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Branching annihilating random walk on random regular graphs

György Szabo´
Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary

~Received 9 June 2000!

The branching annihilating random walk is studied on a random graph whose sites have a uniform number
of neighbors (z). The Monte Carlo simulations in agreement with the generalized mean-field analysis indicate
that the concentration decreases linearly with the branching rate forz>4, while the coefficient of the linear
term becomes zero ifz53. These properties are described by a modified mean-field theory taking explicitly
into consideration the probability of mutual annihilation of the parent and its offspring particles using the
returning features of a single walker on the same graph.

PACS number~s!: 64.60.Ht, 05.10.2a, 05.40.Fb
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The branching annihilating random walk~BARW! @1# is
considered one of the simplest models of the extinction p
cesses exhibiting critical behavior in different physic
chemical, biological, and economical systems@2#. In these
phenomena the walkers can represent domain walls, vort
defects, atoms, active sites, biological species or their c
nies, strategies, etc. This is the reason why the BARWs h
been extensively studied in the last years~for references see
the papers by Cardy and Ta¨uber @3,4#!.

In general, the walkers~henceforth particles! jump ran-
domly on one of the neighboring sites of a lattice, and e
one can create additional particles with a branching proba
ity P. Furthermore, two particles annihilate each other if th
try to share a site as a consequence of the mentioned jum
branching events. When varying the branching probabilit
phase transition can be observed in the average concentr
of particles. Namely, the particles survive if the branchi
rate exceeds a critical valuePc ; otherwise, the system tend
toward the absorbing state~no particles!, which is indepen-
dent of time. The transition from the active to the absorb
state belongs to the directed percolation~DP! universality
class as well as the extinction processes in most of the
component system@5#.

On the lattices the BARWs are well investigated usi
different techniques@3,4,6–8#. The Monte Carlo~MC! simu-
lations are extended to the Sierpinski gasket by Takay
and Tretyakov@8#. In the present paper we will study th
BARW on random regular graphs characterized by a unifo
number of joints. The joints of these graphs define the p
sible paths for the particles in the structureless syste
where the spatial position of the sites is no longer releva

It is emphasized that the investigation of some phys
phenomena on graphs provides a more general unders
ing. For example, the extension of the Mermin-Wagner th
rem to graphs shows that the recurrence criterion for
absence of continuous symmetry breaking remains valid
the graphs too@9–11#. In other words, the existence of th
spontaneous magnetization on a graph is related to the p
ability of returning to the starting point for a single rando
walker on the same graph. The recurrence of a random w
also plays a crucial role in the BARW because a particle
its offspring will be annihilated when they meet. The var
tion of the distance between them can be mapped on
single walker problem on the same graph. As a result, if
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motion of the parent and its offspring is not affected by oth
particles, then the probability of their mutual annihilatio
equals those of returning to the starting site for a sim
random walk.

Our investigation will concentrate on the graphs cons
ing of N sites, and each site will havez joints toward differ-
ent, randomly chosen sites~henceforth neighbors! excluding
itself. At a given time each site can be occupied by a sin
particle or be empty. The time evolution is governed by
peating the following elementary processes. A random
chosen particle creates an additional particle on one of
neighboring sites with a probabilityP or jumps to this site
~with a probability 12P). In both cases, if the randoml
chosen neghboring site is already occupied, then the resi
and incomer particles annihilate each other, leaving an em
site behind.

In the case ofz51 the graph consists of disjoint pairs
and the particles vanish forP.0, while the particles survive
on the single occupied pairs ifP50. For z52 the graph
becomes a set of disjoint loops and the feature of BARW
be desribed by the one-dimensional results@4,6,8#. Our
analyses will concentrate on the random graphs with su
ciently largeN andz>3. Locally these graphs are similar t
trees. A distance between two sites can be introduced as
length ~number of steps! of the shortest path joining them
The average distance between two sites increases logarit
cally with the number of sites for largeN @12#.

The stationary state of this system is characterized by
average concentration of walkers~c! that will be determined
by using different methods. For a locally treelike structu
the generalization of the one-dimensional dynamical clus
technique is straightforward@13#. In this case the particle
distribution is described by the configuration probabiliti
pk(n1 , . . . ,nk) (ni50 or 1! on the clusters of neighboringk
sites. Here we assume that these quantities satisfy some
metry ~translation, rotation, reflection! and compatibility re-
lations. The one-point configuration probabilities are direc
related to the average concentrations, namely,p1(1)5c and
p1(0)512c. Introducing an additional parameterq, the
two-point configuration probabilities are given asp2(1,1)
5q,p2(1,0)5p2(0,1)5c2q and p2(0,0)5122c1q. Fur-
ther parameters are required fork.2.

