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Phase transition in a spatial Lotka-Volterra model
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Spatial evolution is investigated in a simulated system of nine competing and mutating bacterium strains,
which mimics the biochemical war among bacteria capable of producing two different bacteftogins) at
most. Random sequential dynamics on a square lattice is governed by very symmetrical transition rules for
neighborhood invasions of sensitive strains by killers, killers by resistants, and resistants by sensitives. The
community of the nine possible toxicity/resistance types undergoes a critical phase transition as the uniform
transmutation rates between the types decreases below a criticaPyadbeve that all the nine types of strains
coexist with equal frequencies. Passing the critical mutation rate from above, the system collapses into one of
three topologically identicaldegeneratedstates, each consisting of three strain types. Of the three possible
final states each accrues with equal probability and all three maintain themselves in a self-organizing polydo-
main structure via cyclic invasions. Our Monte Carlo simulations support that this symmetry-breaking transi-
tion belongs to the universality class of the three-state Potts model.
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Many species of bacteria have recently been shown toemarkable enrichment of interesting dynamical phenomena,
excrete toxic subtances that are very effective against strairmpared to what is already known.
of the same or closely related species not producing the cor- The relevant biological details of bacteriocin systems are
responding resistance factgk,2]. With respect to a certain the following: The genes coding for the toxin and the resis-
toxin a species consists of colonies of three possible typesance factor are usually both sitting on an extrachromosomal
Sensitive ), Killer (K), or Resistant R). Killer strains  DNA ring in the cytoplasm(called plasmid that the bacte-
produce the toxin and a resistance factor that prevents suiium can lose and obtain without any immediate deleterious
cide; resistant strains only produce the resistance factor, anghpact. Each of the two genes on the plasmid can be
sensitives produce neither. A8 colony can always be in-  switched off by DNA mutation. Thus all possible mutational
vaded and displaced bykapropagulum becauseécan killS  transformations are possible in principle, but—supposing the
using the toxin. AK colony can be invaded and ultimately mytant does not disperse far immediately—those having a
displaced by arR propagulum because the resistant type isjsip|e effect are only the ones after which the mutant defeats
immune to the toxic effect and it does not carry the metayne resident strain from which it emerged. Obvious$,
bolic burden of synthetizing the toxin, thus it achieves 4_, K. K—R, andR— S are mutations followed by competi-

higher grqwth rate' and compet|t|\{e dominance dﬂejfheS .tive displacement of the resident, i.e., they are permitted, but
type can in turn displace the resistant by competition, for it

. . . the reverse ones are immediately eliminated by the resident
does not even pay the metabolic cost of producing the resis- . . -2 .
tance factor. The resulting cyclic pattern of competitivep()pu.lat'on'S._)K involves obtaining a complete p!asmld
dominance K beatsS beatsR beatsK) is a striking realiza- that is possible, e.g., through genetic transformatlon or a
tion of the well-known Rock-Scissors-Paper gaiié by a s_exual event palled conJL_Jga'qon; the other _two viable muta-
biological entity. Other cyclic dominance systems are almostions are realized by switching off the toxin gene and the
unknown in ecology, except for the famous case of femald€Sistance gene, respectively, on an existing plasmid.
mate-choice preference system in the lizard spetiés Most bacteria are capable of producing more than one
stansburiand 4]. toxin and/or the corresponding resistance factors simulta-
Some theoretical aspects of cyclic dominance have alneously. If the maximum number of toxin types is two, the
ready been thoroughly investigatggl3]. In the simplest spa- number of possible toxicity/resistance combinations in a
tial (lattice) version of a cyclic Lotka-Volterra systef®,7]  strain is nine. These ar&S SK, SR KS, KK, KR, RS
the species are distributed ondadimensional lattice, and RK, andRR Here we confine our attention to this two-toxin
invasions are confined to the nearest neighbor sites with unsystem, denoting the actual state of a bacterium colony by an
form rates[8,9]. Analytical and numerical calculations have index number from O to 8 in the order above. The topology
proven that fixation occurs if the number of species exceedsf the dominance relations among the states are illustrated in
a critical value dependent on dimensidnotherwise a self- Fig. 1. The biological justification for this topology is
organizing domain structure is maintained fde2 [10], straightforward: double dominance of stréirabove strairB
which comprises rotating vortices and antivortices in threesmeans thaf harbors dominant genes on both plasmids com-
species modelg8,11]. The present work is meant to demon- pared toB; single dominance means that one geneAdé
strate that extending the cyclic dominance approach to a twadominant, the other is identical to that of the correspondig
toxin bacterial community with mutation results in a gene inB; no dominance follows either if the corresponding
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FIG. 1. Topology of dominance in the nine-species model. The
single and double lines with arrow indicate single and double domi-
nances as described in the text.

wins with one gene, anB with the othey.

