dynamical rules the mentioned effects are com-
pensated by doubling the value of K for the pairwise collec-
tive strategy update plotted in Figs. 5 and 6. Surprisingly, for
the latter dynamical rules the blocking of the disadvanta-
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geous strategy adoptions makes the domain growth faster
(this phenomenon might have been related to the reduced
noise effects along the interfaces).

Finally, we mention that the preliminary simulations have
confirmed the appearance of sublattice ordering for the mod-
els with nearest and next-nearest interactions. More pre-
cisely, in the latter case one can observe a four-sublattice
ordering process with many different types of ordered struc-
tures resembling those periodic structures described by a
two-dimensional Ising model with first- and second-neighbor
interactions [49,50]. The polydomain versions of most of
these ordered structures were reported previously by several
authors who studied the evolutionary HD games with a myo-
pic strategy update when prohibiting the acceptance of those
strategies yielding a lower individual payoff [45,46]. We
have checked what happens if the present myopic evolution-
ary rule [given by Eq. (4)] is applied only if (P,—P}) <0. In
the latter case the domain growing process is also blocked in
a (frozen) polydomain state as it is described above.

VII. CONCLUSIONS AND OUTLOOK

In this work we have introduced a pairwise collective
strategy update and studied its impact on anticoordination
and social dilemma games. Our proposal was motivated by
real-life experiences when players act to increase not only
their personal but also their local neighborhoods’ payoffs. As
a starting effort along this avenue we have chosen pairs of
players. To identify and quantify the consequence of this
strategy update, we have also studied two frequently applied
strategy updates, such as myopic and pairwise imitation.

Our results highlight the emergence of a spatially ordered
distribution of strategies on the analogy to antiferromagnetic
ordering in spin systems. In contrary to the traditional imita-
tions both the myopic and pairwise collective strategy up-
dates support the formation of ordered strategy distribution
favored within a wide range of social dilemmas. This ordered
arrangement of cooperators and defectors can provide the
maximum total payoff in a wide range of payoff parameters
for the social dilemmas and it seems to be a general behavior
on regular networks characterizing connections between the
players. Within the context of social sciences the appearance
of the mentioned state can be interpreted as a possibility for
the community to avoid the tragedy of the commons (when
all the agents choose D and receive nothing) by sharing the
two possible roles (strategies) with a spatially ordered (rigid)
structure. The systematic comparison of the level of coopera-
tions (p) for the three different evolutionary rules has justi-
fied that the pairwise collective strategy update provides the
highest total (average) income for the whole spatial commu-
nity in most of the region of payoff parameters.

We have also studied the kinetics of ordering and found
further similarities with physics motivated systems. This in-
vestigation highlighted the importance of irrational decisions
as a way to avoid trapped (frozen) states.

There are two main directions to extend the present work.
First, as we already noted, other types of interaction graphs
can also be considered. Our preliminary results confirm that
the positive impact of the pairwise collective strategy update
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is not restricted to square lattice with nearest-neighbor inter-
action. A similar ordering can emerge locally for a wide
range of interaction graphs. Second, the size of the group in
which players favor the group interest (instead of personal
payoff) can be also increased. In this case further improve-
ment of cooperation is expected.
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