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Phase transition and selection in a four-species cyclic predator-prey model
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We study a four-species ecological system with cyclic dominance whose individuals are distributed on a
square lattice. Randomly chosen individuals migrate to one of the neighboring sites if it is empty or invade this
site if occupied by their prey. The cyclic dominance maintains the coexistence of all four species if the
concentration of vacant sites is lower than a threshold value. Above the threshold, a symmetry breaking
ordering occurs via growing domains containing only two neutral species inside. These two neutral species can
protect each other from the external invadgnedators and extend their common territory. According to our
Monte Carlo simulations the observed phase transition seems to be equivalent to those found in spreading
models with two equivalent absorbing states although the present model has continuous sets of absorbing states
with different portions of the two neutral species. The selection mechanism yielding symmetric phases is
related to the domain growth process with wide boundaries where the four species coexist.
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Multispecies ecological models with spatial extension ex-consisting of two neutral species. These two-species mixed
hibit a large variety of possible stationary states as well astates can preserve their territory from external invaders be-
phase transitions when tuning the model parameters. In thHenging to the remaining two species. Thus, besides the
original Lotka-Volterra model§l,2] as well as in the gener- above mentioned four-species state, this model has two sets
alized versions the spatial distribution of species is neglectedf “defensive alliances” whose confrontations will deter-
(see Refs[3,4] for reviews. Now we report a phenomenon mine the final stationary state. When increasing the concen-
underlying the role of spatial effects in the biological evolu-tration of vacant sites this system undergoes a phase transi-
tion. tion from the symmetric four-species state to one of the

In the simplest spatial version of Lotka-Volterra models symmetric defensive alliances. This transition will be inter-
(henceforth called predator-prey modelke individuals of  preted by considering the average displacenfant veloc-
competitive species are residing on the sites of a lattice anily) of boundary separating two competitive domains.
the system evolution is governed by invasions along the Here it is worth mentioning that the one-dimensional ver-
nearest neighbor links. In many cases the species form d&ion of the above model was already investigated by Frache-
mains with growing sizes and sooner or later only one spebourget al.[16] for the absence of vacant sites. It is shown
cies will survive. A significantly different behavior is found that this system evolves into single-species domains whose
if the species dominate cyclically each other, i.e., the correaverage size increases algebraically with time. One can eas-
sponding food web is characterized by a directed ring graplily see that the introduction of randomly walking vacant sites
[5—7]. Frachebourg and Krapivsk¥] have shown that fixa- does not essentially modify the motion of interfaces separat-
tion occurs if the number of speci®k exceeds a threshold ing the single-species domains. Thus, a similar domain
value N¢(d) depending on the spatial dimensid~1. In  growth is expected with a rate influenced by the concentra-
this case the species form a frozen domain strucfle tion of vacant sites. Henceforth, our analysis will be re-
Converselyf Ng<N¢(d)], the moving invasion fronts main- stricted to the two-dimensional system where the cyclic in-
tain a self-organizing polydomain structure. These patterngasions can maintain a self-organizing pattgh
are widely studied foN,= 3 [5,8,9] because it can provide a In the present model the siteof a square lattice can be
stability against some external invaders for the spatial modempty (5;=0) or single occupied by one of the four species
els[10-12. Satoet al.[13] have shown that, if only one of (i.e.,s;=1, 2, 3, and #dominating cyclically each oth&d
the invasion rates differs from unity for evéd,, then only  beats 2 beats 3 beats 4 beatsThe time evolution is con-
the species with od¢even labels survive. Very recently, the trolled by subsequent jumps or invasions at randomly chosen
species biodiversity was studied by similar models in bactenearest neighbor sitésindj. The individual will jump to the
rial [14], phytoplanktor[15] systems. empty site, i.e., the values ofj and s; are exchanged

In the above lattice models each site is occupied by arfs;«<s;) if s;=0 ands;>0 or ;>0 ands;=0. Invasion
individual of the competitive species. Now we will consider occurs if the predator and prey meet. For example, both the
a diluted version of these models on a square latticeNfor  (1,2) and(2,1) pairs transform into thél,1) pair (the further
=4. That is, the sites may be empty and the individuals arelementary invasions are given by cyclic permutation of the
allowed to jump to these empty sites. These elementargpecies labe)s Nothing happens i§ =s; as well as for neu-
events can result in the formation of “defensive alliances”tral pairs, i.e., pairg1,3), (3,1), (2,4), and(4,2) remain un-
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FIG. 2. Typical domain structure at tinte= 3000 MCS(Monte

