
PHYSICAL REVIEW E, VOLUME 65, 066111
Generalized contact process on random environments
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Spreading from a seed is studied by Monte Carlo simulation on a square lattice with two types of sites
affecting the rates of birth and death. These systems exhibit a critical transition between survival and extinc-
tion. For time-dependent background, this transition is equivalent to those found in homogeneous systems~i.e.,
to directed percolation!. For frozen backgrounds, the appearance of the Griffiths phase prevents the accurate
analysis of this transition. For long times in the subcritical region, the spreading remains localized in compact
~rather than ramified! patches, and the average number of occupied sites increases logarithmically in the
surviving trials.
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I. INTRODUCTION

The contact process~CP! was introduced by Harris@1# to
describe competition between the death and birth events
spatially distributed species. In this model, the organis
localized at the sites of a lattice can die with a death rate
can create additional offspring in one of their~empty! neigh-
boring sites. When increasing the ratio of birth to death ra
this system exhibits a critical phase transition from the em
to the active state as the system size approaches infinity.
transition belongs to the so-called directed percolation~DP!
universality class@2,3#. Similar transitions have been ob
served for some other, related models~for recent reviews see
Refs.@4,5#!.

The above-mentioned CPs applied homogeneous b
grounds. The effects of random environment on the CP w
carefully analyzed in one-dimensional systems@6,7#. Nu-
merical investigations on the two-dimensional random en
ronments have been restricted to diluted lattices@8–12#.
Noest @8# has shown that, although the transition rema
continuous, the extinction process is modified drastically
the randomly diluted lattice above the percolation thresho
Recently Dickman and Moreira@11# have reported that sca
ing ~a fundamental feature of critical transitions! is violated
in this case. According to a field-theoretic analysis, a sim
result is predicted by Janssen@13#.

Below the percolation threshold on a diluted lattice, t
available sites form isolated~finite! clusters. In any particula
cluster the species is expected to die out within finite ti
and the cluster remains empty afterwards. A simple ma
ematical description suggested by Noest@9# indicates that the
average concentration of species vanishes algebrically
time and this phenomenon is analogous to the relaxation
served for the ‘‘Griffiths phase’’ in disordered spin mode
@14#.

Field-theoretic arguments@5# support that the temporally
quenched disorder itself, as well as the spatially quenc
disorder, disturbs crucially the DP transition. However, t
DP transition is expected on large scales for those rand
environments where the spatiotemporal disorder is unco
lated. For two-dimensional systems this expectation is s
ported only by a small number of numerical evidences.
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example, in an evolutionary game, the extinction of one
the three competing strategies represents a DP transition
background whose time dependence is maintained by
competition of the remaining two strategies@15#.

In the present paper, we study a generalized CP o
square lattice with two types of sites that provide differe
conditions for the survival and reproduction for a hypothe
cal species. Our analysis is not restricted to the frozen ba
grounds. We give numerical evidence that the extinction p
cess becomes analogous to the DP transition if the ran
environment involves uncorrelated time dependence. Us
numerical simulations, we investigate the main characte
tics of spreading when initially there is only a single ind
vidual in the system. This method was suggested by Gr
berger and de la Torre@16# to study the DP transition~for
homogeneous background! in the close vicinity of the critical
point. Moreira and Dickman@10# have demonstrated that th
technique is also efficient for the investigation of inhomog
neous systems. Now we have adopted this method to s
the above-mentioned generalized CP in random envir
ments. The results confirm the theoretical expectati
@4,5,13,17# as well as the previous observations based
Monte Carlo~MC! simulations@8–12#. We have also studied
some geometrical features of the patches formed by occu
sites in the subcritical region.

II. THE MODEL

Each site of a square lattice,r5(x,y) (x andy are inte-
gers!, is assumed to represent a microhabitat for one in
vidual of a species. The quality of a siteg(r ) determines the
probabilities of the survival and reproduction of the inhab
ant individual. We assume two microhabitat types: good a
bad@whereg(r )51 or 0, respectively#. The site qualities are
distributed randomly in space. Initially, each site is chosen
be good~bad! with a probability P(12P). Distribution of
individuals over this random background is described b
state variables(r ) that is 1 for occupied and 0 for empt
state. Time evolution of the system is governed by th
elementary processes affecting the values ofs(r ) andg(r ).
For an occupied site, extinction~death! can occur with a
death rated@g(r )#. For an empty site, colonization~birth!
©2002 The American Physical Society11-1
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can take place with a birth rateb@g(r )#, provided that a
randomly chosen nearest-neighbor site is occupied. It is s
posed that the good sites provide better conditions for livi
that isb(1).b(0) andd(1),d(0). Furthermore, redrawing
the value ofg(r ) we change the environment with a ratef.
The new state is independent of the actual values ofg(r ) and
s(r ). This occasional modification results in stationary d
tribution of the good or bad sites over time, with probab
ties P and 12P, respectively, and leaves their distributio
uncorrelated.

