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We study a spatial cyclic predator-prey model with an even number of species �for n=4, 6, and 8� that allows
the formation of two defensive alliances consisting of the even and odd label species. The species are distrib-
uted on the sites of a square lattice. The evolution of spatial distribution is governed by iteration of two
elementary processes on neighboring sites chosen randomly: if the sites are occupied by a predator-prey pair
then the predator invades the prey’s site; otherwise the species exchange their sites with a probability X. For
low X values, a self-organizing pattern is maintained by cyclic invasions. If X exceeds a threshold value, then
two types of domain grow up that are formed by the odd and even label species, respectively. Monte Carlo
simulations indicate the blocking of this segregation process within a range of X for n=8.
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Interesting phenomena in cyclic predator-prey systems
have initiated progressive research in recent decades. In the
simplest case, the system has three species cyclically domi-
nating each other, that is, S1 beats S2 beats S3 beats S1. Cyclic
dominance occurs in many systems including biological
models �1–4� and evolutionary games �5,6�. It is well known
that such a cyclic dominance can sustain all of the three
species in a well-mixed community �7,8�. In the spatial ver-
sion of this system, the individuals stay on the sites of a
lattice �9� and the cyclic invasions maintain a self-organizing
pattern in the spatial distribution of species. Nowadays, this
system is frequently referred to as an evolutionary spatial
rock-scissors-paper game �for a review see �10��.

Within the framework of the mean-field approximation
�assuming a well-mixed population� the species densities can
be either stationary or oscillatory �for the latter case both the
sum and product of species densities are conserved quanti-
ties� �8,11�. Furthermore, these systems exhibit unusual re-
sponses to the variation of invasion rates or to any external
support �12,13�. For a finite population, the system evolves
into one of the homogeneous states via a Moran process
�14,15�. On the other hand, when the species are distributed
on a lattice, the cyclic invasions yield a self-organizing pat-
tern �1,16�, providing stability against some types of external
invaders �17,18� if the spatial dimension is larger than one
�d�1�. For the one-dimensional lattice the dynamical rule
results in growing domains and superdomains �9,19,20�. On
the Bethe lattice, one can observe limit cycle behavior �for a
degree of z=3 or 4� and the oscillation grows until the sys-
tem reaches one of the homogeneous states if z�6 �21,22�.
More complicated behavior is reported on some types of di-
rected graph �23�.

Starting from the simplest model there are many ways to
generalize the evolutionary rock-scissors-paper game. A
straightforward possibility is to increase the number n of
species �states� so that the cyclic invasion remains valid, i.e.,
S1 invades S2 invades S3, etc., and finally Sn invades S1. In
the one-dimensional lattice domain, growth can be observed
until n�5; otherwise, the spatial distribution tends toward a

frozen domain structure where the species staying in neigh-
boring domains cannot invade each other �in short, they are
neutral�. A similar fixation process was reported for both
two- and three-dimensional lattices if n exceeds a critical
value dependent on d �24�. A further relevant observation is
related to the parity of n affecting some features �e.g., the
sensitivity to inhomogeneous invasion rates� in the system
�11,25�. Consequences of supplementary microscopic pro-
cesses are also investigated. For example, one can introduce
mutation, extinction, and empty sites to which the neighbor-
ing species can jump, allowing spatial mixing �26,27�. Now
our efforts will be concentrated on a lattice Lotka-Volterra
system with an even number n of species dominating each
other cyclically, while the stochastic local mixing is de-
scribed by a site exchange mechanism between neutral pairs.
The simplest model where such a process can be introduced
is the four-species version that exhibits a phase transition
when the strength of mixing is increased �26,28�. More pre-
cisely, for a low rate of mixing one can observe a self-
organizing pattern resembling the sampling of the evolution-
ary rock-scissors-paper game. On the contrary, if the strength
of mixing exceeds a threshold value, then phase segregation
occurs, i.e., the well-mixed odd and even labeled species
form growing domains, and finally one of these states domi-
nates the whole finite system. Our primary interest was to
investigate how the critical value of mixing decreases when
the number of species is increased. During this study, how-
ever, an unexpected intermediate phase was found for n=8
and 10 as will be reported below.

