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Branching annihilating random walk on random regular graphs
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The branching annihilating random walk is studied on a random graph whose sites have a uniform number
of neighbors £). The Monte Carlo simulations in agreement with the generalized mean-field analysis indicate
that the concentration decreases linearly with the branching rate=fdr, while the coefficient of the linear
term becomes zero #=3. These properties are described by a modified mean-field theory taking explicitly
into consideration the probability of mutual annihilation of the parent and its offspring particles using the
returning features of a single walker on the same graph.

PACS numbe(s): 64.60.Ht, 05.10-a, 05.40.Fb

The branching annihilating random walBARW) [1] is  motion of the parent and its offspring is not affected by other
considered one of the simplest models of the extinction proparticles, then the probability of their mutual annihilation
cesses exhibiting critical behavior in different physical, equals those of returning to the starting site for a simple
chemical, biological, and economical systef@$ In these random walk.
phenomena the walkers can represent domain walls, vortices, Our investigation will concentrate on the graphs consist-
defects, atoms, active sites, biological species or their colong of N sites, and each site will hawgoints toward differ-
nies, strategies, etc. This is the reason why the BARWSs havent, randomly chosen sitésenceforth neighboysexcluding
been extensively studied in the last yetis references see itself. At a given time each site can be occupied by a single
the papers by Cardy and Taer[3,4]). particle or be empty. The time evolution is governed by re-

In general, the walkerghenceforth particlésjump ran-  peating the following elementary processes. A randomly
domly on one of the neighboring sites of a lattice, and eaclghosen particle creates an additional particle on one of the
one can create additional particles with a branching probabilneighboring sites with a probability or jumps to this site
ity P. Furthermore, two particles annihilate each other if they(With a probability 1-P). In both cases, if the randomly
try to share a site as a consequence of the mentioned jump 6Rosen neghboring site is already occupied, then the resident
branching events. When varying the branching probability &nd incomer particles annihilate each other, leaving an empty
phase transition can be observed in the average concentratistie behind.
of particles. Namely, the particles survive if the branching In the case ofz=1 the graph consists of disjoint pairs,
rate exceeds a critical vallR, ; otherwise, the system tends and the particles vanish f&>0, while the particles survive
toward the absorbing stateo particle$, which is indepen- on the single occupied pairs P=0. For z=2 the graph
dent of time. The transition from the active to the absorbingoecomes a set of disjoint loops and the feature of BARW can
state belongs to the directed percolatidP) universality —be desribed by the one-dimensional resyis6,§. Our
class as well as the extinction processes in most of the on@nalyses will concentrate on the random graphs with suffi-
component systerfb]. ciently largeN andz=3. Locally these graphs are similar to

On the lattices the BARWSs are well investigated usingtrees. A distance between two sites can be introduced as the
different techniqueg3,4,6—8. The Monte CarlgMC) simu-  length (number of stepsof the shortest path joining them.
lations are extended to the Sierpinski gasket by Takayaslihe average distance between two sites increases logarithmi-
and TretyakoV[8]. In the present paper we will study the cally with the number of sites for largé [12].

BARW on random regular graphs characterized by a uniform The stationary state of this system is characterized by the
number of joints. The joints of these graphs define the posaverage concentration of walke(® that will be determined
sible paths for the particles in the structureless systemBy using different methods. For a locally treelike structure
where the spatial position of the sites is no longer relevantthe generalization of the one-dimensional dynamical cluster

It is emphasized that the investigation of some physicatechnique is straightforwari13]. In this case the particle
phenomena on graphs provides a more general understar@istribution is described by the configuration probabilities
ing. For example, the extension of the Mermin-Wagner theoPk(N1, - . . ,ny) (n;=0 or 1) on the clusters of neighboririg
rem to graphs shows that the recurrence criterion for th&ites. Here we assume that these quantities satisfy some sym-
absence of continuous symmetry breaking remains valid ifnetry (translation, rotation, reflectiorand compatibility re-
the graphs tod9—-11]. In other words, the existence of the lations. The one-point configuration probabilities are directly
spontaneous magnetization on a graph is related to the prokelated to the average concentrations, namejy1)=c and
ability of returning to the starting point for a single random p;(0)=1—c. Introducing an additional parametey, the
walker on the same graph. The recurrence of a random waltwo-point configuration probabilities are given gg(1,1)
also plays a crucial role in the BARW because a particle and=q,p,(1,0)=p»(0,1)=c—q and p,(0,0)=1—-2c+q. Fur-
its offspring will be annihilated when they meet. The varia-ther parameters are required for2.
tion of the distance between them can be mapped onto a In the present case the time variation @f can be ex-
single walker problem on the same graph. As a result, if theoressed by the terms @f and p,.. 1. For example,
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h . f icl ¢ ) FIG. 2. Log-log plot of the average concentration of particles vs
FIG. 1. The average concentration of particles as a function °f3 if z=3. The solid curves indicate the prediction of generalized

branching rate foz=4. The symbols repre_sent MC data, the S‘?lid mean-field methods at the levels of the one-, two-, four-, and six-
cfurves comebs from thelone-, ‘Wg.' an(L flvehpomt apprOX|mat|onspoim approximationgfrom top to bottom. The fitted curvedashed
(from top to bottom on clusters indicated at the top. line) on the MC dataopen diamondsshows quadratic behavior.