In the special case when every site is good (P51), the
present model is equivalent to the well investigated con
process on homogeneous background@4,5#. Previous studies
have shown that in this case, the species dies out il
5b(1)/d(1),lc51.6488(1). Theconcentration of popula
tion vanishes algebrically in the active stationary state, tha
c}(l2lc)

b whereb50.575(3) ifl→lc @4,5,18,19#. This
critical transition is accompanied with diverging fluctuatio
and correlation length.

The conditions of the CP on diluted lattice can be rep
duced by allowing the species to stay only in good si
@b(0)50 andd(0)5`# for P,1 and f 50.

III. SIMULATION OF SPREADING

The MC simulations are performed on a lattice withL
3L sites under periodic boundary conditions. Following t
method suggested by Grassberger and de la Torre@16# the
spreading is investigated by averaging over many trialsM
when the initial state is close to the absorbing state. M
precisely, each run is started with a single individual@at po-
sition r5(0,0)# on a new, random, uncorrelated backgroun
We have determined the survival probability

S~ t !5^u„n~ t !…&, ~1!

where the number of individuals at a given timet is defined
as

n~ t !5(
r

s~r !, ~2!

^•••& means the average overM trials, andu(z)51(0) for
z.0(z<0). We have also evaluated the average numbe
surviving individuals,

N~ t !5^n~ t !&, ~3!

and the mean-square distance of individuals from the ori

R2~ t !5
1

N~ t ! K (r
r 2s~r !L . ~4!

M is varied from 104 to 108 in the systematic investiga
tions. The system sizeL is adjusted to exceed significant
the average radius of occupied sites, namely,L*15R(tmax),
where tmax indicates the time limit. As usual, time is me
sured in Monte Carlo steps. During one time unit, each
has a chance to modify the value ofs(r ) ~approximately
once on average!.
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The efficiency of these simulations can be greatly i
proved by labeling the individuals, recording their coord
nates, and picking up one individual randomly for updati
the state of occupancy@4#. In the present case, the chos
individual residing at site r dies with a probability
d„g(r )…/@b(1)1d(0)# or creates an offspring on on
of its nearest-neighboring sitesr 8 with a probability
b„g(r 8)…/@b(1)1d(0)#. These attempted events take tim
Dt51/n on average, therefore, the time is increased byDt.
The variation of the background can be handled in the sa
way within a smaller (l 3 l ) region whose sites affect the C
at the given time. Namely, the values ofg(r ) are redrawn at
randomly chosenDt f l 2 sites.

The average values defined above@see Eqs.~1!–~4!# are
determined for discrete time values chosen equidistantly o
logarithmic scale.

IV. RESULTS FOR FROZEN BACKGROUND

First we concentrate on a system where the random b
ground is frozen, i.e.,f 50. Varying the proportion of good
sites (P), we have made a systematic MC analysis for fix
death and birth rates. For the present parameters~see Fig. 1!
the good sites form isolated clusters@having P,Pperc
50.5926 ~percolation threshold!# and infinite spreading is
possible across the bad sites. The results summarized in
subsequent figures agree quantitatively with those found
Moreira and Dickman @10# on a diluted lattice for
P.Pperc.

Figure 1 shows some typical time-dependence functi
of survival in a log-log plot. The statistical errors are com
parable to the linewidth due to the large number of tri
~e.g., M5108 for P50.22). In the active region (P.Pc),
S(t) tends to a constant value as expected@16#. In the sub-
critical region,S(t) can be well approximated by a powe
law. Unfortunately, the convergency toward the limit val
becomes extremely slow in the vicinity of the critical poin
and this prevents the accurate determination ofPc . The di-
vision between the active and inactive regions becomes m

FIG. 1. Survival probabilities as functions of time at differentP
values~indicated by labels! for b(1)51, b(0)50.5, d(1)50.25,
andd(0)50.5.
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GENERALIZED CONTACT PROCESS ON RANDOM . . . PHYSICAL REVIEW E65 066111
visible when considering the functionN(t) ~see Fig. 2!.
In the active region, the surviving individuals occupy

compact patch whose radius increases linearly with tim
Consequently,N(t) becomes proportional tot2 for suffi-
ciently long times as indicated in Fig. 2. By contrast, wh
P,Pc , thenN(t) tends to a power law decay with an e
ponent depending onP.

