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Generalized contact process on random environments
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Spreading from a seed is studied by Monte Carlo simulation on a square lattice with two types of sites
affecting the rates of birth and death. These systems exhibit a critical transition between survival and extinc-
tion. For time-dependent background, this transition is equivalent to those found in homogeneous (gstems
to directed percolation For frozen backgrounds, the appearance of the Griffiths phase prevents the accurate
analysis of this transition. For long times in the subcritical region, the spreading remains localized in compact
(rather than ramifiedpatches, and the average number of occupied sites increases logarithmically in the
surviving trials.
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[. INTRODUCTION example, in an evolutionary game, the extinction of one of
the three competing strategies represents a DP transition on a
The contact proced€P) was introduced by Harrigl]to ~ background whose time dependence is maintained by the
describe competition between the death and birth events for@empetition of the remaining two strategigs].
spatially distributed species. In this model, the organisms In the present paper, we study a generalized CP on a
localized at the sites of a lattice can die with a death rate opduare lattice with two types of sites that provide different
can create additional offspring in one of thé&mpty) neigh- conditior)s for the surviv.alland reproduction for a hypotheti-
boring sites. When increasing the ratio of birth to death rates¢al species. Our analysis is not restricted to the frozen back-
this system exhibits a critical phase transition from the empty@rounds. We give numerical evidence that the extinction pro-
to the active state as the system size approaches infinity. Th§ss becomes analogous to the DP transition if the random
transition belongs to the so-called directed percolatdR) environment involves uncorrelated time dependence. Using
universality clasg2,3]. Similar transitions have been ob- numerical simulations, we investigate the main characteris-
served for some other, related modéte recent reviews see tics of spreading when initially there is only a single indi-
Refs.[4,5]). vidual in the system. This method was suggested by Grass-
The above-mentioned CPs applied homogeneous backerger and de la Torrgl6] to study the DP transitioifor
grounds. The effects of random environment on the CP werBomogeneous backgrounid the close vicinity of the critical
carefully analyzed in one-dimensional systefs7]. Nu-  Point. Moreira and Dickmafl0] have demonstrated that this
merical investigations on the two-dimensional random envite€chnique is also efficient for the investigation of inhomoge-
ronments have been restricted to diluted lattif8s-12.  neous systems. Now we have adopted this method to study
Noest[8] has shown that, although the transition remainsthe above-mentioned generalized CP in random environ-
continuous, the extinction process is modified drastically ofnents. The results confirm the theoretical expectations
the randomly diluted lattice above the percolation threshold(4.5,13,17 as well as the previous observations based on
Recently Dickman and Moreirfd1] have reported that scal- Monte Carlo(MC) simulationg8-12. We have also studied
ing (a fundamental feature of critical transitioris violated ~ Some geometrical features of the patches formed by occupied
in this case. According to a field-theoretic analysis, a similasites in the subcritical region.
result is predicted by Janssgtg].
Below the percolation threshold on a diluted lattice, the Il. THE MODEL
available sites form isolatedinite) clusters. In any particular
cluster the species is expected to die out within finite time Each site of a square lattice=(x,y) (x andy are inte-
and the cluster remains empty afterwards. A simple mathgers, is assumed to represent a microhabitat for one indi-
ematical description suggested by Nd&gtindicates that the vidual of a species. The quality of a sii¢r) determines the
average concentration of species vanishes algebrically witarobabilities of the survival and reproduction of the inhabit-
time and this phenomenon is analogous to the relaxation olnt individual. We assume two microhabitat types: good and
served for the “Griffiths phase” in disordered spin models bad[whereg(r)=1 or 0, respectively The site qualities are
[14]. distributed randomly in space. Initially, each site is chosen to
Field-theoretic argumen{$] support that the temporally be good(bad with a probability P(1— P). Distribution of
quenched disorder itself, as well as the spatially quenchethdividuals over this random background is described by a
disorder, disturbs crucially the DP transition. However, thestate variableo(r) that is 1 for occupied and 0 for empty
DP transition is expected on large scales for those randorstate. Time evolution of the system is governed by three
environments where the spatiotemporal disorder is uncorrealementary processes affecting the values-@f) andg(r).
lated. For two-dimensional systems this expectation is supFor an occupied site, extinctiofdeath can occur with a
ported only by a small number of numerical evidences. Fodeath rated[g(r)]. For an empty site, colonizatiotbirth)
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can take place with a birth ratie[g(r)], provided that a 10°f
randomly chosen nearest-neighbor site is occupied. It is sup-
posed that the good sites provide better conditions for living,
that isb(1)>b(0) andd(1)<d(0). Furthermore, redrawing 10
the value ofg(r) we change the environment with a rdte
The new state is independent of the actual values bf and
a(r). This occasional modification results in stationary dis-
tribution of the good or bad sites over time, with probabili-
ties P and 1- P, respectively, and leaves their distribution 10°
uncorrelated.

