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Spatial evolutionary prisoner’s dilemma game with three strategies and external constraints
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The emergency of mutual cooperation is studied in a spatially extended evolutionary prisoner’s dilemma
game in which the players are located on the sites of cubic lattices for dimensionsd51, 2, and 3. Each player
can choose one of the three following strategies: cooperation (C), defection~D! or ‘‘tit for tat’’ ( T). During the
evolutionary process the randomly chosen players adopt one of their neighboring strategies if the chosen
neighbor has a higher payoff. Moreover, an external constraint imposes that the players always cooperate with
probability p. The stationary state phase diagram is computed by both using generalized mean-field approxi-
mations and Monte Carlo simulations. Nonequilibrium second-order phase transitions associated with the
extinction of one of the possible strategies are found and the corresponding critical exponents belong to the
directed percolation universality class. It is shown that externally forcing the collaboration does not always
produce the desired result.

PACS number~s!: 87.23.Cc, 02.50.2r, 05.50.1q
u
s,
lu

lf-

h
ize
th
in
-

d
p

ion
e
on

es
o

ra
iz

ns

o
on
th
e-
n

m
fr
w
o

u

c-
he

to

n-
ay-
t
ef.

the
e
ous

ve
inst

pt

is-
e

o

a-
a

n
lta-

ng
igh-
nd

lso

n

I. INTRODUCTION

Evolutionary game theory has attracted a lot attention d
ing the past years@1,2# in human sciences, political science
biology, and economics. In particular, the so-called evo
tionary prisoner’s dilemma game~PDG!, which is a meta-
phor for the evolution of cooperation in populations of se
ish individuals, has been minutely investigated@1–5#. In the
original form of the PDG, only uniform populations wit
given strategies were considered. However, it was real
@1,6# that new interesting phenomena can occur when
PDG was expanded in such a way that local contests
d-dimensional space could take place~we shall use the ab
breviation SPDG for such systems!. It turns out that these
spatially extended models are similar to the ones studie
nonequilibrium statistical physics. They may exhibit a coo
erative behavior resulting in phase transitions in the stat
ary state. Accordingly, it is very fruitful to study SPDG-lik
models using the tools developed in the framework of n
equilibrium statistical physics.

In its simpler form, the PDG is a version of matrix gam
where the symmetric incomes of the two players depend
their simultaneous decisions, whether they wish to coope
with the others or to defect. Each player wants to maxim
his individual income. The highest individual payoff~the
temptation to defect! can be reached by the defector agai
the cooperator receiving the lowest reward~sucker’s payoff!.
The mutual cooperation results in the highest total pay
divided equally between the players. For mutual defecti
the players get a lower payoff exceeding the value of
sucker’s payoff. Two rational players will both defect, b
cause this choice provides the larger income independe
of the partner’s choice.

Conversely, mutual cooperation dominates in econo
and biological systems where the contestants interact
quently. In the iterated round-robin PDG, the players, kno
ing the previous decisions, have to choose between two
tions ~defection and cooperation!. For a given round the
contestants can be classified according to the total individ
PRE 621063-651X/2000/62~1!/1095~9!/$15.00
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payoffs they have obtained. Following the Darwinian sele
tion principle, at each round the worst player will adopt t
winner’s strategy.

Extended numerical simulations have been performed
select the ‘‘best strategy’’ among many@4,7#. Best does not
means that this strategy will always win a fight against a
other strategy, but means that it will obtain the highest p
off during a tournament during which it will have to figh
against many opponents having different strategies. In R
@4# the highest payoff was obtained by the player using
so-called ’’tit for tat’’ ~T! strategy, who cooperates in th
first round and then always repeats his coplayer’s previ
decision. The main characteristics of this strategy~never de-
fect first, react to the defection of the opponent, and forgi!
are crucial ingredients to sustain mutual cooperation aga
the defectors. In particular, extensive simulations~see Ref.
@3# for a summary! for the case in which the players ado
either strategyC ~cooperate unconditionally! or D ~defect
unconditionally! have shown that the cooperators were d
appearing in the stationary state. The introduction of somT
strategies has an important effect. For short times, theD
population increases while theC one decreases, leading t
the decrease ofD payoffs. As a consequence,T’s can invade
the D population.