Figure 3 shows the time evolution of the mean-squ
distance of surviving individuals as defined by Eq.~4!. In
agreement with the expectationsR2(t)}t2 for sufficiently
long times ifP.Pc . In the subcritical region, the increase
R2(t) becomes significantly slower than that found for t
homogeneous system. In the homogeneous system, the
viving individuals perform random walks independently
each other, therefore,R2(t)}t in the subcritical region. In
the present case, however, our data indicate a power
increase:R2(t)}tl, where the exponentl(P),1. This indi-
cates the localization of spreading as it will be explained
Sec. VI.

FIG. 2. Average number of individuals vs time for the sam
simulations as in Fig. 1.

FIG. 3. Log-log plot of the mean-square distance of individu
from the origin as a function of time. Parameter values are the s
as in Fig. 1.
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Evaluation of N(t) involves those~stopped! trials that
have reached the empty state before the given timet. Con-
sequently, the ratioN(t)/S(t) expresses the average numb
of individuals in the surviving trials. In the subcritical regio
the time dependence of this quantity tends to logarithm
increase as shown in a lin-log plot~see Fig. 4!.

In the classical theory of percolation~reviewed in Refs.
@20,21#!, a geometrical feature of the clusters of sizes is
characterized by an average cluster radiusRperc(s). Below
the percolation thresholdRperc(s)}sr for the larges limit.
According to MC simulations@20,22,23#, r.2/3, while the
‘‘self-avoiding walk’’ prediction @24# gives r.3/4. In gen-
eral, r.1/2 values are characteristic for ramified cluste
@20#. On the contrary, above the percolation threshold
finite size clusters are compact, that yieldsr51/2.

Following this analogy, we examine the relation betwe
N(t)/S(t), the actual size of population in the surviving tr
als, and the average radius of the area they occupy at a g
time in the subcritical region. Figure 5 shows this relation
a log-log plot. In the close vicinity of the critical point~at

s
e

FIG. 4. Time dependence of the average number of individu
in the surviving trials atP50.22, 0.23, and 0.235.

FIG. 5. R2(t) vs N(t)/S(t) for P50.22 ~dashed dotted!, 0.23
~dashed!, 0.235~solid!, and 0.239~dotted line!.
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SZABÓ, GERGELY, AND OBORNY PHYSICAL REVIEW E65 066111
P50.239) we find power law behavior with an expone
1.66~6!. This behavior indicates that if the species spre
over a ramified cluster in the whole time interval we cou
study the system.

In the subcritical region, however, we can observe t
different types of behavior. In the transient~short-time! re-
gion, the increase ofR2(t) is faster than at the critical point
This indicates that the offspring move away from the orig
along preferred paths formed by good sites. Conversely,
long-time behavior is dominated by those trials where
individuals stay on a compact patch.

In the following section we show that these features fu
damentally change when we allow the background cha
over time.

V. RESULTS FOR TIME-DEPENDENT BACKGROUND

Applying time-dependent backgrounds, we determin
the same quantities@S(t), N(t), and R2(t)# as before. We
use the same birth and death rates when varying the valu
P for a fixed rate~f! of background change. Our results es
mate the critical value for the ratio of good sites atPc
50.2680(1). Figure 6 shows that the survival probabili
S(t) vanishes exponentially whenP,Pc . In the active re-
gion (P.Pc), however,S(t) tends to a constant value. No
tice that the convergence is significantly faster here tha
the frozen background~see Fig. 1!.

Data forP50.268 represent the behavior of the system
the critical point. The numerical analysis confirms that t
survival probabilities can be well approximated by a pow
law, S(t)}t2d for sufficiently long times. Numerical fitting
gives d50.45(2) in agreement with the exponent found
DP transitions in homogeneous systems@4,5#.

When consideringN(t), we can also distinguish betwee
three different behaviors~see Fig. 7!. Above the critical point
(P.Pc), N(t) tends towards quadratic time dependen
Below the critical point,N(t) decreases exponentially. At th
critical point, however, our MC data indicate power law b
havior, i.e.,N(t)}th with h50.23(1). This numerical value

FIG. 6. Log-log plot of survival probabilities vs time at differen
P values ~as indicated by labels! for b(1)51, b(0)50.5, d(1)
50.25, d(0)50.5, andf 50.01.
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of h agrees with the characteristic exponent of DP transiti
@4,5#.

In summary, all the above-mentioned numerical resu
support that contact process exhibits the same feature
time-dependent random environments as in homogene
background. Similarly toS(t) andN(t), R2(t) also supports
this conclusion~data not shown!.