In the special case when every site is go&=(1), the
present model is equivalent to the well investigated contact 10

S(t)

process on homogeneous backgro{#é]|. Previous studies 022

have shown that in this case, the species dies out if ™ T TS 0 10 10F
=b(1)/d(1)<\.=1.64881). Theconcentration of popula- time [MCS]

tion vanishes algebrically in the active stationary state, that is . . . ) .
COC()\—AC)B where 3=0.575(3) ifA—\. [4,5,18,19. This FIG. 1. Survival probabilities as functions of time at differént

critical transition is accompanied with diverging quctuations"""'ues("”ijicateol by labelsfor b(1)=1, b(0)=0.5, d(1)=0.25,
and correlation length. andd(0)=0.5.
The conditions of the CP on diluted lattice can be repro-

duced by allowing the species to stay only in good sites The efficiency of these simulations can be greatly im-
[b(0)=0 andd(0)=c] for P<1 andf=0. proved by labeling the individuals, recording their coordi-

nates, and picking up one individual randomly for updating
the state of occupandy]. In the present case, the chosen
individual residing at siter dies with a probability
The MC simulations are performed on a lattice with  d(g(r))/[b(1)+d(0)] or creates an offspring on one

XL sites under periodic boundary conditions. Following theof its nearest-neighboring sites’ with a probability
method suggested by Grassberger and de la Td8kthe  b(g(r’))/[b(1)+d(0)]. These attempted events take time
spreading is investigated by averaging over many tils At=1/n on average, therefore, the time is increasedilby
when the initial state is close to the absorbing state. Mor&he variation of the background can be handled in the same
precisely, each run is started with a single individialpo-  way within a smaller [X1) region whose sites affect the CP
sitionr=(0,0)] on a new, random, uncorrelated background.at the given time. Namely, the values@fr) are redrawn at

Ill. SIMULATION OF SPREADING

We have determined the survival probability randomly chosertfl? sites.
The average values defined abdgee Eqs(1)—(4)] are
S(t)={(n(1))), @ determined for discrete time values chosen equidistantly on a

where the number of individuals at a given timis defined logarithmic scale.

as
IV. RESULTS FOR FROZEN BACKGROUND

n(t)= E o(r), (2 First we concentrate on a system where the random back-
' ground is frozen, i.e.f=0. Varying the proportion of good
sites (P), we have made a systematic MC analysis for fixed
0qjeath and birth rates. For the present paraméses Fig. 1
the good sites form isolated clustefbaving P<<Ppe
=0.5926 (percolation threshold and infinite spreading is
N(t)=(n(t)), (3)  possible across the bad sites. The results summarized in the
subsequent figures agree quantitatively with those found by
and the mean-square distance of individuals from the originMoreira and Dickman[10] on a diluted lattice for

(---) means the average ovbt trials, andd(z) =1(0) for
z>0(z=<0). We have also evaluated the average number
surviving individuals,

P>P o
perc
R2(1)= 1 E r20(r) 4) Figure 1 shows some typical time-dependence functions
N(t) \ 47 ' of survival in a log-log plot. The statistical errors are com-

parable to the linewidth due to the large number of trials
M is varied from 10 to 1¢® in the systematic investiga- (e.g., M=10° for P=0.22). In the active regionR>P,),

tions. The system sizk is adjusted to exceed significantly S(t) tends to a constant value as expedt#@]. In the sub-
the average radius of occupied sites, namlely,15R(t 4y s critical region, S(t) can be well approximated by a power
wheret,, indicates the time limit. As usual, time is mea- law. Unfortunately, the convergency toward the limit value
sured in Monte Carlo steps. During one time unit, each sitdbecomes extremely slow in the vicinity of the critical point,
has a chance to modify the value ofr) (approximately and this prevents the accurate determinatio®of The di-
once on average vision between the active and inactive regions becomes more
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FIG. 2. Average number of individuals vs time for the same. FIG. 4. _T!me d_ependence of the average number of individuals
. . L2 in the surviving trials aP=0.22, 0.23, and 0.235.
simulations as in Fig. 1.

visible when considering the functidd(t) (see Fig. 2 Evaluation of N(t) involves those(stopped trials that

In the active region, the surviving individuals occupy ahave reached the empty state before the given tin@on-
compact patch whose radius increases linearly with timesequently, the ratid(t)/S(t) expresses the average number
ConsequentlyN(t) becomes proportional t¢? for suffi-  of individuals in the surviving trials. In the subcritical region,
ciently long times as indicated in Fig. 2. By contrast, whenthe time dependence of this quantity tends to logarithmic
P<P., thenN(t) tends to a power law decay with an ex- increase as shown in a lin-log plétee Fig. 4
ponent depending oR. In the classical theory of percolatidneviewed in Refs.