In order to study the spatial effects, Nowak and May@6#
introduced a SPDG consisting of a two-state cellular autom
ton. The players are located on a regular lattice in
d-dimensional space and can adopt theC or D strategy. Each
player is fighting with the individuals belonging to a give
neighborhood. The player’s strategies are upgraded simu
neously in discrete time steps according to the followi
rule: each player adopts the best strategy found in his ne
borhood. This model exhibits a rich variety of spatial a
temporal patterns as a function of the payoffb, characteriz-
ing the temptation to defect. Other SPDG models have a
been investigated@8–10#. In particular, Killingback and Doe-
beli @11# showed that ‘‘Pavlov’’ like strategies can be eve
more efficient than ‘‘tit for tat’’ in some circumstances.
1095 ©2000 The American Physical Society
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1096 PRE 62SZABÓ, ANTAL, SZABÓ, AND DROZ
Nowak et al. @12# also extended the above analysis
allowing stochasticity~irrational choices! during the evolu-
tionary process. The degree of stochasticity is governed
parameter calledm, and, in the limitm→`, one recovers the
deterministic case. According to the value ofb, several sta-
tionary states are possible.

In some related models@13#, Szabo´ and Töke showed that
the different stationary state phases were separated by se
order nonequilibrium phase transitions lines. The associa
critical exponents belongs to the directed percolation~DP!
universality class@13,14#.

Both the importance of the presence ofT’s in the PDG
and the richness associated with the spatially extended as
motivated us to study a new class of SPDG. In the pres
work, we study an aspect of the SPDG, namely, wha
happening when the cooperation is enforced by some ex
nal constraints. More explicitly, we consider a SPDG w
the three strategiesD, C, andT, and investigate the effects o
random adoption~or forcing! of C strategies. This effect ca
be interpreted as an attempt by a government or by any o
organization to enforce cooperation among individuals
forcing some of them, chosen randomly with a given pro
ability p, to cooperate. A different interpretation can also
given. Among the players’ community, some old players
sign and are replaced by younger ones having a diffe
educational background, making them more open to colla
rate. As we shall see, the effects of this external constr
are rather surprising. Indeed, in dimensions 1, 2, or 3,
presence of the constraint reduces the cooperation ifp is less
than a given threshold valuepc depending upon the dimen
sionality of the system. The cooperation is enforced only
the constraint is strong enough, i.e. ifp.pc . The nonequi-
librium second order phase transitions describing the ext
tion of one of the possible strategies are found to belong
the directed percolation universality class.

The paper is organized as follows. The model is defin
in Sec. II. Its properties are analyzed in the mean-field
proximation in Sec. III. The properties of the model witho
constraint are discussed in Sec. IV. The model with c
straint is studied in Sec. V, both in the mean-field appro
mation and by Monte Carlo~MC! simulations, for one, two,
and three dimensions, respectively. Finally, conclusions
drawn in Sec. VI.

II. MODEL

We consider a SPDG model in which the players are
cated on the sites of ad-dimensional cubic lattice of linea
size L where periodic boundary conditions are assum
Each player adopts one of the three strategiesD ~defection!,
C ~cooperation! or T ~tit for tat!, and interacts with its 2d
nearest neighbors. The total payoff of a given player is
sum of the payoffs coming from the interaction with all i
nearest neighbors. We use an extension~including the tit for
tat strategy! of the payoff matrix used by Nowak and Ma
@6#. The individual payoffs for the playersP1 and P2 as a
function of their strategies are given in Table I. The only fr
parameterb (1,b,2) measures the temptation to defe
Note that the above payoff matrix does not take into acco
that T players always try to cooperate withD ’s during the
first round. Thus these values are considered as the aver
a
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~or in this present case stabilized! payoffs.
It is legitimate to use this payoff matrix, providing tha

the strategy adoption is rare comparing to the frequency
the game. It makes the simulation simpler and more efficie
Note that similar payoff matrices can be obtained when s
stituting some other ‘‘nice’’ strategy~like Pavlov’s, which
cooperates in the first round: a strategy which is neverthe
less efficient thanT in this case! @3,4# for T.