We consider a lattice Lotka-Volterra model on a square
lattice where each site x is occupied by a single individual
belonging to one of the n species �n is even�, that is, the
distribution of species can be described by the site variables
sx=1, . . . ,n referring to the label of the species. The time
evolution of the species distribution is determined by inva-
sions between the site x �chosen at random� and one of the
�randomly chosen� neighboring sites y if the sites are occu-
pied by a predator-prey pair, i.e., the �sx ,sy� �and also the
�sy ,sx�� pair transforms into �sx ,sx� if the species sx is the
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predator of sy. The predator-prey relation is defined by a
cyclic food web, and the invasion rates between any
predator-prey pair are equivalent and chosen to be unity. In
addition, if the species sx and sy are neutral, then the species
may exchange their sites with a probability X characterizing
the strength of mixing. Obviously, nothing happens if sx=sy.
During the time unit �called a Monte Carlo step �MCS��, the
above elementary process is repeated once on average for
each site.

For the Monte Carlo �MC� simulations the system is
started from a random initial state �providing an equivalent
�average� number of individuals for the species� on a square
lattice �consisting of N=L�L sites� with periodic boundary
conditions. When the above defined elementary step is re-
peated �invasion or local mixing� for sufficiently large size,
the system evolves into a stationary state that can be de-
scribed by the average density �i of species i �satisfying the
condition �i=1

n �i=1� and by the pair configuration probabili-
ties p2�i , j� of finding species i and j on two neighboring
sites. In the limit N→�, each species density remains con-
stant, that is, �i�t�=1 /n, and the ordering processes can be
well quantified by considering the time dependence of pair
configuration probabilities. Due to the symmetries we will
distinguish two basic quantities. The predator-prey pair prob-
ability is given as

ppp�t� = �
i=1

n

�p2�i,i + 1� + p2�i + 1,i�� , �1�

where the time dependence of p2�i , j� is not denoted and i
+1 means 1 for i=n. The other analogous quantity is the
neutral pair probability, which can be expressed as

pn�t� = �
i=1

n

�
k=2

n−2

p2�i,i + k� , �2�

where i+k is cyclically reduced to the range 1 to n. For the
MC simulations these quantities are determined by averaging
over a suitable sampling interval.

For small size �e.g., L�10�, the system quickly develops
into one of the states in which several species and simulta-
neously the predator-prey invasions are missing; thus the
composition remains constant. The average fixation �tran-
sient� time increases rapidly with the linear size L. For suf-
ficiently large size, however, most of the latter phases can
also be observed locally within small patches, and the evo-
lution of spatial distribution is affected by the competition
between these phases �10,28�.

First we briefly recall the MC results obtained for n=4
�28�. According to the simulations, all four species are sus-
tained by the cyclic invasions if X�Xc�4�=0.026 62�2�.
Within this region of X, the value of pn increases monotoni-
cally with X; meanwhile, an opposite trend occurs in ppp, as
demonstrated in Fig. 1. At a critical value of X a sudden
change occurs in both quantities because, through a domain
growth process, the finite system evolves into a state where
either the odd or the even labeled species forms a well-mixed

phase, that is, �1���=�3���=1 /2 and �2���=�4���=0 or
�1���=�3���=0 and �2���=�4���=1 /2. In both phases,
ppp���=0 and pn���=1 /2 �if X�Xc�4��.

To support our previous MC results, we have also per-
formed generalized mean-field approximations at different
levels. In the case of the four-species version of this model,
all the configuration probabilities on 2�1-, 2�2-, and 3
�3-site clusters have been evaluated �for details of the
method, see �10��. Evidently, the traditional mean-field ap-
proach �one-site approximation� cannot take into account the
effect of mixing. At the levels of 2�1- and 2�2-site cluster
approximations, this method is not capable of describing the
transition observed by MC simulations, although the solution
of many well-mixed phases exists. The more accurate
3�3-site approximation predicts a phase transition at X
=Xc

�9s��4�=0.1285�5�. The large deviation from the MC re-
sults indicates the importance of consecutive elementary
steps, yielding important correlations in the spatial distribu-
tion.

For sufficiently strong mixing, the phase segregation pro-
cess seems to be a robust phenomenon as it is observed for
other dynamical rules �10,26,27�. It turned out that the well-
mixed phases of the odd �as well as even� labeled species can
be considered as a defensive alliance because within this
spatial association the species guard each other against the
external invaders. For example, if species 1 is attacked by an
individual of species 4 then one of the neighboring species 3
strikes back within a short time. Due to the cyclic symmetry,
species 1 guards species 3 against species 2, and a similar
mechanism protects the well-mixed spatial association of the
even label species.

