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The emergency of mutual cooperation is studied in a spatially extended evolutionary prisoner’s dilemma
game in which the players are located on the sites of cubic lattices for dimenkiaohs2, and 3. Each player
can choose one of the three following strategies: coopera@yndefection(D) or “tit for tat” ( T). During the
evolutionary process the randomly chosen players adopt one of their neighboring strategies if the chosen
neighbor has a higher payoff. Moreover, an external constraint imposes that the players always cooperate with
probability p. The stationary state phase diagram is computed by both using generalized mean-field approxi-
mations and Monte Carlo simulations. Nonequilibrium second-order phase transitions associated with the
extinction of one of the possible strategies are found and the corresponding critical exponents belong to the
directed percolation universality class. It is shown that externally forcing the collaboration does not always
produce the desired result.

PACS numbsdis): 87.23.Cc, 02.50-r, 05.50:+q

[. INTRODUCTION payoffs they have obtained. Following the Darwinian selec-

Evolutionary game theory has attracted a lot attention durtion principle, at each round the worst player will adopt the
ing the past yearfl,2] in human sciences, political sciences, winner’s strategy.
biology, and economics. In particular, the so-called evolu- Extended numerical simulations have been performed to
tionary prisoner’s dilemma gam@DG), which is a meta- select the “best strategy” among mafy,7]. Best does not
phor for the evolution of cooperation in populations of self-means that this strategy will always win a fight against an-
ish individuals, has been minutely investigatdd-5]. In the  other strategy, but means that it will obtain the highest pay-
original form of the PDG, only uniform populations with off during a tournament during which it will have to fight
given strategies were considered. However, it was realizedgainst many opponents having different strategies. In Ref.
[1,6] that new interesting phenomena can occur when thé4] the highest payoff was obtained by the player using the
PDG was expanded in such a way that local contests in ao-called "tit for tat” (T) strategy, who cooperates in the
d-dimensional space could take pla@ee shall use the ab- first round and then always repeats his coplayer's previous
breviation SPDG for such systemst turns out that these decision. The main characteristics of this stratéggver de-
spatially extended models are similar to the ones studied ifect first, react to the defection of the opponent, and forgive
nonequilibrium statistical physics. They may exhibit a coop-are crucial ingredients to sustain mutual cooperation against
erative behavior resulting in phase transitions in the stationthe defectors. In particular, extensive simulatidgese Ref.
ary state. Accordingly, it is very fruitful to study SPDG-like [3] for a summary for the case in which the players adopt
models using the tools developed in the framework of noneither strategyC (cooperate unconditionallyor D (defect
equilibrium statistical physics. unconditionally have shown that the cooperators were dis-

In its simpler form, the PDG is a version of matrix gamesappearing in the stationary state. The introduction of sdme
where the symmetric incomes of the two players depend ostrategies has an important effect. For short times, Dhe
their simultaneous decisions, whether they wish to cooperatgopulation increases while th@ one decreases, leading to
with the others or to defect. Each player wants to maximizehe decrease dd payoffs. As a consequencE's can invade
his individual income. The highest individual payafthe the D population.
temptation to defegtcan be reached by the defector against In order to study the spatial effects, Nowak and M&y
the cooperator receiving the lowest rewésdcker's payoff.  introduced a SPDG consisting of a two-state cellular automa-
The mutual cooperation results in the highest total payofton. The players are located on a regular lattice in a
divided equally between the players. For mutual defectionsl-dimensional space and can adopt @er D strategy. Each
the players get a lower payoff exceeding the value of theplayer is fighting with the individuals belonging to a given
sucker’s payoff. Two rational players will both defect, be- neighborhood. The player’s strategies are upgraded simulta-
cause this choice provides the larger income independentigeously in discrete time steps according to the following
of the partner’s choice. rule: each player adopts the best strategy found in his neigh-

Conversely, mutual cooperation dominates in economidorhood. This model exhibits a rich variety of spatial and
and biological systems where the contestants interact freéemporal patterns as a function of the paybffcharacteriz-
quently. In the iterated round-robin PDG, the players, know-ng the temptation to defect. Other SPDG models have also
ing the previous decisions, have to choose between two ofeen investigateB—10]. In particular, Killingback and Doe-
tions (defection and cooperatipnFor a given round the beli [11] showed that “Pavlov” like strategies can be even
contestants can be classified according to the total individuahore efficient than “tit for tat” in some circumstances.