p1(1)=(1—P)py(1)—p,(1,1)+p,(0,1), (1) In the light of the pair approximatiofsee Eq(3)] better
and better agreement is expected when increasirkpr z
where we have summed the contribution of all the elemen= 3, however, significant differences can be observed be-
tary processes mentioned above. Notice that this equation f&een the MC results and the prediction of tk@oint ap-
satisfied by the absorbing state={0). At the level of the Proximations wherP—0. To magnify the discrepancy be-
one_point approximation we assume thmz(n1’n2) tween the.tWO. methOdS, th!é-dependence of the averag.e
=p1(ny)p1(n,). In this case the nontrivial stationary solu- concentration is illustrated in a log-log plot. As shown in
tion of Eq. (1) obeys a simple form Fig. 2, the MC data refer to a quadratic behavior for srRall
values; meanwhile thk-point approximations predict linear
p behavior with a coefficient decreasing whiers increased.
C(lp):? 2 Here it is worth mentioning that the MC data have re-
mained unchanged within statistical erfoomparable to the
. . L line thicknes$ when the random graph was generated in a
independent ok At the level of thek—pomt approximation it rant way. This investigation was motivated by the small
ford model suggested by Watts and Stroddt4]. In this
case the points with the first and second joints form a single
loop and the third ones are chosen randomly.

The trend in the prediction of thiepoint approximations
implies the possibility that the coefficient of the linear term
2(2—2)—(z—3)P goes to zero in the Iimkgoo. Now we_introduce_ a mo_dified

5. (3) mean-field theory, taking explicitly into consideration the
4(z—1)—2zP+2P mutual annihilation of the parent and his offspring, as men-
tioned above. It will be shown that the vanishing of the linear
This result refers to the absence of pair correlations in theerm is directly related to fact that half of the branching
limit z—<0 as well as aP=1 for any values of. At higher  process yields mutual annihilation.
levels the stationary solutions are evaluated numerically. In this description thdk(z) probability of this mutual an-

In order to check these results we have performed MGihilation process is approximated with the probability of
simulations on random graphs with= 500 000 sites varying returning to the starting site for a single random walker on
the branching raté® for z=4 and 3. The simulations are the same graph. This simplification is exact in the linfts
started from a randomly half-filled graph, and the concentraandc—0 when the random walks of the parent and his off-
tion is obtained by averaging over“0MC steps per particle spring are practically not affected by other particles. The
after some thermalization. appearance of additional offspring during the recurrence is

Figure 1 compares the MC data to the prediction of theconsidered a second order process whose effect will be dis-
k-point approximations foz=4. Here the results of three- cussed below.
and four-point approximations are omitted because their de- The main advance of this approach is that we can use the
viation fromc(®P) is comparable to the line thickness. In this exact results obtained for the simple random walk on the
casec=AP whenP—0. TheA coefficients obtained by MC Bethe lattices that are locally similar to the present random
simulation and the five-point approximation are slightly dif- graphs. Hughes and Sahiffi5] and Cassi16] have ob-
ferent, namelyAM© =0.250(2) andA®P=0.27g1). tained thatR(z)=1/(z—1) and that the average number of

Bayesian relationsp(., 1S are approximated by the product
of py termg [13]. In the two-point approximation the
straightforward calculation gives the following stationary so-
lution:

C(Zp) =P
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steps to return to the starting site#6z) =2(z—1)/(z—2).
The value ofr(z) indicates that the particle visits only a few 1.0
sites before its recurrence, and during this short period it is
not capable of distinguishing the Bethe lattices from the
present random graphs due to the absdime probability)
of loops. In fact, this is the reason why our analysis is re-
stricted to largeN.