One can easily check that the above concept of defensive
alliances remains valid for any even number of species. That
is, within the well-mixed phase of the odd labeled species the
species protect each other against the invasion of even la-
beled species, and vice versa. Thus for larger n one can ex-
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FIG. 1. MC data for the predator-prey pair ppp �diamonds� and
neutral pair pn �squares� probabilities as a function of X in the final
stationary state for n=4. Dotted, dashed, and solid lines represent
the predictions of the generalized mean-field approximation for ppp

at the levels of 2�1-, 2�2-, and 3�3-site clusters. The left arrow
indicates the position of Xc; the right arrow shows the correspond-
ing prediction obtained by the 3�3-site approximation.
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pect a similar phase transition from the cyclic self-organizing
pattern to the phase segregation phenomenon if we increase
the value of X. MC simulations confirm this expectation for
n=6 as illustrated in Fig. 2. The predator-prey probability
�ppp� drops suddenly to zero at X=Xc�6�=0.006 54�2�. The
generalized mean-field analysis of this system is not per-
formed for n�6 because the numerical solution becomes
time consuming due to the large number of configurations at
a sufficiently accurate level �e.g., n9 configurations exist on a
3�3 cluster�.

Notice that many possible solutions emerge if n is in-
creased. For example, the well-mixed phases of the mutually
neutral species �e.g., 1+3+6 for n=8� with arbitrary compo-
sition are stationary states. All these states can occur in the
MC simulations for small sizes �L�10� and can also be
reproduced by the generalized mean-field methods. Indeed,
the solutions of the subsystems �several species are missing�
are solutions for the whole system too. Despite the large
number of possible solutions, the visualization of spatial dis-
tributions in the MC simulation indicates the presence of
only the above mentioned relevant phases for sufficiently
long times.

Surprisingly, for the eight-species system, three types of
phase �behavior� can be distinguished as illustrated in Fig. 2.
These MC data are obtained for L=400 or 600. For these
sizes the domain growth process ends within a few million
MCS and one of the four-species defensive alliances �con-
sisting of only the odd or even labeled species� prevails in
the whole system in the final state if X�Xc2�8��0.0042�5�.
The self-organizing spatiotemporal pattern can be maintained
by the cyclic invasions until X�Xc1�8��0.002 85�3�. As a
consequence, the MC simulations reveal the appearance of
an intermediate phase within a region of Xc1�8��X
�Xc2�8� where the domain growth process stops �or be-
comes extremely slow�.

To illustrate the formation of a defensive alliance in the
intermediate region �Xc1�X�Xc2� the odd and even labeled
species are denoted by light and dark colors in Fig. 3. The
snapshot for t=400 000 MCS shows clearly that the territo-
ries of defensive alliances are separated by a boundary layer

where the cyclic invasions govern the time evolution. Similar
patterns �with a thickness dependent on X� can be observed
during the domain growth process for X�Xc2�8�. We have to
emphasize that these boundary layers play a crucial role in
the formation of the final pattern. That is, these layers serve
as a symmetric species reservoir for both defensive alliances
and help the equalization of their composition via diffusion.

As mentioned above, the domain growth process can be
investigated quantitatively by recording the probability of
predator-prey pairs, because such a constellation occurs ex-
clusively within the boundary layers. One can think that the
inverse of ppp is proportional to the average linear size of
domains of defensive alliances.

Figure 4 shows some typical behaviors when the time
dependence of ppp is considered for a system size where L is
significantly larger than the average domain size at the end of
the simulation �here at t=106 MCS�. In order to suppress the
short-time fluctuations, the numerical data for ppp�t� are av-
eraged over a time interval with a typical width of tw
�min�t /20,1000 MCS�. The upper curve �X=0.0025� in
Fig. 4 illustrates that the frequency of invasions reaches a
high stationary value �ppp�0.11� characterizing the cyclic
self-organizing pattern if X�Xc1�8�. The lowest curve �for
X=0.008� indicates a typical domain growth process when
the asymptotic behavior �ppp� t−1/2� becomes similar to a
phase ordering process with nonconserved dynamics �29�.
From the plotted MC data at X=0.005 and 0.008, one can
suggest similar asymptotic behavior. Data for X=0.003,
however, indicate that the domain growth is stopped and the
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FIG. 2. Nonvanishing predator-prey pair probabilities vs X in
the stationary states for n=4 �triangles�, 6 �squares�, and 8 �circles�.