1063-651X/2000/6@)/10959)/$15.00 PRE 62 1095 ©2000 The American Physical Society



1096 SZAB(), ANTAL, SZAB(), AND DROZ PRE 62

Nowak et al. [12] also extended the above analysis by TABLE |. Payoff matrix of the model

allowing stochasticity(irrational choices during the evolu-
tionary process. The degree of stochasticity is governed by 81 \ P2 D C T
parameter calledh, and, in the limitm— oo, one recovers the

L . oNO b\ 0 o\ O
deterministic case. According to the valuelpfseveral sta- b
tionary states are possible ¢ 0 i i

; T 0o\NO N1 N1

In some related mode[4.3], Szaboand Tdke showed that
the different stationary state phases were separated by second
order nonequilibrium phase transitions lines. The associatee)r in this present case stabilizepayoffs.

critical exponents belongs to the directed percolatiDP) It is legitimate to use this payoff matrix, providing that

universality 9Ias$13,14]. . the strategy adoption is rare comparing to the frequency of
Both the importance of the presence D6 in the PDG 5 game. It makes the simulation simpler and more efficient.

and_the richness associated with the spatially extended asp§gfie that similar payoff matrices can be obtained when sub-

motivated us to study a new class of SPDG. In the prese,”altituting some other “nice” strategylike Paviov’s, which

work, we study an aspect Of, thg SPDG, namely, what 'S(:ooperates in the first round: a strategy which is nevertheless
happening when the cooperation is enforced by some exte[sqq efficient thar in this case[3,4] for T.

nal constraints. More explicitly, we consider a SPDG with For the nonconstrained casp<0), the system evolves
the three strat_eg|e13, C, ‘deT' and investigate t_he effects of discrete time according to the following MC process.
random adoptiorfor forcing of C strategies. This effect can gyaring from a random initial state, a site is chosen ran-

be interpreted as an attempt by a government or by any othef, i This site updates its strategy by first randomly select-

organization to enforce cooperation among individuals by, one of jts nearest neighbors and, second, by adopting the
forcing some of them, chosen randomly with a given prob-

o : . : strategy of this nearest neighbor only if it has a higher pay-
ability p, to cooperate. A different interpretation can also beoff_ A MC steps consists of updating each lattice site once,

given. Among the players’ community, some old players re-; . ha average.

sign and are replaced by younger ones having a different |, yhe constrained case, at each time step, each player is
educational b?]clflground,hmal#ng thefmhmore openl to Conab.ororced to adopt a cooperative strateg@yvith a probabilityp.

rate. As we shall see, the effects of this external constraint, ¢ the dynamics of the constrained model is the following.
are rather surprising. Ir_1deed, in dimensions l,_2_, or 3, th%) One chooses randomly one playéi With probability p,
presence of the constraint reduces thg cooperaﬂpnsﬂ_ess this player adopts th€ strategy.(iii) With probability 1

than agien threshold valug; depend!ng upon the dlmen-. —p, the player searches for a better strategy according to the
sionality of the system. The cooperation is enforced only 'fprocedure described abovéy) The players update their

the_ constraint is strong enough, i..c_e.pif> Pc- T.h? nonequi—. payoffs. The model is characterized by three free parameters:
librium second order phase transitions describing the extingg p, andd.

tion of one of the possible strategies are found to belong to It is hopeless to find exact analytical solutions for such

the directed percolation universality class. odels. Accordingly, we shall first study them in the frame-

__ The paper is organized as follows. The model is defineq, . of mean-field-like approximations, and then investigate
in Sec. Il. Its properties are analyzed in the mean-field apg,o, by numerical simulations

proximation in Sec. lll. The properties of the model without
constraint are discussed in Sec. IV. The model with con-
straint is studied in Sec. V, both in the mean-field approxi-

IIl. MEAN-FIELD-LIKE APPROXIMATIONS

mation and by Monte Carl@MC) simulations, for one, two, ~ The simplest mean-field approximation consists of ne-
and three dimensions, respectively. Finally, conclusions argjecting all the spatial correlations in the systems. This
drawn in Sec. VI. amounts to considering a model in which, for each player,

the partners are chosen randomly in the system instead of
being restricted to a particular neighborhood. Each player
interacts with the same number of counterparts. The dimen-

We consider a SPDG model in which the players are lo-sionality of the system plays no role. The simplest mean-
cated on the sites of ddimensional cubic lattice of linear field-like approximations have previously been successfully
size L where periodic boundary conditions are assumedused for similar problems, and more details concerning this
Each player adopts one of the three strate@igslefection,  approximate scheme can be found in textboldk®,5].