For the nonconstrained case (p50), the system evolves
in discrete time according to the following MC proces
Starting from a random initial state, a site is chosen r
domly. This site updates its strategy by first randomly sele
ing one of its nearest neighbors and, second, by adopting
strategy of this nearest neighbor only if it has a higher p
off. A MC steps consists of updating each lattice site on
on the average.

In the constrained case, at each time step, each play
forced to adopt a cooperative strategyC with a probabilityp.
Thus the dynamics of the constrained model is the followi
~i! One chooses randomly one player.~ii ! With probabilityp,
this player adopts theC strategy.~iii ! With probability 1
2p, the player searches for a better strategy according to
procedure described above.~iv! The players update thei
payoffs. The model is characterized by three free parame
b, p, andd.

It is hopeless to find exact analytical solutions for su
models. Accordingly, we shall first study them in the fram
work of mean-field-like approximations, and then investiga
them by numerical simulations.

III. MEAN-FIELD-LIKE APPROXIMATIONS

The simplest mean-field approximation consists of n
glecting all the spatial correlations in the systems. T
amounts to considering a model in which, for each play
the partners are chosen randomly in the system instea
being restricted to a particular neighborhood. Each pla
interacts with the same number of counterparts. The dim
sionality of the system plays no role. The simplest me
field-like approximations have previously been successfu
used for similar problems, and more details concerning
approximate scheme can be found in textbooks@1,2,5#.

Within this approximation, the dynamics of the system
completely described by the time-dependent concentratio

ca~ t !5^Na~ t !&/Ld ~a5C,D,T!, ~1!

whereNa(t) is the number of players with strategya at time
t. These concentrations satisfy the normalization condit
cD1cC1cT51.

According to Table I, the average payoffs for each str
egy are

mD5bcC , mC5cC1cT , mT5cC1cT . ~2!

TABLE I. Payoff matrix of the model

P1 \ P2 D C T

D 0 \ 0 b \ 0 0 \ 0
C 0 \ b 1 \ 1 1 \ 1
T 0 \ 0 1 \ 1 1 \ 1
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PRE 62 1097SPATIAL EVOLUTIONARY PRISONER’S DILEMMA . . .
Note that theC and T strategies have the same payof
therefore, no strategy exchange will occur among them.

Following the evolutionary rules given in Sec. II, the co
centrationsca(t) obey the equations of motion

ċD52pcD7~12p!cD~cC1cT!,

ċC51p~cD1cT!6~12p!cDcC , ~3!

ċT52pcT6~12p!cDcT ,

where the upper and lower signs refer to the cases w
strategyD is dominated byC andT (mD,mC5mT), respec-
tively, and whenD dominatesC andT (mD.mC5mT). The
numerical integration of the above equations of motio
leads, for several values ofp, to the flow diagrams shown in
Fig. 1.

The quantities represented on the vertical and horizo
axes arecD and cC2cT , respectively. The upper corner o
the triangle corresponds to the state ofcD51, while the
lower left and right corners describe homogeneous st
with cT51 andcC51, respectively.

For 0,p,1/2 the stationary state solution of the abo
equations are

cD5
122p

12p
, cC5

p

12p
, cT50 ~4!

while for p.1/2 the system goes to the adsorbing statecC
51 andcD5cT50). Surprising theT strategy does not hold
if p.0.

Without constraints, i.e. forp50, the system tends eithe
to a homogeneousD adsorbing state (cD51) or to a mixed
state ofC andT strategies (cD50) depending on the initia
conditions. Note that the above stationary states are inde

FIG. 1. Trajectories in two-dimensional phase space for th
different values ofp as indicated in the figures. The dashed lin
divide the phase spaces into two regions: on their left~right! hand
side the payoff of theD strategy is lower~higher! than those of the
C andT strategies.
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dent of the value ofb. Strikingly different behaviors will be
observed beyond this simplest mean-field approximat
when the local fluctuations and short-range correlations
taken into account, as we shall see in the following sectio

More elaborate mean-field-like approximations can be
vised. The basic idea is to take some of the spatial corr
tions explicitly into account by computing the probability o
the appearance of all possible configurations of a small c
ter containingn sites. In one dimension, one considers
cluster ofn consecutive lattice sites. The equations of moti
for these probabilities follows from the evolution rules of th
system. Details concerning the one-dimensional case w
given in Ref.@15#. Note that already the one site mean-fie
approximation (n51) differs from the simple mean-field so
lution given above. In higher dimensions pair or squa
mean-field-like approximations have been used, and a
tailed description of these methods can be found in R
@13,16#. Note that now, the predictions of these approxim
tions depend upon the dimension of the system. Accordin
the casesd51, 2, and 3 will be discussed in different su
sections.

