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predator-prey model
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Formation and competition of associations are studied in a six-species ecological model where each species
has two predators and two prey. Each site of a square lattice is occupied by an individual belonging to one of
the six species. The evolution of the spatial distribution of species is governed by iterated invasions between
the neighboring predator-prey pairs with species specific rates and by site exchange between the neutral pairs
with a probability X. This dynamical rule yields the formation of five associations composed of two or three
species with proper spatiotemporal patterns. For large X a cyclic dominance can occur between the three
two-species associations whereas one of the two three-species associations prevails in the whole system for low
values of X in the final state. Within an intermediate range of X all the five associations coexist due to the fact
that cyclic invasions between the two-species associations reduce their resistance temporarily against the

invasion of three-species associations.
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I. INTRODUCTION

Many real systems consist of small different objects
whose organization into large spatial associations (communi-
ties) is the result of some evolutionary rules controlling the
system’s behavior at the microscopic level [1-6]. At a larger
spatial scale the mentioned associations can be considered as
objects forming larger (super) associations and the repetition
of this process can even yield a hierarchy of associations.
Now some general and elementary features of this complex
process are revealed by a minimal toy model exhibiting sev-
eral ways how the associations coexist.

The spatial predator-prey models with many species
proved to be an appropriate model to study the formation and
competition of associations [7-9]. In these models the asso-
ciations are composed of a portion of all the species and are
characterized by a spatiotemporal pattern. In fact, the asso-
ciations are possible solutions and some of these solutions
can be observed as a final state when the numerical simula-
tions are performed on small systems. As the solutions of any
subsystem (where several species are missing) are also solu-
tions for the whole system, the number of solutions (possible
associations) therefore increases exponentially with the num-
ber of species (excepting for some particular food webs). In
some cases, in spite of the large number of possible solu-
tions, the evolutionary process selects one of the possible
solutions characterizing the final stationary state even for an
infinitely large system size. In other cases, equivalent asso-
ciations compete for territories through a domain growing
process, as it happens for the g-state Potts model below the
critical temperature [10], and finally one of the associations
will prevail in the whole (finite) system. Within a wide range
of parameters, however, the domain growing process is
stopped and one can observe a self-organizing domain struc-
ture (sustaining all species alive) where large domains of
associations can be clearly identified. The self-organizing
pattern can be maintained by cyclic dominance between the
associations or by other dynamical phenomena (sometimes
resembling the death and rebirth of the Phoenix bird) where
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different length- and time-scales emerge (for examples see
Refs. [8,9]).

Now we describe a different mechanism yielding a self-
organizing pattern with five associations representing two
basically different classes of the defensive alliances which
can be considered as privileged associations. This effect is
observed in a fairly simple six-species predator-prey model
which is a simplified combination of two previously investi-
gated models [8,11].

II. THE MODEL

We consider a six-species predator-prey model where
each site i of a square lattice is occupied by an individual
belonging to one of the six species. The species distribution
is characterized by the set of site variables (s;=0,...,5) re-
ferring to the label of species at the given site i. The
predator-prey relations are defined by a food web indicating
that each species has two predators and two prey. For the
present model we distinguish two invasion rates, « and 7y
(0=a,y=1), as demonstrated in Fig. 1. The different values
of & and y parameters describe the cases when the strengths

FIG. 1. Food web for the present six-species predator-prey
model. Arrows point from a predator towards its prey with hetero-
geneous invasion rates specified along the edges.
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of dominance within a cyclic alliance and between the mem-
bers of different alliances are unequal.

The evolution of species distribution is controlled by re-
peating the following elementary steps. First, two neighbor-
ing sites (i and j) are chosen at random. If s; is the predator
of s; then the site j will be occupied by an offspring of the
species s; (in short, s;—s;) with a probability given by the
corresponding invasion rate (« or 7). Evidently, for the op-
posite predator-prey relation s; will be transformed to the
state s; (s;—s;) with the corresponding probability. If s; and
s; are a neutral pair (e.g., s;=0 and s;=3) then they exchange
their sites [(s;,s;) — (s;,5;)] with a probability X characteriz-
ing the strength of mixing. Finally, nothing happens if
Si=5;.