These results have been gained at a fixed rate of cha
( f 50.01). Preliminary results suggest, however, that
same conclusions hold for other values off as well. General
features of spreading remain unchanged due to the rob
ness of DP transition.

Here it is worth mentioning that we have also studied
concentration of individuals~as well as its fluctuation! in the
stationary state for some parameter values. These ana
support that the variation of both quantities is consistent w
the expectations, i.e., the species concentration and its
tuation exhibit power law behavior with exponents chara
teristic for the the two-dimensional DP systems@4,5,18,19#.

VI. CONCLUSIONS AND SUMMARY

We have studied a generalized version of contact proc
on a square lattice. The background in the present mo
provides a continuous transition from a homogeneous sys
to a randomly fluctuating environment, including~frozen!
diluted lattices. The environment is inhomogeneous, cons
ing of two types of sites~good and bad! that affect the rates
of birth and death of the species. In this model, the spread
from a cluster of good sites to another one is permit
across the bad sites and/or bridges~of good sites! created
occasionally by background fluctuations.

Our analyses have been restricted to the consideratio
some typical features because the simulations are rather
consuming. The results confirm the theoretical expectati
as well as the general picture drawn by previous auth
@8–11# who considered CP on diluted lattices.

Obviously, an inhomogeneous environment contains ar
that provide better~or worse! conditions for the survival rela-
tive to the average quality of the habitat. This variation b

FIG. 7. Average number of individuals vs time for the sam
simulations as in Fig. 6.
1-4
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GENERALIZED CONTACT PROCESS ON RANDOM . . . PHYSICAL REVIEW E65 066111
comes particularly important in the vicinity of the transitio
point that separates the active and inactive regions for lo
time behavior. In the subcritical region, the surviving ind
viduals are constrained to remain within isolated patch
Conversely, in the active region, favorable areas can for
percolating cluster, that has infinite extension, and sust
infinite survival.

To explain the main results, we briefly remind the read
of a simple calculation suggested by Noest@9#. In this de-
scription we characterize the favorable patches by sizes and
assume that their probability decreases exponentially,
ns}e2As. Furthermore, it is also assumed that the aver
over many trials~or patches of sizes) yields an exponen-
tially decreasing number of individuals over time, that
ms(t)}e2t/ts where the average survival time can be a
proximated asts}eBs if initially all sites are occupied. Noes
has shown that the long-time behavior can be well appro
mated in this case by a power law decrease, that is,m(t)
5(ssnsms(t)}t2A/B. This prediction is derived from a
maximum likelihood estimation that implies the existence
a typical cluster size giving the dominant contribution
m(t). According to this approach, the size of dominant clu
ters increases logarithmically with timet.

The adoption of this approach is not straightforward to
present situation where we consider the spreading from
single seed. In our case, the species can die out be
achieving homogeneous distribution, while homogene
initial state is assumed in the former calculation. We c
assume, however, that the species spreads over the w
cluster or dies out within a transient time, and the probab
ties of these outcomes are independent of cluster size. If
hypothesis holds, than the approach of Noest can be app
for the analysis of long-time behavior.

Some predictions of this rough method have been c
s
,

os
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firmed by our MC simulations. Namely,S(t) and N(t) ex-
hibit a dominant power law decrease in the subcritical
gion, whileN(t)/S(t) ~in proportion to the dominant cluste
size! increases logarithmically. Furthermore, in the active
gion, the algebrically decaying contribution ofS(t) comes
from extinction on~compact! finite size clusters whose prob
ability distribution satisfies the above assumption@21,23#.

Noest’s approach is focused on compact clusters wh
s}R2. Consequently,N(t)/S(t)}R2(t) is expected when the
system behavior is dominated by a typical cluster size. T
behavior can be observed for long times far below the criti
point. Figure 5 indicates, however, that these predictio
~and assumptions! fail in the close vicinity of the critical
point. In other words, the ramified clusters give relevant c
tribution to S(t) and N(t) during a transient time that in
creases when approaching the critical point. In this case,
need a more sophisticated description allowing the em
gence of ramified clusters and the shape dependence ofts .

Numerical analysis of the extinction process is difficu
~in a quenched environment! because decrease ofS(t) and
N(t) slows down in the vicinity of the critical point. In prac
tice this implies persistence over long-time periods bef
extinction. The slow extinction process, however, requi
rather specific environmental conditions. Even a small
gree of temporal fluctuation results in an extinction proc
that is analogous to DP transition on large scales. Our p
liminary simulations have indicated that the transition po
is strongly affected by the ratef of background change. Fur
ther analyses are required to quantify this phenomenon
different birth and death rates.
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