IV. MODEL WITHOUT EXTERNAL CONSTRAINT

Let us start by considering the case with no external c
straint, i.e.,p50. In this case, the dynamic is simple: a give
player adopts the strategy of one of his randomly cho
neighbor, providing that this neighbor has a higher payo
As we shall see, the only stationary states are either alw
trivial cooperator like (C or C-T) or a pure defector one
(D). When the random initial state is made of only coope
tors and defectors, one finds that, ind51, 2, and 3 dimen-
sions, the stationary state of the system is a pure defe
one.

The reason ford51 is simply that aD player has always
a higher payoff than a neighboringC player. Ind52 several
configurations should be analyzed. The most favorable s
ation for C to win is when it is adjacent to a flatC-D inter-
face. However, if this interface has an irregularity, thenD ’s
can invade the sea ofC players. Indeed, a newbornC in the
D half-plane is always weaker than theD ’s at the interface
and, thus, suchC’s disappears sooner or later. However, a
given time and with some finite probability, two next neare
neighborC players could be present in theD half-plane. This
results in a payoff of 3b for a D player squeezed betwee
threeC’s and thisD can now invade theC’s and sweep off
one layer of them independently of the value ofb.

The d53 case is very similar, but the process is slow
Indeed, four nearest neighbors of aD player ~called D1)
must be invaded byC’s if the value ofb is close to 1. Once
this has occurred,D1 is strong enough to cross the interfa
and destroy all theC’s.

For a large system with initially a finite proportion ofT
players, the stationary state is always a cooperatorlike s
(T-C). This asymptotic behavior can be easily understood
the one-dimensional case. Let us suppose that there are
neighboring T’s (TTTT) in the initial state of a one-
dimensional system~this is practically always the case in
sufficiently large system with a finite probability to hav
someT’s in the initial state!; then they kill all of theD ’s.
Even in the worst case twoD ’s could invade theT popula-

e
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1098 PRE 62SZABÓ, ANTAL, SZABÓ, AND DROZ
tion, (CDDTTDDC), but then the centralT’s become stron-
ger the~payoff is equal to1! than theD ’s ~the payoff is 0!.
The D ’s kill all of the neighboringC’s, and even these two
T’s can invade the wholeD area.

This argument can be extended tod dimensions. A cube
of linear size 4, made ofT players, is enough to guarante
cooperation in the stationary state. The reason for this is
the D ’s surrounding this cube cannot destroy the centraT
players inside a cube of linear size 2. Indeed, the centralT’s
have alwaysd T neighbors to cooperate with~payoff d), but
the neighboringD ’s can only have oneC neighbor~the pay-
off is less than or equal tob,d if d>2).

V. MODEL WITH EXTERNAL CONSTRAINT

We now consider the case in which the players are loca
on the sites of ad-dimensional cubic lattice in the presen
of an external constraint, imposing on each player the n
to choose theC strategy with probabilityp. The casesd51,
2, and 3 will be considered.

A. One-dimensional system

In the one-dimensional model the players located on
sites of a chain interact with their two nearest neighbors.
easy to see that the dynamics is independent of the valu
the parameterb in its domain of definition.

A systematic MC analysis of the stationary states w
performed by varying the value ofp for different system
sizes betweenL532 and 16384. Our simulations show th
the T’s strategy does not hold for all values ofp. However,
as a function ofp, the stationary state can be either a sy
biosis of C and D strategies or a pureC state, as shown in
Fig. 2. For very small values ofp, one has a pureC station-
ary state (cC51); however, whenp reaches the valuep1, a
first transition occurs to a stationary state in which the t
strategiesD andC coexist. Atp5pc2.p1 the system under
goes a second continuous transition from theC-D stationary
state to the pure absorbingC state.