FIG. 1. Spatial distribution of the four species on the squareCarlo steps per sijef initially (t=0) the spatial distribution was

lattice if po=0. The grayscale of the four species is indicated aboveéandom forp,=0.1. The white boxes refer to empty sites while the
the snaphot. grayscale of species is as in Fig. 1.

can not synchronize these accidental events. In the pattern
changed. The system is started from a random initial stateevolution one can easily recognize the traveling invasion
After some transient time the system reaches a stationafyonts that play a crucial role in the maintenance of this poly-
state we study. domain structurd5,9]. Similar spatiotemporal patterns can

Notice that the above elementary rules leave the numbdre observed for a low concentration of vacant sites. Hence-
of vacant sites unchanged and their distribution becomes urierth this spatiotemporal pattern is call€lstate.
correlated after a suitable relaxation time. The states contain- In the stationanC statep;=p,=p3=ps=(1—py)/4 due
ing only one species are considered as absorbing states he-the cyclic symmetry. A strikingly different behavior occurs
cause the above rule does not create new species. Besidéspy>p.,=0.06231). Whenusing lighter (darkey gray-
this, the mixed states containing only two neutral speciescales for species 1 and(3 and 4 two types of growing
(1+3 or 2+4) are also absorbing states and will be denoteclomains (namely D;5 and D,,) can be distinguished as
asDizandD,,. In these stationary states the ratio of the twoshown in Fig. 2. These growing domains are separated by
species remains constant. In the presence of vacant sites thiéde regions ofC states. The growth process is similar to
migration eliminates the spatial correlations. For small sizeshose observed in systems with two equivalent absorbing
this system can easily reach one of these absorbing states astdteq 17—21]. Finally the present system develops into one
afterwards it stays there forever. of the symmetric two-species absorbing staies or D,

Our Monte Carlo(MC) simulations are performed on a where p;=p3;=(1—pg)/2 and p,=p,=0, or p,=p,=(1
square box with periodic boundary conditions. In order to—p;)/2 andp;=p3;=0. The time of transition toward one of
avoid the above mentioned small size effect the linear size ithese states depends pgpandL.
varied fromL =400 to 2000. The systematic simulations are  Both species 1 and 3 benefit from their spatially mixed
started from a random initial state for different concentrationcoexistence because they protect each other from the external
of vacant sites fo). Within a time unit MCS(Monte Carlo  invasions. For example, species 2 can invade the sites occu-
steps per siteeach pair has a chance once on the average tpied originally by species 3, however, the neighboring spe-
modify the state at one of the corresponding sites. During theies 1 strikes back and eliminates the invaders 2. At the same
simulations we have recorded the concentration of specietime, species 3 protects species 1 against species 4. This is
and the pair configuration probabilities on the nearest neighthe reason why this association is called defensive alliance.
bor sites. Averaging over a suitable sampling time intervaDue to the cyclic symmetry species 2 and 4 can form a
we have determined the average species concentrajigns ( similar defensive alliance.
a=1, 2, 3, and 4 Furthermore, we have deduced two quan- The formation of defensive alliances was already ob-
tites P,, and P, describing the probability of finding served in some other multispecies ecological model where
predator-prey and neutral pairs on two nearest neighbor sitethe cyclic invasion itself has provided the protection mecha-
Evidently, P, measures the invasion activity that vanishesnism[11,12. In the present model, however, the protection
in the absorbing states. is due to the mixing of neutral species via the jumps to

The visualization of species distribution shows a self-empty sites.
organizing polydomain structure in the absence of vacant Figure 3 demonstrates that the probability of neutral pairs
sites (for a typical snapshot, see Fig). IThe species occur (P,) increases with the concentration of vacant sites in the
cyclically at each site, however, the short range interactiorstationary states. Above the mentioned threshold vajige (
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FIG. 3. Monte Carlo results for the probability of finding FIG. 4. Average displacement of boundaries between sfates
predator-preyclosed diamondsand neutral pairfopen squargon and D3 as a function of time forpy=0.056, 0.060, 0.064, and
two nearest neighbor sites in the stationary states. 0.070(from top to botton.