Tjhe system is started from a random initial state where
each species is present with the same probability. After many
repetitions of the above elementary steps the system evolves
into a state that can be characterized by the average densities
p, (s=0,...,5) satisfying the condition =_;p,=1. For many
cases the quantification of the nearest-neighbor pair correla-
tions is necessary to give an adequate description about the
spatial distribution of species. Therefore, we can introduce
four types of pair configuration probabilities for the present
model: p;; denotes the probability of finding identical species
on two neighboring sites; p,, is the probability of finding a
neutral pair (e.g., species 0 and 3); p, and p., are the sum of
those predator-prey pair probabilities where the invasion
rates are « and v, respectively. These quantities are also
satisfying a normalization condition, i.e., pjg+p,+pa+p,=1.

The above system was investigated by Monte Carlo (MC)
simulations on a square lattice of size N=L X L under peri-
odic boundary conditions and the linear size L is varied from
400 to 4000. The MC simulations were performed system-
atically for a fixed value of the highest invasion rate (e.g., for
y=1) while the other invasion rate and X are varied gradu-
ally. The stationary states were characterized by the above-
mentioned order parameters averaged over a sampling ¢, af-
ter a suitable thermalization time ¢,,. To observe the actual
spatiotemporal pattern at a specified values of «, 7y, and X,
the parameters L, f,, and #,, were adjusted as specified below.

Some features of this model have already been discussed
previously [8,11,12]. The relevant solutions remain valid
even for a# . These solutions are the six homogeneous
distributions, the two cyclic defensive alliances, and three
well-mixed phases of two neutral species. For the cyclic de-
fensive alliances the odd (or even) label species invade cy-
clically each other in the same way as it is described by the
spatial rock-scissors-paper game [13—15]. The distinguished
role (and also the name) of the cyclic defensive alliances
comes from the fact that the self-organizing spatiotemporal
pattern provides a protection (stability) against external in-
vaders [7,16,17].

When X is increased for fixed a=vy=1 the present system
exhibits a first-order phase transition at X=X.(a=y=1)
=0.05592(1) [8]. If X<X_(a=7y=1) then one of the two cy-
clic defensive alliances will prevail in the whole system after
a domain growing process. Henceforth this final state will be
denoted by T¢ referring to cyclic triplets. This model has
three other defensive alliances composed from a neutral pair
of species (e.g., 0 and 3) because in their well-mixed phase
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the participants protect each other mutually against any ex-
ternal invaders [8]. The MC simulations have justified that
one of these two-species defensive alliances will dominate
the whole lattice after a domain growing process if X>X..
This latter final state is named D (for duet). Notice that only
a portion of the species remains alive in this system for the
uniform invasion rates.

The internal symmetry of the two cyclic defensive alli-
ances is conserved in systems with alliance-specific invasion
rates [11]. In the latter case four different invasion rates (a,
B, v, and 6) has been distinguished on the same food web
plotted in Fig. 1. For X=0, this type of parametrization has
allowed us to study the cases where one of the cyclic defen-
sive alliances is preferred to the other. It turned out, for ex-
ample, that the protection mechanism is enforced if the in-
vasion rates are increased within a cyclic three-state alliance.
This four-parameter model becomes equivalent to the present
model for a=p and y=4 in the absence of mixing.

For the case of @=1 and y=0 the food web has only one
(six-species) cycle. This system has already been investi-
gated previously by several authors [12,18]. In analogy to the
spatial rock-scissors-paper games the species alternate cycli-
cally at each site and a self-organizing pattern is maintained
by the moving invasion fronts for X=0.