II. MODEL

C (cooperatiop or T (tit for tat), and interacts with its @ Within this approximation, the dynamics of the system is
nearest neighbors. The total payoff of a given player is theompletely described by the time-dependent concentrations
sum of the payoffs coming from the interaction with all its ca(t)=<Na(t)>/Ld (a=C,D.T), 1)

nearest neighbors. We use an extenginoluding the tit for
tat strategy of the payoff matrix used by Nowak and May whereN(t) is the number of players with strategyat time

[6]. The individual payoffs for the playet®; andP; as @ ¢ These concentrations satisfy the normalization condition
function of their strategies are given in Table I. The only freeCDJr Cotor=1

parameterb (1<b<2) measures the temptation to defect. According to Table I, the average payoffs for each strat-
Note that the above payoff matrix does not take into accoun(ggy are

that T players always try to cooperate wit's during the

first round. Thus these values are considered as the averaged Mmp=bcc, Mc=cc+Cr, My=cc+cCr. 2
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Note that theC and T strategies have the same payoffs; dent of the value ob. Strikingly different behaviors will be
therefore, no strategy exchange will occur among them.  observed beyond this simplest mean-field approximation
Following the evolutionary rules given in Sec. Il, the con- when the local fluctuations and short-range correlations are

centrationsc,(t) obey the equations of motion taken into account, as we shall see in the following sections.
: _ More elaborate mean-field-like approximations can be de-
Cp=—pCp+(1—p)cp(ccter), vised. The basic idea is to take some of the spatial correla-

tions explicitly into account by computing the probability of
the appearance of all possible configurations of a small clus-
. ter containingn sites. In one dimension, one considers a
Ccr=—pcr£(1—p)cpcr, ; X . ’ X .
r="per=(1-p)CpCr cluster ofn consecutive lattice sites. The equations of motion
where the upper and lower signs refer to the cases whef®' these probabilities follows from the evolution rules of the
strategyD is dominated byC andT (mp<mc=my), respec-  System. Details concerning the one-dimensional case were
tively, and wherD dominatesC andT (mp>mc=my). The  diven in Ref.[15]. Note that already the one site mean-field
numerical integration of the above equations of motionsaPproximation (=1) differs from the simple mean-field so-
leads, for several values pf to the flow diagrams shown in lution given above. In higher dimensions pair or square
Fig. 1. mean-field-like approximations have been used, and a de-
The quantities represented on the vertical and horizontdfiled description of these methods can be found in Refs.
axes arecp andce—Cy, respectively. The upper corner of [;3,1@. Note that now, 'ghe prgdlctlons of these approxima-
the triangle corresponds to the state gf=1, while the tions depend upon the dimension of the system. Accordingly,
lower left and right corners describe homogeneous state§ie casesi=1, 2, and 3 will be discussed in different sub-

cc=+p(cp+cr)E(1-p)epee, (3)

with c;=1 andcc=1, respectively. sections.
For 0<p<1/2 the stationary state solution of the above
equations are IV. MODEL WITHOUT EXTERNAL CONSTRAINT
co 1-2p P cr=0 4) Let us start by considering the case with no external con-

1-p’ Ce 1-p’ straint, i.e.p=0. In this case, the dynamic is simple: a given
. ) player adopts the strategy of one of his randomly chosen
while for p>1/2 the system goes to the adsorbing state ( neighbor, providing that this neighbor has a higher payoff.
=1 andcp=cy=0). Surprising thel strategy does not hold  As we shall see, the only stationary states are either always
if p=0. _ _ ] trivial cooperator like C or C-T) or a pure defector one

Without constraints, i.e. fop=0, the system tends either (p). when the random initial state is made of only coopera-
to a homogeneoud adsorbing statecp=1) or to a mixed  tors and defectors, one finds that,dr1, 2, and 3 dimen-
state ofC andT strategies ¢(p, =0) depending on the initial sjons, the stationary state of the system is a pure defector
conditions. Note that the above stationary states are indepegne.

The reason fod=1 is simply that aD player has always
a higher payoff than a neighboririgplayer. Ind=2 several
configurations should be analyzed. The most favorable situ-
ation for C to win is when it is adjacent to a fl&@-D inter-
face. However, if this interface has an irregularity, th2is
can invade the sea @ players. Indeed, a newbof@in the
D half-plane is always weaker than thes at the interface
and, thus, suclt’s disappears sooner or later. However, at a
given time and with some finite probability, two next nearest
neighborC players could be present in tRehalf-plane. This
results in a payoff of B for a D player squeezed between
threeC’s and thisD can now invade th€'s and sweep off
one layer of them independently of the valuebof

The d=3 case is very similar, but the process is slower.
Indeed, four nearest neighbors ofla player (called D)
must be invaded b’s if the value ofb is close to 1. Once
this has occurred), is strong enough to cross the interface
and destroy all theC's.

For a large system with initially a finite proportion of
players, the stationary state is always a cooperatorlike state
(T-C). This asymptotic behavior can be easily understood in
the one-dimensional case. Let us suppose that there are four

FIG. 1. Trajectories in two-dimensional phase space for thred€ighboring T's (TTTT) in the initial state of a one-
different values ofp as indicated in the figures. The dashed linesdimensional systenthis is practically always the case in a
divide the phase spaces into two regions: on their(fight) hand  sufficiently large system with a finite probability to have
side the payoff of th® strategy is lowerhighe than those of the someT’s in the initial statg; then they kill all of theD’s.

