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Phase transition in a spatial Lotka-Volterra model
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Spatial evolution is investigated in a simulated system of nine competing and mutating bacterium strains,
which mimics the biochemical war among bacteria capable of producing two different bacteriocins~toxins! at
most. Random sequential dynamics on a square lattice is governed by very symmetrical transition rules for
neighborhood invasions of sensitive strains by killers, killers by resistants, and resistants by sensitives. The
community of the nine possible toxicity/resistance types undergoes a critical phase transition as the uniform
transmutation rates between the types decreases below a critical valuePc above that all the nine types of strains
coexist with equal frequencies. Passing the critical mutation rate from above, the system collapses into one of
three topologically identical~degenerated! states, each consisting of three strain types. Of the three possible
final states each accrues with equal probability and all three maintain themselves in a self-organizing polydo-
main structure via cyclic invasions. Our Monte Carlo simulations support that this symmetry-breaking transi-
tion belongs to the universality class of the three-state Potts model.
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Many species of bacteria have recently been shown
excrete toxic subtances that are very effective against str
of the same or closely related species not producing the
responding resistance factor@1,2#. With respect to a certain
toxin a species consists of colonies of three possible ty
Sensitive (S), Killer ( K), or Resistant (R). Killer strains
produce the toxin and a resistance factor that prevents
cide; resistant strains only produce the resistance factor,
sensitives produce neither. AnS colony can always be in
vaded and displaced by aK propagulum becauseK can kill S
using the toxin. AK colony can be invaded and ultimate
displaced by anR propagulum because the resistant type
immune to the toxic effect and it does not carry the me
bolic burden of synthetizing the toxin, thus it achieves
higher growth rate and competitive dominance overK. TheS
type can in turn displace the resistant by competition, fo
does not even pay the metabolic cost of producing the re
tance factor. The resulting cyclic pattern of competiti
dominance (K beatsS beatsR beatsK) is a striking realiza-
tion of the well-known Rock-Scissors-Paper game@3#, by a
biological entity. Other cyclic dominance systems are alm
unknown in ecology, except for the famous case of fem
mate-choice preference system in the lizard speciesUta
stansburiana@4#.

Some theoretical aspects of cyclic dominance have
ready been thoroughly investigated@5,3#. In the simplest spa-
tial ~lattice! version of a cyclic Lotka-Volterra system@6,7#
the species are distributed on ad-dimensional lattice, and
invasions are confined to the nearest neighbor sites with
form rates@8,9#. Analytical and numerical calculations hav
proven that fixation occurs if the number of species exce
a critical value dependent on dimensiond, otherwise a self-
organizing domain structure is maintained ford>2 @10#,
which comprises rotating vortices and antivortices in thr
species models@8,11#. The present work is meant to demo
strate that extending the cyclic dominance approach to a t
toxin bacterial community with mutation results in
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remarkable enrichment of interesting dynamical phenome
compared to what is already known.

The relevant biological details of bacteriocin systems
the following: The genes coding for the toxin and the res
tance factor are usually both sitting on an extrachromoso
DNA ring in the cytoplasm~called plasmid! that the bacte-
rium can lose and obtain without any immediate deleterio
impact. Each of the two genes on the plasmid can
switched off by DNA mutation. Thus all possible mutation
transformations are possible in principle, but—supposing
mutant does not disperse far immediately—those havin
visible effect are only the ones after which the mutant defe
the resident strain from which it emerged. Obviously,S
→K, K→R, andR→S are mutations followed by competi
tive displacement of the resident, i.e., they are permitted,
the reverse ones are immediately eliminated by the resid
population. S→K involves obtaining a complete plasmi
that is possible, e.g., through genetic transformation o
sexual event called conjugation; the other two viable mu
tions are realized by switching off the toxin gene and t
resistance gene, respectively, on an existing plasmid.

Most bacteria are capable of producing more than o
toxin and/or the corresponding resistance factors simu
neously. If the maximum number of toxin types is two, t
number of possible toxicity/resistance combinations in
strain is nine. These are:SS, SK, SR, KS, KK, KR, RS,
RK, andRR. Here we confine our attention to this two-tox
system, denoting the actual state of a bacterium colony by
index number from 0 to 8 in the order above. The topolo
of the dominance relations among the states are illustrate
Fig. 1. The biological justification for this topology i
straightforward: double dominance of strainA above strainB
means thatA harbors dominant genes on both plasmids co
pared toB; single dominance means that one gene ofA is
dominant, the other is identical to that of the correspon
gene inB; no dominance follows either if the correspondin
©2001 The American Physical Society04-1
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GYÖRGY SZABÓ AND TAMÁ S CZÁRÁN PHYSICAL REVIEW E 63 061904
genes are both identical, or if the two genes play draw~i.e.,A
wins with one gene, andB with the other!.