Figure 3 shows the time evolution of the mean-squarg20,21]), a geometrical feature of the clusters of sizés
distance of surviving individuals as defined by H4). In  characterized by an average cluster radRys.(s). Below
agreement with the expectatiof®(t)=t? for sufficiently  the percolation threshol®pe{s)*s” for the larges limit.
long times ifP> P, . In the subcritical region, the increase of According to MC simulation$20,22,23, p=2/3, while the
R2(t) becomes significantly slower than that found for the“self-avoiding walk” prediction[24] gives p=3/4. In gen-
homogeneous system. In the homogeneous system, the sefal, p>1/2 values are characteristic for ramified clusters
viving individuals perform random walks independently of [20]. On the contrary, above the percolation threshold the
each other, therefordR?(t)=t in the subcritical region. In finite size clusters are compact, that yiefgs 1/2.
the present case, however, our data indicate a power law Following this analogy, we examine the relation between
increaseR?(t)«t*, where the exponent(P)<1. This indi-  N(t)/S(t), the actual size of population in the surviving tri-
cates the localization of spreading as it will be explained inals, and the average radius of the area they occupy at a given
Sec. VI. time in the subcritical region. Figure 5 shows this relation on
a log-log plot. In the close vicinity of the critical poirtat
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FIG. 3. Log-log plot of the mean-square distance of individuals
from the origin as a function of time. Parameter values are the same FIG. 5. R2(t) vs N(t)/S(t) for P=0.22 (dashed dotteg 0.23
as in Fig. 1. (dashed, 0.235(solid), and 0.239dotted ling.
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FIG. 6. Log-log plot of survival probabilities vs time at different ~ FIG. 7. Average number of individuals vs time for the same
P values(as indicated by labelsfor b(1)=1, b(0)=0.5, d(1) simulations as in Fig. 6.
=0.25,d(0)=0.5, andf =0.01.

of 7 agrees with the characteristic exponent of DP transitions

P=0.239) we find power law behavior with an exponent[4 5].
1.666). This behavior indicates that if the species spreads |n summary, all the above-mentioned numerical results
over a ramified cluster in the whole time interval we could support that contact process exhibits the same features in
study the system. time-dependent random environments as in homogeneous

In the subcritical region, however, we can observe twobackground. Similarly t&(t) andN(t), R?(t) also supports
different types of behavior. In the transiefshort-time re-  this conclusiondata not shown
gion, the increase dR*(t) is faster than at the critical point.  These results have been gained at a fixed rate of changes
This indicates that the offspring move away from the origin(f=0.01). Preliminary results suggest, however, that the
along preferred paths formed by good sites. Conversely, thgéame conclusions hold for other valuesf afs well. General
long-time behavior is dominated by those trials where thefeatures of spreading remain unchanged due to the robust-
individuals stay on a compact patch. ness of DP transition.

In the following section we show that these features fun-  Here it is worth mentioning that we have also studied the
damentally change when we allow the background changgoncentration of individualéas well as its fluctuationn the

over time. stationary state for some parameter values. These analyses
support that the variation of both quantities is consistent with
V. RESULTS FOR TIME-DEPENDENT BACKGROUND the expectations, i.e., the species concentration and its fluc-

uation exhibit power law behavior with exponents charac-

Applying time-dependent backgrounds, we thermine‘ieristic for the the two-dimensional DP systefds5,18,19.