>pe) this quantity tends to the uncorrelated valRg= (1 The universal behavior of the nonequilibrium transitions
—po)?/2, characteristic of the symmetric defensive alliancelnto absorbing states have extensively been studied for sev-
state. Simultaneously, the invasion activitgr P,;) de- eral decadegfor a review see Ref§22,23). The dynamical
creases and drops suddenly to zerggt p, . In the de- systems with two equivalent absorbing states represent a cu-

scription of this transition the probability of finding predator- ;igu;t;nive;sality clas$n;51:cned after the voter modd]llg "
prey pairs on two nearestneighbor SiteB,g) can be 24,28 whose general features are consistent with those

considered as an order parameter that becomes zero in t@%ﬁggbf;\,eagfs\f'bfeftsiﬁq;e\éw;h g'\gﬁ?’aﬂqﬂ% ;qbsﬁ] rbing
absorbinglhomogeneoysD ;; and D, states. At first glance y )

it istent with a first-order oh ¢ it ight of the previous investigations the main curiosity of the
our resufts are consistent with a first-order phase transition. i3, eyt model is that here there are two equivalierinite)
more rigorous analysis of this transition is prevented by th

S " . ets of absorbing states that coexist during a domain growing
enhanced fluctuationSn all the quantities we studi¢dnd  rocess as described above. This coexistence implies a selec-