We use a square lattice of sizeL3L with periodic bound-
ary conditions as the arena for interaction. Each lattice si
is occupied by a colony of one of the nine toxicity/resistan
types ~we call them ‘‘species’’ for brevity in the sequel!.
Assignment of a certain value of the state variablesi
50, . . . ,8 to acertain site indicates the presence of the c
responding species on that site. The simulation works
iterating the following elementary steps: At a randomly ch
sen site one of the two possible mutants replaces the res
colony with probability P, otherwise the resident colon
fights with a randomly chosen nearest neighbor colony
mutually invading propagules~with a probability 122P).
The outcome of the battle between two neighbors (i and j )
depends on the dominance relations between them:i dis-
placesj and takes over its site ifsi is dominant oversj ~cf.
Fig. 1!. If the neighbors are equivalent or neutral to ea
other ~play draw!, nothing happens.

Lattice size varies fromL5400 to 3000 in the simula
tions. At t50 the species were distributed at random w
uniform probabilities on the lattice in all simulation run
The control parameter was mutation rate, varying from 0
1/2. We have recorded the time series of species conce
tions and correlation functions, the latter of which served
the basis for calculating correlation length. After a suita
thermalization time we have averaged these data over s
sampling time chosen to be long enough for providing su
cient accuracy in spite of the occassionally very high c
centration fluctuations.

In no-mutation runs (P50) we have observed an inte
esting domain size increase phenomenon in the time serie
spatial patterns that develop. One can distinguish th
equivalent types of growing domains consisting of t
01418, 11516, and 21317 species, respectively. Insid
these three domains a self-organizing structure is mainta
through the mechanism described by Tainaka for the s
plest three-species cyclic dominance model@8#. We call
these domains ‘‘alliances’’ henceforth, but note that the s
cies within an alliance are in fact the worst enemies: e
alliance consists of species cyclically double-dominat

FIG. 1. Topology of dominance in the nine-species model. T
single and double lines with arrow indicate single and double do
nances as described in the text.
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each other. Our reason for this terminology will be clear in
minute.

The three alliances are given approximately equal terr
ries at start, but the system slowly drifts towards a sing
domain state in all simulations. Each alliance has the sa
chance to take over.

Alliances defend themselves against the external invas
of ‘‘alien’’ species with a peculiar mechanism. One can e
ily check that any external invader can attack only one of
species within an alliance, and the invader is eliminated fr
the domain of the alliance by the species actually controll
the attacked one within the alliance. This means that
invader is wiped away by the toughest within-domain ene
of the attacked species, thus maintaining the self-organiz
structure and the integrity of the domain with the very sa
mechanism.

The self-protection of alliances against external invad
can also be observed for small mutation rates as illustrate
Fig. 2. In this snapshot similar symbols are used for spe
belonging to the same alliance. Namely, different st
widths ~or box sizes! distinguish the species within the thre
alliances represented by horizontal and vertical strips
closed squares, respectively. This figure illustrates that
mutants and their offspring can form only small, tempora
islands in the sea of the dominant domain~01418! repre-
sented by vertical strips. Clearly, the concentrations of
nority species increase with mutation rateP.

The average concentrations of the species become equ
the mutation rate exceeds a critical valuePc . This continu-
ous transition is accompanied by a divergence in both
fluctuations and the correlation length. A similar phase tr
sition occurs in the three-state Potts model@12,13#, therefore

e
i-

FIG. 2. Snapshot of species pattern forP50.0003. The different
symbols magnified at the top represent the speciess50, . . . ,8from
left to right.
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we have adopted the numerical techniques suggested
Binder @14# for the quantitative analyses.

In order to reduce relaxation time in systematic investi
tions, the random initial state contained only species 0
and 8 at small values ofP. The Monte Carlo~MC! simula-
tions were performed on large lattices (L.1500) and long
sampling times (t.33105 MC steps per sites! in the vicin-
ity of the critical point. For such large lattice sizes the dom
nance of the 01418 alliance was maintained during th
simulations at all tested values ofP below Pc .

The simulations suggest a continuous transition as in
cated in Fig. 3. Statistical errors are small, comparable to
line thickness of the figure, except for the very close vicin
of the critical point.

Figure 3 shows that theP dependence of average conce
trations can be characterized by a single order parametm
as

c05c45c85
1

9
1m,

~1!

c15c25c35c55c65c75
1

9
2

1

2
m.