As a result of the mutual annihilation, tiR€z) portion of
the branching process can be considered as spontaneous ar
nihilations. On the other hand, the-1R(z) portion of the
branching events results in “independent” particles. These
features can be easily built into a modified mean-field theory
that obeys the following form:

)
Q
3

0.5

p1(1)=—(1—P)py(1)—px(1,) — PR(2)p,(1,0+[1 00, 55 o e 10 10"
~PR(2)]p2(0,1). 4) t [MCS]

The two-point configuration probabilities are also affected by ';'G' ?]j TFi)"leo depgndgnfel /gf ?\;]erage concentrassi_on mﬂtip"ed
the random walk itself, because a given particle leaves aﬁgprgzmo'{/l C_dat;rf]ozcz( 322_: Ay Thg 35;2 (ﬁ)%;‘;;igﬁg“ggrvt
z'rtneztycsolzes:ehé?tjl W?ﬁ: Iglsteeps(;oo)o r']selgrf g]rethnaer:gtrlgggnQ’ndicates the prediction of the six-poitfive-poiny approximation

: d'. d b quh Y fv IcljJ ﬁ)j ’ 'Il'h gb . for z=3(z=4). The dashed line shows the prediction of the clas-
pre I(?te yt ? mean- l? ! eorY' € above menuqne ical mean-field approximation. The fitted asymptotic functions are
techniques confirm that this correlation can be well describe presented by dotted lines.
by a simple parameter defined as

P2(1,1)=Q(z)p1(1)p.(1), (5) Evidently, beside this expression, Ed) has a trivial solu-
tion (c=0) that remains the only one f&>1/2. In the limit
where Q(z)<1 and the remaining two-point configuration P—0 the leading term of Eq(7) can be expressed as
probabilities are determined by the compatibility conditions.=P[1—2R(z)]/2Q(z). This prediction coincides with the
The value ofQ(z) is related to the asymptotic time depen- above mentioned MC result fa=4 if QM) (4) is substi-
dence for the annihilating random wall€0) when the tuted forQ(z).
particle concentratiorc(t) decreases monotonically. From  According to Eq.(7) the average concentration becomes
Egs.(4) and(5) we obtain that zero forz=3. This is a consequence of the fact that the rare
branching processes do not modify the average number of
1 ©6) walkers because these events result in zero or two walkers
2Q(2)t with the same probability on a longer time scale. There ex-
ists, however, a second order term neglected above that is
in the limit t— o, independently of the initial concentration responsible for the quadratic behavior. Namely, during the
¢(0). Figure 3 compares this result with the MC data as wellrecurrence, one of théparent and offspringparticles can
as with the prediction of thie-point approximations obtained create an additional walker with a probability proportional to
by numerical integration of the corresponding set of differ-p?R(z)[ 7(z) — 1], and this event reduces the rate of sponta-
ential equations foz=3 and 4. In the MC simulations the neous annihilatiof PR(z)] in Egs. (4) and (7). Unfortu-
system is started from a half-filled random initial state fornately, this rough approach cannot reproduce accurately the
N=10°, and the data are averaged over 50 runs. The classtoefficient of the quadratic term because of the simplification
cal mean-fieldone-poin} approximation corresponds to the we used in the derivation of E@4).
choice ofQ(z) =1. From thek-point approximations, how- The present analysis indicates that the probability of re-
ever, we can deduce small@(z) values. For example, in currence of a single walker, the long time behavior of the
the pair approximatiorQ??(4)=3/4 and Q\??(3)=2/3.  time-dependent concentration for the annihilating random
These estimations can be improved if we choose larger angalks, and the stationary concentration for the BARW in the
larger clusters, as illustrated in Fig. 3. We have obtainedimit P—0 are strongly related to each other. The modified
Q®P(4)=0.692(1) forz=4 andQ(®"(3)=0.534(1) forz  mean-field theory suggests a way to describe this relation on
=3 using five- and six-point approximations, respectively.random regular graphs for a sufficiently large number of
At the same time, the numerical fitting to the MC data resultsites. The relation is based on two simple conditions.
in QM9 (4)=0.67(2) andQM©)(3)=0.502). Notice that Namely, R(z)<1/2 and~(Z) is finite. These conditions are
the predictions ok-point approximations tend slowly toward also fulfilled on the cubic lattices for dimensiods 4 [17]

c(t)=

the MC values. where the rigorous analysis predicts mean-field-type behav-
Using the expressiof®) the nontrivial stationary solution ior [4]. Conversely, the modified mean-field theory is not
of Eq. (4) obeys the following simple form: adequate for lower dimensionsl€3) becauser=c. It is
expected, however, that the present analysis can be extended
c 1-2R(2) @ to the investigation of BARW on such random graphs char-

~P31-PrRZ1QD)"

acterized with different probability distributions of connec-
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tivity [18,19. The present random graphs for 3 represent than 1/2. In this case the particles can survive if the branch-
a particular situation where the coefficient of the linear terming rate exceeds a threshold value as happens on the one- and
vanishes as a consequenceR{f3)=1/2. The solutions of two-dimensional lattices.

the modified mean-field theory imply the possibility of an-

other interesting situation for those above mentioned random Support from the Hungarian National Research Fihd
graphs[12,14,18,19 where the average value Bfis larger 23553 is acknowledged.
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