FIG. 3. �Color online� Spatial distribution of species after
400 000 MCS for X=0.003 if initially the eight species were dis-
tributed randomly on a square lattice. The cyclic dominance be-
tween the eight �colored� species is indicated at the top and the
snapshot shows a 400�400 portion of the whole system with a size
of 1600�1600.
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process itself resembles the segregation of a water-oil mix-
ture in the presence of a surfactant �30,31�. Notice that in this
spatiotemporal pattern all the eight species remain alive; thus
the spontaneous formation of this inhomogeneous pattern ex-
emplifies a way for biodiversity to be maintained for a long
time. We have to emphasize that, in the absence of a clear
theoretical explanation of this phenomenon, we cannot ex-
clude the appearance of a slower domain growth process for
a longer time scale �t�106 MCS�.

Within the intermediate region of X the reproduction of
numerical data is poor �see Fig. 2� because the system be-
havior is perturbed by large and slow fluctuations �see data
for X=0.003 in Fig. 4�. To gain a deeper insight into this
ordering process, the function ppp�t� is plotted in Fig. 5 for
different system sizes.

Figures 4 and 5 indicate clearly that sufficiently large do-
mains of the well-mixed phases of odd and even labeled
species are formed after a transient time as long as 20 000
MCS. The symmetric composition of these domains �namely,
�0=�2=�4=�6=1 /4� is ensured by the long contact �interac-
tion� with the boundary layers, which serve as symmetric
species reservoirs �26�. At the same time, the final spatial
structure of the boundary layers is also affected by their in-
teractions with the well-mixed phases of neutral species.
These mutual effects might be a cause of the blocking of the
domain growth process in the intermediate region of X. The
mentioned process is observed if the system size L signifi-
cantly exceeds the typical domain size �l�100 lattice units
in Fig. 3�. In the opposite case, this proper structure cannot
build up because the system develops into a state consisting
of two, three, or four neutral species. For example, the left

curve �L=10� in Fig. 5 represents a fast evolution into a final
state where about one-third �2%� of runs end with three �two�
neutral species. Although the probability of finding four neu-
tral surviving species increases with system size, the compo-
sition of the final state is far from being symmetric if l	L.

Due to the extremely long transient times at the bound-
aries of the intermediate region, more accurate determination
of the critical values and systematic analysis of the corre-
sponding phase transitions exceeds our computing capacity.

The preliminary results indicate similar behavior for n
=10. In this case the system exhibits longer relaxation �re-
lated to the slower formation of the corresponding defensive
alliances�, making the rigorous analysis more difficult.

In summary, the present work is focused on the spatial
formation of two defensive alliances on a two-dimensional
lattice Lotka-Volterra model with even number n of species
cyclically invading each other at the same rate. The introduc-
tion of local mixing �with strength characterized by the site
exchange probability X between the neutral species residing
on neighboring sites� supports the formation of the well-
mixed distribution of odd or even label species representing
two equivalent defensive alliances. The phase segregation
process is observed if the mixing rate exceeds a threshold
value dependent on n. According to our MC simulations this
system evolves into a pattern �for n�6� where the domains
of defensive alliances are separated by boundary layers hav-
ing a different structure. This phenomenon raises further
questions about the role of boundary layers in these types of
complex systems.

This work was supported by the Hungarian National Re-
search Fund �Grant No. T-47003�.
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FIG. 4. Log-log plot for the time dependence of the predator-
prey pair probabilities in the eight-species system for X=0.0025,
0.003, 0.004, 0.0045, 0.005, and 0.008 �from top to bottom�. The
MC results are obtained on a square lattice with a linear size of L
=2800 and the plotted data are smoothed by averaging over a time
window �typically 
t� t /40, maximum 1000 MCS�. Dashed line
shows the slope of −1 /2 characterizing domain growth driven by
the decrease of interfacial energy �29�.
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FIG. 5. MC data for ppp�t� for X=0.003 when varying the sys-
tem size. Thick lines from left to right show the results for L=10,
30, and 100 after averaging over 104, 103, and 102 runs, respec-
tively. To demonstrate the large fluctuations in the fixation time, the
subsequent three dashed lines illustrate the results of three runs for
L=200. The last thick line �representing a single run for L=1000�
resembles data �obtained for L=2800� plotted in Fig. 4.
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