For strong mixing the formation of well-mixed phases of
the neutral species is expected. The three two-species asso-
ciations are equivalent for =y and the motion of interfaces
separating them is controlled by the curvature and random
events [19]. This means that if two different domains are
separated by a straight-line boundary then the average veloc-
ity of this interface is zero. However, if a> 7y then the well
mixed phase of species 0 and 3 can invade the territory of the
well-mixed phase of species 1 and 4, that can also invade the
third association (consisting of species 2 and 5). In other
words, the present model exemplifies a system where three
associations play the spatial rock-scissors-paper game. In the
opposite case (a<vy) the direction of cyclic dominance is
reversed. When visualizing the evolution of species distribu-
tion in this phase, one can recognize rotating spiral arms
reported for many other systems (for nice snapshots see the
papers [3,16,20-22] and further references therein). This
phase is denoted by T¢(D) signaling the cyclic dominance of
duets. The proposed system is the minimal model where such
cyclic dominance of associations can be observed. Beside it,
the present model exhibits a different type of pattern forma-
tion as will be detailed in the next section.

III. THE RESULTS

Without loosing generality we discuss separately the cases
a<y(at y=1) and y<a=1.

A. The region a<y

First we study MC results obtained when varying X for
a=0.4 and y=1. As previously discussed, the variation in the
spatial distribution can be quantified by the above-mentioned
pair correlation functions, namely, p,, p,, and p,. In the nu-
merical results plotted in Fig. 2 two arrows indicate the
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FIG. 2. The pair configuration probabilities p, (open squares),
py (closed squares), and p,, (open circles) as a function of X at fixed
a=0.4 and y=1 values. Arrows show the positions of phase
transitions.

threshold values of the mixing [X, (@) and X.,(«)] where
phase transitions occur.

If X <X_,,(«) then the finite system evolves into one of the
T€ phases after a suitable relaxation (domain growth) time
increasing with N. Within this phase the odd (or even) label
species form a cyclic defensive alliance where the three men-
tioned species are present with the same average density
(1/3) and p,=p,=0.

If X>X_,(a) then the three well-mixed associations of the
neutral pairs form a self-organizing pattern [7€(D)] resem-
bling the spatial rock-scissors-paper game at a higher level.
The typical extensions of domains and the width of boundary
layers (separating two associations of neutral pairs) depend
on X and a. The qualitative analysis indicates an increase in
the typical domain size if a goes to y=1 [providing
X>X, (a=y=1)=X,(a=y=1)=0.05592(1)]. In fact, the
driving force of the cyclic dominance is proportional to
y—a. The numerical study of the impact of the vanishing
cyclic dominance on the spatial distributions was already
presented in a model combining the three-state Potts model
and spatial rock-scissors-paper game [23,24]. In light of the
latter results it is expected that the typical domain size in-
creases as 1/|a—1v| when approaching the symmetric case
(a=1y).

The  appearance of an  intermediate  region
[X. (@) <X<X,(a)] in Fig. 2 was unexpected. The visual-
ization of the evolution of species distribution (for a snap-
shot, see Fig. 3) has indicated clearly that within this param-
eter region five types of domains (associations) can be
distinguished. Namely, the two cyclic triplets (7) and also
the three associations of neutral pairs (D) which form a self-
organizing domain structure.

It is worth emphasizing that a sufficiently large system
size and long runs were necessary in the MC simulations to
observe this intermediate region. More precisely, the self-
organizing patterns have reached their final features (domain
size, etc.) after a typical time of f,=4X10> MCSs if
L=4000. For the sake of comparison, the quantitative fea-
tures of the T€(D) pattern can be well studied for L=400
after t,,=4 X 10* MCSs.