In the present case the time variation ofpk can be ex-
pressed by the terms ofpk andpk11. For example,
7474 ©2000 The American Physical Society
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ṗ1~1!5~12P!p1~1!2p2~1,1!1p2~0,1!, ~1!

where we have summed the contribution of all the elem
tary processes mentioned above. Notice that this equatio
satisfied by the absorbing state (c50). At the level of the
one-point approximation we assume thatp2(n1 ,n2)
5p1(n1)p1(n2). In this case the nontrivial stationary solu
tion of Eq. ~1! obeys a simple form

c(1p)5
P

2
, ~2!

independent ofz. At the level of thek-point approximation
the corresponding set of equations is solved by using
Bayesian relations (pk11s are approximated by the produ
of pk terms! @13#. In the two-point approximation the
straightforward calculation gives the following stationary s
lution:

c(2p)5P
2~z22!2~z23!P

4~z21!22zP12P2 . ~3!

This result refers to the absence of pair correlations in
limit z→` as well as atP51 for any values ofz. At higher
levels the stationary solutions are evaluated numerically.

In order to check these results we have performed
simulations on random graphs withN5500 000 sites varying
the branching rateP for z54 and 3. The simulations ar
started from a randomly half-filled graph, and the concen
tion is obtained by averaging over 104 MC steps per particle
after some thermalization.

Figure 1 compares the MC data to the prediction of
k-point approximations forz54. Here the results of three
and four-point approximations are omitted because their
viation fromc(2p) is comparable to the line thickness. In th
casec5AP whenP→0. TheA coefficients obtained by MC
simulation and the five-point approximation are slightly d
ferent, namely,A(MC)50.250(2) andA(5p)50.278(1).

FIG. 1. The average concentration of particles as a function
branching rate forz54. The symbols represent MC data, the so
curves comes from the one-, two- and five-point approximati
~from top to bottom! on clusters indicated at the top.
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In the light of the pair approximation@see Eq.~3!# better
and better agreement is expected when increasingz. For z
53, however, significant differences can be observed
tween the MC results and the prediction of thek-point ap-
proximations whenP→0. To magnify the discrepancy be
tween the two methods, theP-dependence of the averag
concentration is illustrated in a log-log plot. As shown
Fig. 2, the MC data refer to a quadratic behavior for smalP
values; meanwhile thek-point approximations predict linea
behavior with a coefficient decreasing whenk is increased.

Here it is worth mentioning that the MC data have r
mained unchanged within statistical error~comparable to the
line thickness! when the random graph was generated in
different way. This investigation was motivated by the sm
word model suggested by Watts and Strogatz@14#. In this
case the points with the first and second joints form a sin
loop and the third ones are chosen randomly.

The trend in the prediction of thek-point approximations
implies the possibility that the coefficient of the linear ter
goes to zero in the limitk→`. Now we introduce a modified
mean-field theory, taking explicitly into consideration th
mutual annihilation of the parent and his offspring, as me
tioned above. It will be shown that the vanishing of the line
term is directly related to fact that half of the branchin
process yields mutual annihilation.

In this description theR(z) probability of this mutual an-
nihilation process is approximated with the probability
returning to the starting site for a single random walker
the same graph. This simplification is exact in the limitsP
andc→0 when the random walks of the parent and his o
spring are practically not affected by other particles. T
appearance of additional offspring during the recurrence
considered a second order process whose effect will be
cussed below.

The main advance of this approach is that we can use
exact results obtained for the simple random walk on
Bethe lattices that are locally similar to the present rand
graphs. Hughes and Sahimi@15# and Cassi@16# have ob-
tained thatR(z)51/(z21) and that the average number

f

s

FIG. 2. Log-log plot of the average concentration of particles
P if z53. The solid curves indicate the prediction of generaliz
mean-field methods at the levels of the one-, two-, four-, and
point approximations~from top to bottom!. The fitted curve~dashed
line! on the MC data~open diamonds! shows quadratic behavior.
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7476 PRE 62BRIEF REPORTS
steps to return to the starting site ist(z)52(z21)/(z22).
The value oft(z) indicates that the particle visits only a fe
sites before its recurrence, and during this short period
not capable of distinguishing the Bethe lattices from
present random graphs due to the absence~low probability!
of loops. In fact, this is the reason why our analysis is
stricted to largeN.

As a result of the mutual annihilation, theR(z) portion of
the branching process can be considered as spontaneou
nihilations. On the other hand, the 12R(z) portion of the
branching events results in ‘‘independent’’ particles. The
features can be easily built into a modified mean-field the
that obeys the following form:

ṗ1~1!52~12P!p1~1!2p2~1,1!2PR~z!p2~1,0!1@1

2PR~z!#p2~0,1!. ~4!