C andT strategies. Even in the worst case twb’s could invade theT popula-
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tion, (CDDTTDDC), but then the centrdl’s become stron-  rate Az/2, where\ is the control parameter andis the
ger the(payoff is equal tolthan theD’s (the payoff is 0.  number of particles in the neighborhood of the empty site. In
The D’s kill all of the neighboringC’s, and even these two gyr model theD strategy, which ind=1 is always better
T's can invade the whol® area. _ _ than theC one, plays the role of the sick persons and Ghe
This argument can be extendeddalimensions. A cube  strategy, which can only be created in the system through the
of linear size 4, made of players, is enough to guarantee constraint, corresponds to the healthy individuals.
cooperation in the stationary state. The reason for this is that starting from aC-D-T initial state, after the extinction of
the D’s surrounding this cube cannot destroy the cenfral || T's the possible stationary states are a pDistate or &C-
players inside a cube of linear size 2. Indeed, the cefitgl [ state. TheC-D state corresponds to the steady state of the
have alwaysl T neighbors to cooperate witpayoffd), but  cp as well. Fop aroundpy,, the T's disappear rapidly, and
the neighborindd’s can only have on€ neighbor(the pay-  thus do not affect the extinction of tii&'s. Hence the second

off is less than or equal tb<d if d=2). transition to the absorbing state corresponds to the CP one.
This transition occurs gz, = 1/(1+\.)=0.23267[18], and
V. MODEL WITH EXTERNAL CONSTRAINT is believed to belong to the DP universality cld9,20.

W ider th i which the ol | The behavior of the first transition at smalls is much
e now consider the case in which the players are locateflgg clear. It turns out that for our model two characteristic

OP the sittes Olf aj—dit[rlgnfiqnal Cl.JbiC lattice ri]n tlhe prctehsence arameterp,(L) andpg(L), depending on the system size
ofan external constraint, Imposing on each player the Neep .o, pe introduced. Far<p,(L) the stationary state is

to choose the&C strategy with probabilityp. The casesl=1, always the pureC state, while forp>p4(L) the system

2, and 3 will be considered. evolves to aC-D coexistence phase, which is a steady state
_ _ of the CP. Fomp,(L)<p<p,(L), the system can evolve to-
A. One-dimensional system ward one of the two possible stationary states, depending on

In the one-dimensional model the players located on théhe particular realization of the random numbers and on the
sites of a chain interact with their two nearest neighbors. It idnitial state.
easy to see that the dynamics is independent of the value of The probabilityp, (p) of reaching theC-D state has been
the parameteb in its domain of definition. investigated numerically. The data are plotted in Fig. 3, and
A systematic MC analysis of the stationary states wagan be well fitted by a function of the type-Jexp(—c,(p
performed by varying the value qf for different system —Po)“?), wherecy, ¢,, andp, are fitting parameters. The
sizes betweeh =32 and 16384. Our simulations show that limiting function p..(p) was obtained by using usual finite
the T's strategy does not hold for all values pf However, —Size scaling methods. As shown in Fig. 4, the functions
as a function ofp, the stationary state can be either a sym-pL(P) collapse on a single curve if one plgisas a function
biosis of C and D strategies or a pur€ state, as shown in  of {p—p *[p.(p)1}/L¥2 This shows thap..(p) do not col-
Fig. 2. For very small values qf, one has a pur€ station-  lapse to zero; hence the phase transition takes place at a finite
ary state ¢c=1); however, whemp reaches the valup;, a  value ofp=0.025.
first transition occurs to a stationary state in which the two The respective timek andtcp needed to reach the pure
strategied andC coexist. Atp=p.,>p, the system under- C and C-D stationary states have also been investigated.
goes a second continuous transition from @® stationary  Both times show a singular behavitsee Fig. . Unfortu-
state to the pure absorbirig state. nately, we were not able to find a reasonable scaling fit for
The transition ap,, is easy to understand. In one dimen- those data. However, it is obvious from the simulations, that
sion and when onlyC and D strategies are present, our tcp exhibits a much stronger singularity theg. Hence, for
model is equivalent to the contact procé&P) which was a large system, the time needed to reach @b state is
originally introduced as a simple model for epidemitg].  much larger than the one needed to reachGlstate, even if
In the CP a particlésick persoican disappear at rate 1, and the system evolves to the-D state more frequently.
an empty sitghealthy personcan become occupied with a In addition to the MC simulations, the properties of the
system were also investigated using generalized mean-field

1.0
1
& 0.5 a 05
g
0.0 . . . 0 . .
0.0 0.1 0.2 0.3 0 002 004 006 008 0.1
p p
FIG. 2. The concentration of strate@yas a function op in the FIG. 3. The probabilityp, (p) of reaching theC-D state for

one-dimensional system. The open squares are the MC data obifferent system size¢from right to left, L=50, 100, 200, 500,
tained forL=16384. The solid lines represent the resulta-goint 1000, 2000, 5000, and 10000, and for ). The dotted lines
approximationsif=1, . . . ,7from right to leff. represent a fit described in the text.
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FIG. 4. The probabilityp as a function of the scaled parameter.