Previous analyzes of predator-prey systems have justified
that the value of the critical point can also be determined by
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FIG. 3. (Color online) Upper: A typical spatial distribution of
species within a box of size 400X400 for a=0.4, y=1, and
X=0.02. Species are denoted by different colors as indicated.
Lower: The same configuration but domains of associations are
represented by homogeneous regions. Black (white) shows the cy-
clic triplet of 0+2+4 (1+3+5) species while domains with differ-
ent grey scale correspond to the three alliances of neutral species.

evaluating the average velocity of a straight invasion front
separating two phases characterizing the final behavior be-
low and above the critical point. The average velocity of this
invasion front becomes zero at the critical point. To clarify
the behaviors in the intermediate region we have performed
these numerical investigations for different values of X. The
results have clearly indicated that each D state can invade the
territory of the T associations within the intermediate state.
In other words, if an island of D (with a sufficiently large
extension) is created via a nucleation mechanism within the
territory of T (or even at the boundary of two T states) then
this island grows permanently.

In the present case, however, three equivalent D associa-
tions exist which dominate cyclically each other as discussed
above. Consequently, within the intermediate phase two
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FIG. 4. Variation of pair configuration probabilities [p,(r) (solid)
and p,,(¢) (dashed line)] in the stationary state within the intermedi-
ate region (a=0.4, y=1, and X=0.021) for L=4000. The values of
p, are increased by a constant for easier comparison. Arrows show
when D domains start to expand.

growing D phases can collide and one of them will invade
the other. During the invasions the moving invasion front
leaves behind a slowly varying structure that differs from its
final (well-mixed) distribution. Thus, the expanding D asso-
ciations become less stable against the invasion of the neigh-
boring T associations in the vicinity of the moving invasion
fronts. The visualization of the species distribution has dem-
onstrated clearly that in many cases the newly invaded D
territories were occupied by the neighboring T associations
within a transient time. The alternative expansion of D and T
domains can be traced well by monitoring the evolution of
pair configuration probabilities. Evidently, the growth of D
domains involves the increase of p, while the extension of 7
domains increases the average value of p,. Consequently,
one can observe opposite variations in the time-dependence
of p,(r) and p,(1) as demonstrated in Fig. 4. Evidently, the
“amplitude” of these variations vanishes in the limit N— .

Increasing X yields faster recovering (shorter transient
time) and simultaneously makes the D territories more stable
against the invasion of 7 domains. As a result, above a sec-
ond threshold value [X>X_,(a)] the T associations cannot
remain alive and the whole system is conquered by the pre-
viously described T¢(D) phase.

In order to determine the critical values of mixing [X,(«)
and X_,(«a)], the MC simulations were repeated with increas-
ing gradually the value of X for several values of «. The
results are summarized in a phase diagram shown in Fig. 5.

The intermediate region vanishes if a<a,.=0.170(5).
More precisely, X,;(a) and X.,(a) go to zero simultaneously
if a tends to a, from above. For a<a, the T¢(D) state
occurs after a relaxation proportional to 1/X in the limit
X—0. In the absence of local mixing (X=0), however, the
well-mixed state of the neutral pairs cannot occur and the
system develops into a state where the evolution of species
distribution is governed by invasions of type vy in a pattern
exhibiting large domains of 7¢(s) associations.

B. The region y<a

Similarly to the previous section now we study the case of
y<a=1. Within this range of parameters the direction of
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FIG. 5. Phase diagram of the model as a function of X and « for
vy=1. The T(s) region is characterized by the exclusive dominance
of (0+2+4) or (1+3+5) cyclic alliance. The area T€(D) corre-
sponds to the phase where three alliances of two-neutral species
[(0+3), (1+4), and (2+5)] play spatial rock-scissors-paper game.
Within the shadowed region all the mentioned associations coexist
and form a self-organizing pattern described in the text.

cyclic invasions between the well-mixed alliances of neutral
species pair is reversed, that is, (0,3) dominates (1,4) domi-
nates (2,5) dominates (0,3). As the direction of cyclic inva-
sions [within the phase of T€(D)] does not affect the main
features of pattern formation, we therefore expect a phase
diagram similar to the case of @< +vy. This expectation is
supported by Fig. 6 where the X dependences of pair con-
figuration probabilities are plotted for y=0.6. The qualitative
similarity between Figs. 2 and 6 is striking.