The transition atpc2 is easy to understand. In one dime
sion and when onlyC and D strategies are present, ou
model is equivalent to the contact process~CP! which was
originally introduced as a simple model for epidemics@17#.
In the CP a particle~sick person! can disappear at rate 1, an
an empty site~healthy person! can become occupied with

FIG. 2. The concentration of strategyD as a function ofp in the
one-dimensional system. The open squares are the MC data
tained forL516384. The solid lines represent the results ofn-point
approximations (n51, . . . ,7from right to left!.
at
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rate lz/2, wherel is the control parameter andz is the
number of particles in the neighborhood of the empty site
our model theD strategy, which ind51 is always better
than theC one, plays the role of the sick persons and theC
strategy, which can only be created in the system through
constraint, corresponds to the healthy individuals.

Starting from aC-D-T initial state, after the extinction o
all T’s the possible stationary states are a pureC state or aC-
D state. TheC-D state corresponds to the steady state of
CP as well. Forp aroundpc2, theT’s disappear rapidly, and
thus do not affect the extinction of theD ’s. Hence the second
transition to the absorbing state corresponds to the CP
This transition occurs atpc251/(11lc)50.23267@18#, and
is believed to belong to the DP universality class@19,20#.

The behavior of the first transition at smallp’s is much
less clear. It turns out that for our model two characteris
parameterspa(L) andpb(L), depending on the system siz
L, can be introduced. Forp,pa(L) the stationary state is
always the pureC state, while forp.pb(L) the system
evolves to aC-D coexistence phase, which is a steady st
of the CP. Forp1(L),p,p2(L), the system can evolve to
ward one of the two possible stationary states, depending
the particular realization of the random numbers and on
initial state.

The probabilityrL(p) of reaching theC-D state has been
investigated numerically. The data are plotted in Fig. 3, a
can be well fitted by a function of the type 12exp„2c1(p
2p0)c2

…, wherec1 , c2, and p0 are fitting parameters. The
limiting function r`(p) was obtained by using usual finit
size scaling methods. As shown in Fig. 4, the functio
rL(p) collapse on a single curve if one plotsr as a function
of $p2r`

21@rL(p)#%/L1/3. This shows thatr`(p) do not col-
lapse to zero; hence the phase transition takes place at a
value ofp.0.025.

The respective timestC and tCD needed to reach the pur
C and C-D stationary states have also been investigat
Both times show a singular behavior~see Fig. 5!. Unfortu-
nately, we were not able to find a reasonable scaling fit
those data. However, it is obvious from the simulations, t
tCD exhibits a much stronger singularity thantC . Hence, for
a large system, the time needed to reach theC-D state is
much larger than the one needed to reach theC state, even if
the system evolves to theC-D state more frequently.

In addition to the MC simulations, the properties of th
system were also investigated using generalized mean-

b-
FIG. 3. The probabilityrL(p) of reaching theC-D state for

different system sizes~from right to left, L550, 100, 200, 500,
1000, 2000, 5000, and 10000, and forL5`). The dotted lines
represent a fit described in the text.
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PRE 62 1099SPATIAL EVOLUTIONARY PRISONER’S DILEMMA . . .
approximations. Assuming the coexistence of all the th
strategies, these calculations can be performed numeric
on clusters of sizes as large asn54. Contrary to the MC
results~see Fig. 2!, these approximations predicted the ex
tence of aC-D-T state at smallp values. As far as theT’s are
concerned, we observed that the maximum value ofcT de-
creases when the cluster sizesn increase, providing a trend
for the extinction of theT’s. The contradiction between th
present mean-field and MC results refers to the importa
of ~interfacial! invasion phenomena detailed below.

Allowing only two strategies (C andD), the above mean
field analysis can be performed for larger cluster sizes u
n57. The results are compared with the MC ones in Fig
As expected, the accuracy of the generalized mean-fi
method increases with the cluster sizen. The extrapolation of
the results obtained for finite values ofn (n51, . . . ,7) leads
to a critical valuepc2

(MF).0.235. The quality of this approxi
mate scheme can be estimated by comparing the valu
pc2

(MF) with the best known numerical valuepc250.23267
@18#.