4 : e FIG. 6. Evolution of the strategy distribution fpr=0.04 start-
The symbols represent different system sizes as in Fig. 3.

ing from a random initial state. THeth row shows the positions of
the D (closed squargsC (empty), andT (open circlg strategies at
approximations. Assuming the coexistence of all the three time X measured in MC steps.

strategies, these calculations can be performed numerically
on clusters of sizes as large as=4. Contrary to the MC D domain the averag€ concentration is equal to that of the
results(see Fig. 2, these approximations predicted the exis-CP, and can be well approximated by the simple mean-field
tence of aC-D-T state at smalb values. As far as th&’s are  approach, as we have seen above. Distrategy invades the
concerned, we observed that the maximum value ofle- territory of theC one (absorbing stade Due to the reflection
creases when the cluster sizeincrease, providing a trend symmetry the invasion front can move to the left or to right
for the extinction of thel’s. The contradiction between the with the same absolute value of the velocity. To first order in
present mean-field and MC results refers to the importanceg in the limit p— 0, the absolute value of the average inva-
of (interfacia) invasion phenomena detailed below. sion velocity can be estimated by using the configuration
Allowing only two strategiesC andD), the above mean- probabilities given fom=1. This calculation yields
field analysis can be performed for larger cluster sizes up to 1-3p

n=7. The results are compared with the MC ones in Fig. 2. v=—n—. (5)
As expected, the accuracy of the generalized mean-field 2

method increases with the cluster sizé'he extrapolation of . : . .

the results obtained for finite values{n=1, ... ,7)leads Let us now consider the invasion of tiiestrategy into the

D one. Inside a territory which has been invaded by The
%rategy, theC strategy is set up with a probability As both

i : 's andT’s have the same payoff, no adaptation of strategies
Pcz * with the best known numerical valug,;=0.23267  occyrs between them. Assuming that this invading front trav-

[18]. ] els with a constant velocity, the probability of having &
In order to understand the behavior of the model aroungyayer at a sitek steps behind the front is-1e P™¥. 7(k)

the first transition, it is interesting to examine the time evo-:(k+1/2)/u is the averaged time it takes to the front to

Iu_t|on of the system in its tranS|e_nt regime. As illustrated inqve over a distance & Thus, it follows that, to leading

Fig. 6, one can observe a domain growth process controllegyqer in D,

by cyclic invasiond21]. This picture suggests that the most

relevant aspect of the dynamics is the collision between the ~1-11p

fronts separating different strategies. u= 2 ©)
Let us first investigate the motion of a front separating a

cluster ofC’s from a cluster ofD’s. TheD domains contain We note that the above approximations lead to a velocity for

someC sites coming from the external constraint. However,the D— C front which is larger than the one for thle—D

the lifetimes of theC’s are very shorf ~(1—p)]. Within a  front. This prediction can be compared with the results of the

MC simulations(see Fig. 7. For theD — C front, the agree-

to a critical valuep{y )=0.235. The quality of this approxi-

mate scheme can be estimated by comparing the value
(MF)

15000
. 0.5 ¢
%
: 04 NS
L 10000 m— o
~ ° \\o
5 L, 03 e,
L x 3 =
5000 02
0 i B E SRR o1
002 003 004 005 006 007 00 . ‘ . ‘
p 7000 002 004 006 008 010
p

FIG. 5. The respective timek. [L=2000(*)] and tcp [L
=200(+), 500 (X), and 2000 [J)] needed to reach thé andC- FIG. 7. Velocities ofD—C (open squargsand T—D (dia-
D stationary states. For comparison, 108Qf) —,qo4 p) is also pre-  monds invasions as a function gb. The solid and dashed lines
sented by a dotted line. indicate the analytical predictions in a linear approximation.
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ment is very good ifp<<0.1, while, for theT—D case, the C,D, and T coexist. Here it is worth mentioning, that for

approximation reproduces well only the linear part near theymg)| p values p=0.03), the finite system can reach the

origin. ) absorbing state if the initial state is chosen randomly. Below
Another consequence of the external constraint concerngs size-dependent threshold value, the three-strategy state

the lifetime of theT clusters. According to the above picture, can pe formed and sustained by a slow decreasingcafr-

the probability that & cluster dies out during the time evo- ing the simulation. In this case the extinction6 andD’s

lution can be approximated by is a consequence of fluctuatiordetailed below, and the
% coexistence of the three strategies is considered as the real
Pr=[] [1—exp(—p(k+1/2)/u)]. (7)  stationary state in the limit —o. The simulations per-
k=0 formed forp=0.005 show thaty decreases linearly with
whenp—0.