According to our MC simulations,m follows a power law
behavior in the close vicinity ofPc , i.e.,

m}~Pc2P!b, ~2!

if P,Pc ~see the inset in Fig. 3!, whereas the order param
eter remains zero forP.Pc . Numerical fitting yieldsb
50.110(5) andPc50.000 4333(5). This value of theb ex-
ponent is in good agreement with the theoretical predict
(b51/9) obtained for the three-state (Q53) Potts model
@13#. This is not surprising, given that a large class of tw
state dynamical systems exhibits phase transition belon

FIG. 3. Average concentrations of species as a function of
tation rate. The inset shows the log-log plot of the order param
vs Pc2P.
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to the universality class of the Ising model@15# and the
Q-state Potts model was introduced as a generalization o
Ising model@12,13#.

To obtain further evidence, we have also studied so
other quantities characterizing the critical behavior. For
ample, the fluctuation of the order parameter defined ax
5NŠ(m2^m&)2

‹ can be well approximated by a power law
x'uP2Pcug in the vicinity of Pc . Below and above the
critical point, numerical fitting yieldsg51.3(2) and g8
51.43(4), respectively, which agree with the theoretical pr
diction (g5g8513/9) @13#. The investigation of the cumu
lant of the order parameter@16# for small lattice sizes (L
560,100,200) supports the presence of a continuous tra
tion at the critical mutation ratePc . Furthermore, we have
determined the correlation functionC(x) for P.Pc , which
characterizes the probability of finding the same species
two sites at a distancex away from each other. In the vicinity
of Pc , two different characteristic lengths can be obtain
from C(x) ~see the inset in Fig. 4!. The shortest correlation
length is proportional to the linear size of a domain with
the alliance, and this quantity remains finite ifP→Pc . The
longest correlation length is more interesting, because
characterizes the linear size of the alliance and diverge
P→Pc . More precisely, this correlation length can be w
described by a power law@j;(P2Pc)

n# as illustrated in
Fig. 4. Numerical fitting predictsn50.82(4), in agreement
with the theoretical predictionn55/6 for the two-
dimensional, three-state Potts model@13#.

Despite the lack of time reversal on the local scale~i.e.,
the definite direction of elementary invasions! the present
model undergoes a critical transition characteristic to s
tems satisfying the condition of detailed balance~i.e., possi-
bilities for reversed processes!. This apparent contradiction i

-
er

FIG. 4. Log-log plot of the correlation length characteristic
the linear extension of alliances as a function ofP2Pc . The solid
line represents the fitted power law behavior with a slope
20.82. The arrow points to the value of the correlation length ch
acteristic to the linear domain size inside an alliance forP50. The
inset shows the lin-log plot of the correlation function forP
50.000 55.
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resolved by the robustness of critical transition because
feature is determined by the long-range fluctuations, and
‘‘interaction’’ between the defensive alliances becomes sy
metric at the spatial scale they are formed.

We have also investigated the model analytically,
evaluating the probability of configurations on two adjace
sites~pair approximation method!. Even though the numbe
of possible pair configurations is large (92), considering the
~translation, rotation, reflection, and cyclic! symmetries of
the system the number of different pair probabilities redu
to as few as four. For sufficiently largeP, this method gives
a good approximation for the behavior of the simulati
model ~i.e., it predicts vanishing correlations ifP→1/2).
However, it shows no sign of the phase transition found
the MC simulations atPc . This failure of the pair approxi-
mation method in showing the phase transition is related
the key role that interfacial invasion plays in the develo
ment of the self-organizing domain structure@8,11#. This
feature limits the techniques we can use for further inve
gations.

In conclusion, our MC simulations justify that the prese
model exhibits a critical phase transition accompanied w
spontaneous symmetry breaking, in close analogy to
well-known Potts model. Here the mutation rateP plays the
role of the control parameter whose increase drives the
tem towards the symmetric stationary state in which all
,

-
e,
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nine species are present with the same probability. C
versely, for low mutation rateP the system drifts towards th
dominance of an alliance consisting of three species wh
survival is maintained by cyclic within-domain invasion
Due to the very symmetric topology of species dominan
relations the system admits three equivalent alliances.
merical analysis of the critical behavior (b, n, andg expo-
nents! supports our conjecture that the observed phase t
sition belongs to the universality class of the three-state P
model. The most surprising result of this work is that cyc
invasion is capable of providing protection~stability! for al-
liances consisting of mortal enemies~species double-
dominating each other! under some particular conditions hid
den in the topology of the interaction. Further systema
research is required to clarify the conditions for the em
gence of such defensive alliances accompanied by a re
tion in the number of surviving species for more gene
interaction topologies. We hope these results will inspire
search for such behavior in ecological systems. Particul
hopeful candidates for such systems are expected to
found in microbal communities in which resource- a
interference-competitive mechanisms define circles in
community interaction graphs.
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