We use a square lattice of sikex L with periodic bound- Ill
ary conditions as the arena for interaction. Each latticei site
is occupied by a colony of one of the nine toxicity/resistancet
types (we call them “species” for brevity in the sequel
Assignment of a certain value of the state varialsle symbols magnified at the top represent the spepie8, . . . ,8from
=0, ...,8 to acertain site indicates the presence of the cor- left to right.
respondlng species on that site. The simulation works by
iterating the following elementary steps: At a randomly cho-each other. Our reason for this terminology will be clear in a
sen site one of the two possible mutants replaces the residegiinute.
colony with probability P, otherwise the resident colony  The three alliances are given approximately equal territo-
fights with a randomly chosen nearest neighbor colony byies at start, but the system slowly drifts towards a single-

genes are both identical, or if the two genes play dfiesv, A | H" “ ”

FIG. 2. Snapshot of species pattern Ror 0.0003. The different

mutually invading propagulegwith a probability 1-2P).  domain state in all simulations. Each alliance has the same
The outcome of the battle between two neighbararidj) chance to take over.
depends on the dominance relations between thedis- Alliances defend themselves against the external invasion

placesj and takes over its site & is dominant ovess; (cf.  of “alien” species with a peculiar mechanism. One can eas-
Fig. 1. If the neighbors are equivalent or neutral to eachily check that any external invader can attack only one of the
other (play draw, nothing happens. species within an alliance, and the invader is eliminated from
Lattice size varies fronk =400 to 3000 in the simula- the domain of the alliance by the species actually controlling
tions. Att=0 the species were distributed at random withthe attacked one within the alliance. This means that the
uniform probabilities on the lattice in all simulation runs. invader is wiped away by the toughest within-domain enemy
The control parameter was mutation rate, varying from 0 toof the attacked species, thus maintaining the self-organizing
1/2. We have recorded the time series of species concentrgtructure and the integrity of the domain with the very same
tions and correlation functions, the latter of which served asnechanism.
the basis for calculating correlation length. After a suitable The self-protection of alliances against external invaders
thermalization time we have averaged these data over sonwan also be observed for small mutation rates as illustrated in
sampling time chosen to be long enough for providing suffi-Fig. 2. In this snapshot similar symbols are used for species
cient accuracy in spite of the occassionally very high conbelonging to the same alliance. Namely, different strip
centration fluctuations. widths (or box sizeg distinguish the species within the three
In no-mutation runs P=0) we have observed an inter- alliances represented by horizontal and vertical strips and
esting domain size increase phenomenon in the time series ofosed squares, respectively. This figure illustrates that the
spatial patterns that develop. One can distinguish threenutants and their offspring can form only small, temporary
equivalent types of growing domains consisting of theislands in the sea of the dominant dom&i4+8) repre-
0+4+8, 1+5+6, and 2+3+7 species, respectively. Inside sented by vertical strips. Clearly, the concentrations of mi-
these three domains a self-organizing structure is maintainegority species increase with mutation rée
through the mechanism described by Tainaka for the sim- The average concentrations of the species become equal if
plest three-species cyclic dominance modi@]. We call  the mutation rate exceeds a critical vaRg. This continu-
these domains “alliances” henceforth, but note that the speeus transition is accompanied by a divergence in both the
cies within an alliance are in fact the worst enemies: eaclfluctuations and the correlation length. A similar phase tran-
alliance consists of species cyclically double-dominatingsition occurs in the three-state Potts model, 13, therefore
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FIG. 3. Average concentrations of species as a function of mu-  £|G. 4. Log-log plot of the correlation length characteristic to
tation rate. The inset shows the log-log plot of the order parametejhe |inear extension of alliances as a functiorPof P,. The solid
vs Pc—P. line represents the fitted power law behavior with a slope of
—0.82. The arrow points to the value of the correlation length char-
we have adopted the numerical techniques suggested Ryteristic to the linear domain size inside an allianceer0. The
Binder[14] for the quantitative analyses. inset shows the lin-log plot of the correlation function fér
In order to reduce relaxation time in systematic investiga-=0.000 55.
tions, the random initial state contained only species 0, 4, . . .
and 8 at small values d®. The Monte CarloqMC) simula- to the universality class_ of the Ising modgl5] gnd. the
tions were performed on large lattices 1500) and long sttate Potts model was introduced as a generalization of the
sampling times {>3x 10° MC steps per sitésin the vicin-  'Sing model[12,13. .
ity of the critical point. For such large lattice sizes the domi- _ 10 obtain further evidence, we have also studied some
nance of the 84+8 alliance was maintained during the other quantities chgractenzmg the critical behawor. For ex-
simulations at all tested values Bfbelow P . ample, the flugtuatlon of the order parameter defined as
The simulations suggest a continuous transition as indi=N{(m—(m))) can be well approximated by a power law;
cated in Fig. 3. Statistical errors are small, comparable to th&~|P—Pc|” in the vicinity of P¢. Below and above the
line thickness of the figure, except for the very close vicinity€ftical point, numerical fitting yieldsy=1.3(2) andy
of the critical point. = 1._4:{4), respectively, which agree vv_lth t_he theoretical pre-
Figure 3 shows that the dependence of average concen-diction (y=y’=13/9) [13]. The investigation of the cumu-
trations can be characterized by a single order parameter 'ant of the order parametgd6] for small lattice sizes I(