The inverse ofP; can be interpreted as the average lifetime When pg"l"c)<p<p(c'\2"c)=0.367i(l), only strategiesC

71 of an invadingT cluster. Substituting an integral for the ¢ .
y g g d andD survive. Finally, wherp> pg"zc the system reaches a

infinite sum appearing in the logarithm of the above expres* _
pure C absorbing state.

sion leads to
5 The phase diagram obtained by numerical simulations can
_ mu) ,1—11p ® be compared with the ones obtained using the extended
Tr=ex 6p —exp 12p mean-field approximation described in Sec. Ill. At the level

of the pair approximation, one findg{#®"”=0.1704 and

This expression shows a fast increase of the lifetime when ,(bain— 4236, while for the square mean-field approxima-
decreases. For exampleT&luster dies out in about 20MC tién one findsp$?=0.1482 anch!$?=0.3980. These latest
steps(MCS) if p=0.04. This estlmated_hfetlm_e 'SMSCI)gn'f" results are plotted in Fig. 8. They compare well with the MC
cantly larger than those found by MC S|mulat|c1[r»ér (P values given above.
=0.04)~800 MCS, as indicated in Fig. 6. The depen- Some complementary information can be obtained by
dence of the MC data can be well approximated by the funcstydying the concentration fluctuations defined as
tion 71=3.26exp(0.22¢J)) within the region 0.025p g g )
<0.08 we were able to study. The large discrepancy between Xa=LY(N,/L =¢c,)%), (a= C,D,T). 9)
the mean-field and MC results refers to the enhanced role
the velocity fluctuations.

Starting from a random initial state, spatially separate

‘v\/hen p—0, the concentration fluctuationg: and y di-
Jerge, whileyp remains regular, as shown in Fig. 9. How-

domains are rapidly formed. Then two different situations€Ve" the sizes of the systems ir)vestigated were not large
can occur. FirstT clusters are present on both ends of eacher?ouah tl_o conclude thaic andyr diverge as power laws of

D clusters, leading to a fast extinction bfs. Accordingly, pin the limit p—>0._ . .

the system evolves to a puestate. Second, after some time Moreover, the simulations suggest that for the stationary

the system reaches a state characterized by the presenceSE€ in which the three strategies coexist, the typical size of
only oneD cluster, having & island at only one of its ends, T doma|n§(a§ well as f[helr per3|sten_ce tijris prop_ort|onal
in a sea ofC’s. As theD—C invasion is faster than the  © 1/p. A similar behavior was found in the forest fire models

—.D, theT's can never destroy thg’s and, due to the finite [22] introduced by Balet al.[23] to study the self-organized

lifetime of the T cluster, the stationary state iscaD coex- ~ c'iticality.

isting one. The exponential increase of the lifetime of this The pomtsp_cll gnd Pcp are cr|t|ca_l .pomts where a second
cluster asp—0 explains the singular behavior observed inorder nonequilibrium phase transition takes place. Indeed,
teo the T concentration vanishes pg; asct~ (pe;— p) P2, while

For p<p,(L), the lifetimes of theT players are so long the D concentration vanishes @, as cp~(Pcz—p)*2 In
that all theD clusters are surrounded Bys. Accordingly, order to justify this behavior a very careful numerical analy-

the first scenario described above is always present, Ieadir‘?dS was performed, using longer sampling times in the vicin-
to a pureC state. Conversely, fqg>p,(L) the short lifetime

of the T's insures that they disappear rapidly, allowing for Lo S,

the growth of theD clusters. As a consequence the stationary &

state is aC-D one. g . &
A 4

. . £ 05
B. Two-dimensional system g e 20
= AN
The players are located on the sites of a two-dimensional S u:’g,

square lattice. According to the payoff matfsee Table), % )

two ranges of values ob have now to be distinguished, 00 - S N

namely, I<b<3/2 and 3/2b<2. For any value ob in one 0.0 0.1 0; 03 04

of those ranges, the dynamics is the same.