The two-point configuration probabilities are also affected
the random walk itself, because a given particle leaves
empty site behind when it steps to one of the neighbor
sites. Consequently, the value ofp2(1,0) is larger than those
predicted by the mean-field theory. The above mentio
techniques confirm that this correlation can be well descri
by a simple parameter defined as

p2~1,1!5Q~z!p1~1!p1~1!, ~5!

where Q(z)<1 and the remaining two-point configuratio
probabilities are determined by the compatibility condition
The value ofQ(z) is related to the asymptotic time depe
dence for the annihilating random walk (P50) when the
particle concentrationc(t) decreases monotonically. From
Eqs.~4! and ~5! we obtain that

c~ t !5
1

2Q~z!t
~6!

in the limit t→`, independently of the initial concentratio
c(0). Figure 3 compares this result with the MC data as w
as with the prediction of thek-point approximations obtaine
by numerical integration of the corresponding set of diff
ential equations forz53 and 4. In the MC simulations th
system is started from a half-filled random initial state
N5106, and the data are averaged over 50 runs. The cla
cal mean-field~one-point! approximation corresponds to th
choice ofQ(z)51. From thek-point approximations, how-
ever, we can deduce smallerQ(z) values. For example, in
the pair approximationQ(2p)(4)53/4 and Q(2p)(3)52/3.
These estimations can be improved if we choose larger
larger clusters, as illustrated in Fig. 3. We have obtain
Q(5p)(4)50.692(1) forz54 andQ(6p)(3)50.534(1) forz
53 using five- and six-point approximations, respective
At the same time, the numerical fitting to the MC data resu
in Q(MC)(4)50.67(2) andQ(MC)(3)50.50(2). Notice that
the predictions ofk-point approximations tend slowly towar
the MC values.

Using the expression~5! the nontrivial stationary solution
of Eq. ~4! obeys the following simple form:

c5P
122R~z!

2@12PR~z!#Q~z!
. ~7!
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Evidently, beside this expression, Eq.~7! has a trivial solu-
tion (c50) that remains the only one forR.1/2. In the limit
P→0 the leading term of Eq.~7! can be expressed asc
5P@122R(z)#/2Q(z). This prediction coincides with the
above mentioned MC result forz54 if Q(MC)(4) is substi-
tuted forQ(z).

According to Eq.~7! the average concentration becom
zero forz53. This is a consequence of the fact that the r
branching processes do not modify the average numbe
walkers because these events result in zero or two wal
with the same probability on a longer time scale. There
ists, however, a second order term neglected above th
responsible for the quadratic behavior. Namely, during
recurrence, one of the~parent and offspring! particles can
create an additional walker with a probability proportional
P2R(z)@t(z)21#, and this event reduces the rate of spon
neous annihilation@PR(z)# in Eqs. ~4! and ~7!. Unfortu-
nately, this rough approach cannot reproduce accurately
coefficient of the quadratic term because of the simplificat
we used in the derivation of Eq.~4!.

The present analysis indicates that the probability of
currence of a single walker, the long time behavior of t
time-dependent concentration for the annihilating rand
walks, and the stationary concentration for the BARW in t
limit P→0 are strongly related to each other. The modifi
mean-field theory suggests a way to describe this relation
random regular graphs for a sufficiently large number
sites. The relation is based on two simple conditio
Namely,R(z)<1/2 andt(z) is finite. These conditions are
also fulfilled on the cubic lattices for dimensionsd.4 @17#
where the rigorous analysis predicts mean-field-type beh
ior @4#. Conversely, the modified mean-field theory is n
adequate for lower dimensions (d<3) becauset5`. It is
expected, however, that the present analysis can be exte
to the investigation of BARW on such random graphs ch
acterized with different probability distributions of conne

FIG. 3. Time dependence of average concentration multip
by time for P50 and c(0)51/2. The open squares~diamonds!
represent MC data forz53(z54). The upper~lower! solid curve
indicates the prediction of the six-point~five-point! approximation
for z53(z54). The dashed line shows the prediction of the cla
sical mean-field approximation. The fitted asymptotic functions
represented by dotted lines.
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tivity @18,19#. The present random graphs forz53 represent
a particular situation where the coefficient of the linear te
vanishes as a consequence ofR(3)51/2. The solutions of
the modified mean-field theory imply the possibility of a
other interesting situation for those above mentioned rand
graphs@12,14,18,19# where the average value ofR is larger
s
e,

.

m

than 1/2. In this case the particles can survive if the bran
ing rate exceeds a threshold value as happens on the one
two-dimensional lattices.

Support from the Hungarian National Research Fund~T-
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