by.a critical slowing down inspite of the fact that our ;imu- tion mechanisnias described belowresulting in one of the
lations were performed on large systems=(2000) with  only two symmetric phasesD(;3 and D,,) in the final sta-
long relaxation and sampling times, 10" MCS andts  tionary state ifpy>p., . Consequently, the general features
>10° MCS) in the close vicinity of the transition point. The (symmetries, domain growing, etaf the present system are
corresponding MC data refer to the divergency of the stationvery similar to those characterizing the universality class of
ary variance of the order parametey @s defined in Ref. the voter model.
[22]). Due to the mentioned reasons, the low accuracy of our To gain a deeper insight into the dynamics of the present
numerical results does not allow us to derive an adequatsodel we now study the displacement of interfaces separat-
exponent ). ing the C state and one of the stationary defensive alliances
Similar difficulties (in the characterization of transitipn (Di30r D,,). For the preparation of such an artificial domain
were reported and discussed by Hinrichdd8], Dornic  structure the whole aref@rus is divided into parallel strips
etal. [19], and Lipowski and DroZ21], who considered with width of 500 lattice units. The MC simulation is started
simpler models exhibiting a phase transition to one of therom a random initial statéas abovgfor L=4000 and, after
two equivalent absorbing states. In these models the absork- suitable relaxation timé,, an uncorrelated ;3 state is
ing states are independent of time; therefore, the authorsreated in every second strip. More precisely, species 1 and 3
could use a very efficient method based on the numericaire substituted randomly for the occupied sites located inside
investigation of spreading from a single se@tbtails are the corresponding strips. First we consider the results ob-
given in Refs.[22,23)). Considering several-dimensional tained for symmetric distribution, i.e., when inside the defen-
models withq absorbing states Lipowski and Droz have con-sive alliances D13) p1=p3=(1—po)/2. The expansioitor
jectured that in the—d phase diagram the cade=q=2 is  shrinking of the C domains can be monitored by evaluating
close to or is at the crossing point of lines separating thre¢he quantity® (t) =p,(t) — p,(t) + p3(t) — p4(t). Notice that
different types of phase transitiofgl]. Unfortunately, we @ vanishes (®)=0) for the stateC whereasd(t)==*(1
could not utilize the advantage of the mentioned technique-py) in the absorbing states. The average displacement
because the absorbing states depend on time in the presdnteasured in lattice unitof the parallel interfaces are de-
model. rived straightforwardly from the variation @b (t).
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003 times. This boundary layer can be considered as a symmetric
species reservoir that drives an equalization between the dif-
2 ferent species concentration in the asymmeirjg phase via
002 o diffusion.
¢ This scenario is checked by considering the evolution
¢ from such an initial state where the parallel stripseated as
001 r P above are filled alternately by the symmetiiz,, and asym-
metric D5 states. The simulationdor po>p.,) have con-
firmed that the variation adi(t) is similar to a random walk;
L < DUl meanwhile the difference;—p5 tends to zero for long
Ae 'S times. This is the reason why we have always found sym-
'S metricD 5 or D,, states after the domain coarsening process
L JIPS for sufficiently large system sizes. At the same time this phe-
nomenon can be interpreted as a selection mechanism favor-
-0.02 . , izing the symmetric defensive alliances.
0.05 0.06 0.07 Here it is worth mentioning that the traditional mean-field
Po and pair approximationgfor details, see Ref422,30) are
capable of reproducing the existence of the above mentioned
FIG. 5. Average velocity of the invasion front between the statesabsorbing states. However, these techniques are not capable
C and D3 as a function of the concentration of vacant cites. Thepf describing the observed phase transition. We think that
arrow indicates the critical point derived from the investigation of this failure is due to the very complex mechanisms consist-
the s_tationary states. The statistical error is comparable to the SYNihg of many elementary steps within a local cycle.
bol size. In summary, our work shows that a slight migration in the
lattice predator-prey models may significantly affect the spe-
Figure 4 displays the typical time dependences of the aveies biodiversity. Dilution and migration are attributes usu-
erage displacement(t) of the boundaries separating t@e  ally found in ecosystems whose description should include
and D5 states. The increase dft) corresponds to the ex- these features. The present model exemplifies that the migra-
pansion ofC domains. The MC data are obtained by averag+tion of species supports the formation defensive alliances in
ing over 20 runs performed forL=4000 and t, the multispecies ecological systems. Furthermore, the con-
=3000 MCS if pg<p.; - Above the critical point o  frontation between the different associations of species plays
>p.,) We have to use significantly shorter relaxation timescrucial role in the selection of the survival population struc-
(t,=200 MCS) to avoid the difficulties caused by the ap-ture. In this case a phase transition occurs when the rate of
pearance of th® ;3 and D5, nucleons. It is remarkable that migration is increased by allowing more and more vacant
at the beginningd(t) decreases suddenly. After a suitable sites(and jump$ on the lattice.
transient time, however, the variation @ft) becomes linear The above described features are observed for many other
and the fitted slope can be interpreted as the average velocigystems. Preliminary results indicate clearly that a similar
v of the invasion front. behavior occurs if the mixing is provided by the site ex-
Figure 5 clarifies that th€ state invades the territories of change for neutral pairs without introducing vacant sites.
defensive alliances for low concentration of vacant sites. Thé&urthermore, a quantitatively similar behavior is found for
average invasion velocity decreases monotonously wjth the continuous version of the present model, i.e., when the
and becomes zero at=p.,. In agreement with the expec- individuals move freely on a planar surface and they create
tation, the area of th€ domains shrinks fopy> pe; . an offspring if they eat a prey caught within a short distance.
The above simulations were repeated by choosing asynin fact, this former finding inspired us to introduce a simpler
metric compositionge.g.,p;> p3) within the D5 state. Itis  model for the more rigorous analysis.
found that the asymmetry influences only the short time be- We think that the mixing of neutral species can result in
havior. For example, ip,> p5 then theC state can invade Other defensive alliances in multispecies systems. For ex-
fast (v ~1) those neighboring patches occupied by only theample, two equivalent alliances are expected to emerge in the
species 1 in th® ;5 domains. Consequently, in this case oneNs-species model with a circular food web for evah.
can observe a sudden incredsestead of decrease as p|0tted Evidently, such alliances can occur for more Complicated
in Fig. 4) in d(t). In the subsequent linear region, however, food webs when the species have several preys and predators
the average Velocityj becomes independent ot)l(_ p3) [11,12 In these SituatiOI’lS the Competition betWeen the pOS'
within the statistical error. The visualization of the speciessible (defensive alliances will affect the evolution of the
distribution has indicated that the boundary betweenChe ecological system including the food web itsgfl,32.
andD ;3 domains fluctuates very intensively. In fact, it is not
a well defined boundary because the sites occupied by spe- Thanks to Diego Gomez Deck, with whom one of us de-
cies 1 and 3 can belong to both phases within a boundaryeloped the earlier continuous version of the model. This
layer. Within this boundary layer the cyclic invasions sustainwork was supported by the Hungarian National Research
the equivalence betweep; and p; on average for long Fund under Grant No. T-33098.
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