Let us first consider the simulations performed for the  piG. g, Stationary state densitiesbf(closed squarésC (open
Value 3/K b<2 The situation Is Summar'zed n F'g 8, n CirCleg, andT (open squarestrategies as a function mt as ob-
which the stationary values of the strategy concentrations argined by MC simulation of a system of size 51812 for 3/2<b
plotted as a function op. For p<p{©)=0.13291), the  <2. The solid D), dotted ), and long-dashedT) lines indicate

system reaches a stationary state in which the three strategitt@ predictions of the square mean-field-like approximation.
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20fo " ' ' ] of p accelerates the spreading of tBeareas as well as their
. ] occupation by the defectors. Consequently,Bhpopulation
150 o ] increases wittp, and the number of competitors decreases
. ] and vanishes gh=p;.
= ol . ] As a result of these cyclic dominant processes, a self-
" ' ] organized domain structure is maintained in the system.
st : ] Analogous spatiotemporal structures were already observed
ﬁﬂﬁ;‘,ﬁ 1] by Satulovsky and Tomm a two-dimensional predator-prey
0 — ......----l‘ ] system[16], and by Tainaka and Itoh when studying com-
0.0 0.1 02 0.3 04 peting specie§24]. Both models belong to the family of
p spatially extended Lotka-Volterra models, predicting an os-
cillatory behavior of concentrations in the simple mean-field

FIG. 9. Concentration fluctuations for tH2 (closed squargs

andT (open squargsstrategies for a 512512 system. approximation{ 25

One can also analyze the evolution of the typical strategy
_ N ) . _ configurations in the vicinity of the phase transition taking
ity of critical points. Fitting the numerical data leads to the place at p=p.;). One recognizes isolated colonies Bf
above mentioned values of the critical points a8g=8,  strategies whose motions remind us of the branching annihi-
=0.573), which is compatible with the directed percolation |ating random walk models. It is known that this model also
exponent as expected on general groufgfl. This fact is belongs to the DP universality claf26].
confirmed by the study of concentration fluctuations defined The rate of mutual cooperation is related to the average
by Eq.(9). Sharp increases of the concentration fluctuationspayoff per site. The maximum average pay@fhose value
are expected at second order phase transitions. Figure 9 |k 4) is reached when all the players cooperate with their
lustrates this point. The concentration fluctuationgCoD, neighbors. On the other hand, the minimum average payoff
andT strategies behave, near the transition p@gt, asx  per sites coincides with the maximum Bfconcentration.
~(Pc1—P) 7%, with ,=0.376). A similar behavior was In Fig. 11 the average payoff per site is compared with the
found at the transition poinpc, with an exponenty,  quantity 4.+ cy). One can see that the agreement between
=0.3719). These values are very close to the one of directedhese two quantities is generally reasonable, and is even
percolation:ypp~0.35 in two dimension§20]. quite good forp<p.;. The differences between the two

The above data suggest thet O is another critical point.  quantities only come from the fights taking place at the
However, for the reasons explained above, it was not posyoundarie-C or D-T. However, for this range of values of
sible to extract reliable exponents. p, theD players form clusters due to the presence ofTitse

Itis interesting to analyze how the three strategies coexisiccordingly these fights are not frequent.
for small values ofp. As an example, let us consider the  Finally, let us briefly consider the case for which the pa-
snapshot of the stationary state of a system witt0.04(see  rameterb belongs to the second possible range: < 3/2.
Fig. 10. The results of the simulations are qualitatively similar to the

One can observe that “dark areasthade of defectols case 3/2b<2. The critical values op are lower, namely,
invade the territory(“white areas”) of cooperators; simulta- Pe1=0.112(1) andp,=0.2971). Themost relevant differ-
neously, the “dark areas” are invaded by thectors(open  ences can be observed in the linpit>0, where the maxi-
squares However, the domination of thE's is prevented by  yum concentration of th& strategy is strikingly lower ¢;

the external constraint, which leads to the growttCadreas (. 15) than that reported in the previous césee Fig. 8
within the T territory. Whenp decreases, the territory ex-

pands, while the growth of white areas slows down. The dark

: X C. Three-dimensional system
islands become sparse. Conversely, an increase of the value

We now consider the case in which the players are located

gww@%ﬂuﬂ e on the sites of a three-dimensional cubic lattice. According
P, ga ° B ° -8
S x
“a” 4,
EEI% '.O’ .lg
o
a: 3 555. -.I. OO
=} u o <&
) <m o °
8 om o
o L <
o2} & = &
oh & . °
8 }l <>°°
2 &
St %
0 . . .
0.0 0.1 0.2 0.3 0.4
E: S p
FIG. 10. Distribution of defectorgblack boxey cooperators FIG. 11. Average payoff per site sites ys in the two-