Figure 6 represents a situation where both types (a and 7)
of invasions play a relevant role in the pattern formation. In
the opposite case (when either @ or vy tends to zero) a rel-
evant difference occurs in the behaviors, as plotted in Fig. 7
comparing p, changes as a function of « and y for a fixed
value of X.

Figure 7 demonstrates that the state of cyclic dominating
duets [T7€(D)] terminates in different phases if we reduce one
of the invasion rates. As it is shown, p, has a local minimum
at a small value of y which is missing in the case of <. In
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FIG. 6. The pair configuration probabilities, such as p, (open
squares), p., (closed squares), and p,, (open circles) as a function of
X at fixed y=0.6 and a=1 values. Arrows point to the positions of
phase transitions.
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FIG. 7. The « and 7y dependence of p, (open circles), and p;,
(closed squares) at a fixed value of mixing (X=0.08). The arrow
indicates the minimum of p,,.

fact, for y=0 the system develops into a state [denoted by
S€(s) (cyclic sextet)] where the six species invade each other
cyclically. Within this spatiotemporal pattern the site-
exchange process becomes rare and cannot affect signifi-
cantly the spatial distribution of species. On the other hand,
we can observe a smooth transition from the state 7¢(D) to
S€(s) which is accompanied with the suppression of D do-
mains (yielding a relevant decrease in p,) and with an in-
crease of p, and p,; when decreasing the ratio y/ «. All these
processes together result in a minimum of p,, that is used to
define a phase boundary between these phases.

The y-X phase diagram is shown in Fig. 8 where the
dashed line shows the value of parameters where the mini-
mum occurs in p,. According to our numerical investigations
the value of X,,(7y) and X,,(7) coincide in this phase diagram
within a range of « [0.35(2) <@ <<0.45(2)] and both quanti-
ties vanish if «<<0.35(2).

IV. SUMMARY

We have studied a six-species ecological model on a
square lattice where different types of associations are
formed from a portion of species existing in the whole eco-
logical model. The investigation of the present model was
inspired by previous results exemplifying several ways how
the cyclic dominance can occur between the associations
characterized by their composition and spatiotemporal pat-
tern. In most of the previous studies the number of param-
eters was reduced by introducing many symmetries. Now we
wished to explore some further phenomena yielding the for-
mation and competition of alliances in more realistic biologi-
cal systems when the symmetries are reduced in the invasion
rates. More precisely, we have studied the cases character-
ized by two invasion rates, a and v, in a way preserving the
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FIG. 8. Phase diagram of the model as a function of X and 7y for
a=1. The notation of phases are the same as for Fig. 5. S(s) refers
to a spatiotemporal pattern in which the evolution is dominantly
governed by the cyclic invasions of the six species.

internal symmetries of the cyclic triplets. As a minimal
model, it allows us to study the cyclic dominance of alli-
ances.

The present model exhibit a wide range of behaviors in
the final stationary states as summarized in two phase dia-
grams (see Figs. 5 and 8). For example, if @ # y and the site
exchange mechanism is sufficiently strong, then one ob-
serves a self-organizing spatiotemporal pattern in which the
three alliances of neutral pairs cyclically dominate each
other. Although similar self-organizing patterns are reported
in other systems [9], the present one seems to be the simplest
lattice predator-prey model where the mechanism of cyclic
dominance can take place at two different levels. In addition
to this feature we have also revealed an unexpected phase
where both the domains of cyclic three-species alliances and
the neutral two-species alliances can coexist. As it was ar-
gued, the existence of this intermediate phase is closely re-
lated to the emergence of different time- and length-scales
within the self-organizing patterns. Without increasing the
number of species, we think that further reduction of sym-
metries in the species specific invasion rates can yield more
and more complex behaviors and other uncovered mecha-
nisms supporting the coexistence of different alliances of
species. The relevance of these investigations is enhanced by
the fact that the above phenomena can occur locally in other
(larger) systems consisting of more species.
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