the same quantitiegS(t), N(t), and R%(t)] as before. We
use the same birth and death rates when varying the value of
P for a fixed rate(f) of background change. Our results esti-
mate the critical value for the ratio of good sites R We have studied a generalized version of contact process
=0.268(@1). Figure 6 shows that the survival probability on a square lattice. The background in the present model
S(t) vanishes exponentially wheR<<P.. In the active re- provides a continuous transition from a homogeneous system
gion (P>P.), however,S(t) tends to a constant value. No- to a randomly fluctuating environment, includirffozen
tice that the convergence is significantly faster here than ailuted lattices. The environment is inhomogeneous, consist-
the frozen backgrountsee Fig. 1 ing of two types of siteggood and badthat affect the rates
Data forP=0.268 represent the behavior of the system abf birth and death of the species. In this model, the spreading
the critical point. The numerical analysis confirms that thefrom a cluster of good sites to another one is permitted
survival probabilities can be well approximated by a poweracross the bad sites and/or bridge$ good sitey created
law, S(t)=t~° for sufficiently long times. Numerical fitting occasionally by background fluctuations.
gives 6=0.45(2) in agreement with the exponent found in  Our analyses have been restricted to the consideration of
DP transitions in homogeneous syste@s$)]. some typical features because the simulations are rather time
When considering\(t), we can also distinguish between consuming. The results confirm the theoretical expectations
three different behaviorsee Fig. 7. Above the critical point as well as the general picture drawn by previous authors
(P>P.), N(t) tends towards quadratic time dependence[8-11] who considered CP on diluted lattices.
Below the critical pointN(t) decreases exponentially. Atthe  Obviously, an inhomogeneous environment contains areas
critical point, however, our MC data indicate power law be-that provide bettefor worse conditions for the survival rela-
havior, i.e.,N(t)oct7 with »=0.231). This numerical value tive to the average quality of the habitat. This variation be-

VI. CONCLUSIONS AND SUMMARY
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comes particularly important in the vicinity of the transition firmed by our MC simulations. Namelyg(t) and N(t) ex-
point that separates the active and inactive regions for londhibit a dominant power law decrease in the subcritical re-
time behavior. In the subcritical region, the surviving indi- g_ion,.while N(t)/S(t).(in proportion to the dominant cIL_Jster
viduals are constrained to remain within isolated patchessize increases logarithmically. Furthermore, in the active re-
Conversely, in the active region, favorable areas can form gion, the algebrically decaying contribution 8{t) comes
percolating cluster, that has infinite extension, and sustainom extinction on(compact finite size clusters whose prob-
infinite survival. ability distribution satisfies the above assumpti@i,23.

To explain the main results, we briefly remind the reader NOest's approach is focused on compact clusters where

- : ; sxR2. ConsequentlyN(t)/S(t) < R?(t) is expected when the

of a simple calculation suggested by Nog8}L In this de- : a ) p

scription we characterize the favorable patches by sized system behavior is dominated by a typical cluster size. This

assume that their probability decreases exponentially. i ebehavior can be observed for long times far below the critical
| _point. Figure 5 indicates, however, that these predictions

nece AS. Furthermore, it is also assumed that the averag ) 7 . "
and assumptionsfail in the close vicinity of the critical

over many trials(or patches of size) yields an exponen- int. In oth ds. th ified clust : | i

tially decreasing number of individuals over time, that is,ppt"n -1N0 gr wor S,N e rgml_ ied clusters give re e\;]an con-

mg(t)ce~Y"s where the average survival time can be ap-trl ution to 5(t) an (t) uring a transient time that in-
creases when approaching the critical point. In this case, we

proximated ag¢< e if initially all sites are occupied. Noest S L .
has shown that the long-time behavior can be well approxi—need a more sophisticated description allowing the emer-
gence of ramified clusters and the shape dependeneg. of

mated in this case by a power law decrease, tham{$ . : = R
yap 8) Numerical analysis of the extinction process is difficult

=3 snmy(t)xt A8 This prediction is derived from a . .
maximum likelihood estimation that implies the existence of(In a quenched e_nwronn_@nbecause d(_egrease_ﬁtt) and
N(t) slows down in the vicinity of the critical point. In prac-

a typical cluster size giving the dominant contribution tot. this imoll ist | ” iods bef
m(t). According to this approach, the size of dominant clus- Iceé thiS Implies persistence over long-imeé periods betore
extinction. The slow extinction process, however, requires

ters increases logarithmically with tinte th i . tal diti £ I d
The adoption of this approach is not straightforward to the 3NEr Specilic environmental conditions. Even a small de-
present situation where we consider the spreading from ree of temporal fluctuation results in an extinction process
at is analogous to DP transition on large scales. Our pre-

single seed. In our case, the species can die out before™ : . - o ,
achieving homogeneous distribution, while homogeneougmmary simulations have indicated that the transition point
' s strongly affected by the rafeof background change. Fur-

initial state is assumed in the former calculation. We cal . ) .
assume, however, that the species spreads over the wh er analyses are required to quantify this phenomenon for
' ' ifferent birth and death rates.

cluster or dies out within a transient time, and the probabili-

ties of these outcomes are independent of cluster size. If this

hypothesis holds, than the approach of Noest can be applied

for the analysis of long-time behavior. Support from the Hungarian National Research Fund
Some predictions of this rough method have been con¢Grant Nos. T-33098, and T-35008 acknowledged.
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