(white areg, and “tit for tat” strategies(open squargsn a lattice  dimensional model. The closed squares represent the MC data ob-
of size 100 100, which a subset of a larger system of size 256tained forb=1.83 andL=512. The diamonds indicate the quantity
X 256, forp=0.04. 4(cc+cy).
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to the payoff matrix(see Table )| five ranges of values of 1.0 - - - Y
b:1<b<2 now have to be distinguished, separated by the f
valuesb=>5/4, 4/3, 3/2, and 5/3. Any value &f in one of 2 e
those ranges will lead strictly to the same behavior. More- % | Pl
over it turns out that all the values bf1<b=<2 lead quali- £ 05 v g’
tatively to the same behavior. g 8o/ e

Figure 12 shows a typical phase diagram which is quali- 3 Vol
tatively similar to the one found for the two-dimensional N
model. MC simulations have been performed for systems of e , A
sizes 33, 64%, and 88, for five representative values bf %%0 o1 02 03 04
exploring all the different ranges. p

When the value op increases, the system undergoes two

subsequent phase transitions. The critical valuep wéry FIG. 12. Stationary state densities Bf (closed squargs C

. . (open circley andT (open squargsstrategies, as a function pfas
weakly with b. For example, for 3/2b<2, we obtained obtained by MC simulation of a system of size>880x80. The

piy ' =0.1441(1) Macndpg\ZAC):0'42915)'MV\éh'|e for 1<b  gig (D), dotted(C), and long-dashe(T) lines indicate the predic-
<3/2 we foundp{l'“'=0.1512(2) andp{y'“'=0.41343).  fions of the pair approximation.
As expected, the vanishing concentrations behave near the
critical points as a power law, and both transitions belong to  The external constraint, forcing the players to adopt strat-
the directed percolation universality class. Bor 1.6, the  gqy C with probability p, has the following consequences. If
numerical analysis of the MC data in the vicinity of the onjy C andD strategies are present in the initial state, then
second transition gives py 9=0.4165(2) and B,  the external constraint enforces the cooperation for all value
=0.794), in good agreement with the corresponding di- of p. However, if the three strategi€D, andT are initially
rected percolation value g8=0.81(2)[27]. present and if the dimensionality of the system is larger than
The analysis of the concentration fluctuatiopnsand xp 1, then the external constraint reduces the cooperation main-
in the vicinity of the pointsp=p.; andp=p., leads to the tained byT for small values ofp. The cooperation will be
critical exponenty=0.1§8). Thelarge uncertainty is due to enforced only if the constraint is large enough>p.).
the small extension of the critical regintgypically [p—ps]  These conclusions are reached both from an extended mean-
<10 3). The above value of is compatible with the scal- field analysis and from MC simulations for two- and three-
ing law for the DP exponents. dimensional systems. The general features are not affected
As far as mean-field-like approximations are concernedby the value ofb, characterizing the temptation to defect.
they are supposed to be better when increasing the number of Our study confirms the crucial role of thE strategy
nearest neighbor@imensiong The algebra soon becomes which is able to prevent the spreading of defection. The
very cumbersome; therefore our analysis is restricted to thetrategy, however, dies out in the one-dimensional system as
pair approximation. The results are given in Fig. 12. One canvell as in the models for which the simple mean-field theory
see that the approximate results are in good agreement wiig exact.
the MC data, but in the close vicinity of the critical points.  The above conclusions are in agreement with several his-
Note finally that thep dependence of the average payoff istorical facts coming from both political and economical
qualitatively similar to that found for the two-dimensional worlds. For example, it shows that forcing a fraction of the
model (see Fig. 11 population to cooperate in a naive wéke C strategy does
not improve the overall cooperation in the society. It is better
to educate more individuals in such a way that they will be
We have quantitatively studied the emergence of cooperaable to play the more sophisticated tit for tat strategy if one
tion in a spatially extended version of the prisoner’s dilemmadesires to improve cooperation. From a nonequilibrium
game, with three possible strategiesoperation, defection, phase transition point of view, the above investigations have
and tit for tay in the absence and presence of externallyconfirmed that the two second order phase transitions asso-
enforced cooperation. The players are distributed on g&iated with the extinction processes belong to the robust di-
d-dimensional simple cubic lattice, and their interactions argected percolation universality class. Finally we emphasize
restricted to nearest neighbors. that similar behaviors are expected for spatially extended
In the absence of external constraint the time evolution id-otka-Volterra-like systems with threéor more species,
controlled by a local adoption of a neighboring strategy,provided that one of the species is externally favored.
whose introduction is motivated by the Darwinian selection
rule. When_starting the simulations with a random initi_al ACKNOWLEDGMENTS
state comprised of only cooperators and defectors, one finds
that, ind=1,2, and 3 dimensions, the stationary state of the We thank Gunter Schm for a very helpful discussion.
system is a pure defector one. However, if thetrategy is  This work was supported by the Hungarian National Re-
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