as =60,100,200) supports the presence of a continuous transi-
tion at the critical mutation rat®.. Furthermore, we have
1 determined the correlation functidd(x) for P>P_, which
Co:C4:C8:§+ m, characterizes the probability of finding the same species on

two sites at a distanceaway from each other. In the vicinity
@) of P., two different characteristic lengths can be obtained
from C(x) (see the inset in Fig.)4 The shortest correlation
length is proportional to the linear size of a domain within
the alliance, and this quantity remains finitePif—=P.. The
According to our MC simulationsin follows a power law  longest correlation length is more interesting, because it

1 1

C1:C2203:C5:CGZC7:§_ Em

behavior in the close vicinity oP, i.e., characterizes the linear size of the alliance and diverges if
P—P.. More precisely, this correlation length can be well
moc(Pg—P)”, (2 described by a power lafé~(P—P.)"] as illustrated in

Fig. 4. Numerical fitting predicte=0.824), in agreement
if P<P. (see the inset in Fig.)3whereas the order param- with the theoretical predictionv=5/6 for the two-
eter remains zero foP>P.. Numerical fitting yieldsg  dimensional, three-state Potts mofi&3].
=0.110(5) andP.=0.000433(5). This value of theB ex- Despite the lack of time reversal on the local scdle.,
ponent is in good agreement with the theoretical predictiorthe definite direction of elementary invasiorthe present
(B=1/9) obtained for the three-stat® &3) Potts model model undergoes a critical transition characteristic to sys-
[13]. This is not surprising, given that a large class of two-tems satisfying the condition of detailed balarice., possi-
state dynamical systems exhibits phase transition belonginigilities for reversed processed his apparent contradiction is
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resolved by the robustness of critical transition because itaine species are present with the same probability. Con-
feature is determined by the long-range fluctuations, and theersely, for low mutation rat® the system drifts towards the
“interaction” between the defensive alliances becomes symdominance of an alliance consisting of three species whose
metric at the spatial scale they are formed. survival is maintained by cyclic within-domain invasion.
We have also investigated the model analytically, bypue to the very symmetric topology of species dominance
evaluating the probability of configurations on two adjacentre|ations the system admits three equivalent alliances. Nu-
sites(pair approximation methgdEven though the number erical analysis of the critical behaviog( v, andy expo-
of possible pair configurations is large%)9 considering the  nentg supports our conjecture that the observed phase tran-
(translation, rotation, reflection, and cyglisymmetries of  gjiion belongs to the universality class of the three-state Potts
the system the number of different pair probabilities reducesgnggel. The most surprising result of this work is that cyclic
to as few as four. For sufficiently largg this method gives jqyasion is capable of providing protectidstability) for al-
a good approximation for the behavior of the simulationjiances consisting of mortal enemiegpecies double-
model (i.e., it predicts vanishing correlations B—1/2). ~ gominating each othgunder some particular conditions hid-
However, it shows no sign of the phase transition found ingen in the topology of the interaction. Further systematic
the MC simulations aP.. This failure of the pair approxi- - research is required to clarify the conditions for the emer-
mation method in showing the phase transition is related tQence of such defensive alliances accompanied by a reduc-
the key role that interfacial invasion plays in the develop-tion in the number of surviving species for more general
ment of the self-organizing domain structui® 11]. This  interaction topologies. We hope these results will inspire a
feature limits the techniques we can use for further investisearch for such behavior in ecological systems. Particularly
gations. _ _ o hopeful candidates for such systems are expected to be
In conclusion, our MC simulations justify that the presentfgnd in microbal communities in which resource- and
model exhibits a critical phase transition accompanied withpterference-competitive mechanisms define circles in the
spontaneous symmetry breaking, in close analogy to thgommunity interaction graphs.
well-known Potts model. Here the mutation r&elays the
role of the control parameter whose increase drives the sys- Support from the Hungarian National Research Fund
tem towards the symmetric stationary state in which all thgGrants Nos. T-33098 and T-25798 acknowledged.
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