In order to understand the behavior of the model arou
the first transition, it is interesting to examine the time ev
lution of the system in its transient regime. As illustrated
Fig. 6, one can observe a domain growth process contro
by cyclic invasions@21#. This picture suggests that the mo
relevant aspect of the dynamics is the collision between
fronts separating different strategies.

Let us first investigate the motion of a front separating
cluster ofC’s from a cluster ofD ’s. TheD domains contain
someC sites coming from the external constraint. Howev
the lifetimes of theC’s are very short@;(12p)#. Within a

FIG. 4. The probabilityr as a function of the scaled paramete
The symbols represent different system sizes as in Fig. 3.

FIG. 5. The respective timestC @L52000(*)# and tCD @L
5200 ~1!, 500 (3), and 2000 (h)] needed to reach theC andC-
D stationary states. For comparison, 100003rL52000(p) is also pre-
sented by a dotted line.
e
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D domain the averageC concentration is equal to that of th
CP, and can be well approximated by the simple mean-fi
approach, as we have seen above. TheD strategy invades the
territory of theC one~absorbing state!. Due to the reflection
symmetry the invasion front can move to the left or to rig
with the same absolute value of the velocity. To first order
p in the limit p→0, the absolute value of the average inv
sion velocity can be estimated by using the configurat
probabilities given forn51. This calculation yields

v5
123p

2
. ~5!

Let us now consider the invasion of theT strategy into the
D one. Inside a territory which has been invaded by theT
strategy, theC strategy is set up with a probabilityp. As both
C’s andT’s have the same payoff, no adaptation of strateg
occurs between them. Assuming that this invading front tr
els with a constant velocityu, the probability of having aC
player at a sitek steps behind the front is 12e2pt(k). t(k)
5(k11/2)/u is the averaged time it takes to the front
move over a distance ofk. Thus, it follows that, to leading
order inp,

u5
1211p

2
. ~6!

We note that the above approximations lead to a velocity
the D→C front which is larger than the one for theT→D
front. This prediction can be compared with the results of
MC simulations~see Fig. 7!. For theD→C front, the agree-

FIG. 6. Evolution of the strategy distribution forp50.04 start-
ing from a random initial state. Thekth row shows the positions o
the D ~closed squares!, C ~empty!, andT ~open circle! strategies at
a time 2k measured in MC steps.

FIG. 7. Velocities ofD→C ~open squares! and T→D ~dia-
monds! invasions as a function ofp. The solid and dashed line
indicate the analytical predictions in a linear approximation.
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1100 PRE 62SZABÓ, ANTAL, SZABÓ, AND DROZ
ment is very good ifp,0.1, while, for theT→D case, the
approximation reproduces well only the linear part near
origin.

Another consequence of the external constraint conc
the lifetime of theT clusters. According to the above pictur
the probability that aT cluster dies out during the time evo
lution can be approximated by

PT5)
k50

`

@12exp„2p~k11/2!/u…#. ~7!

The inverse ofPT can be interpreted as the average lifetim
tT of an invadingT cluster. Substituting an integral for th
infinite sum appearing in the logarithm of the above expr
sion leads to

tT.expS p2u

6p D5expS p2
1211p

12p D . ~8!

This expression shows a fast increase of the lifetime whep
decreases. For example, aT cluster dies out in about 105 MC
steps~MCS! if p50.04. This estimated lifetime is signifi
cantly larger than those found by MC simulations@tT

(MC)(p
50.04)'800 MCS#, as indicated in Fig. 6. Thep depen-
dence of the MC data can be well approximated by the fu
tion tT53.26exp(0.226/p) within the region 0.025,p
,0.08 we were able to study. The large discrepancy betw
the mean-field and MC results refers to the enhanced rol
the velocity fluctuations.

Starting from a random initial state, spatially separa
domains are rapidly formed. Then two different situatio
can occur. First,T clusters are present on both ends of ea
D clusters, leading to a fast extinction ofD ’s. Accordingly,
the system evolves to a pureC state. Second, after some tim
the system reaches a state characterized by the presen
only oneD cluster, having aT island at only one of its ends
in a sea ofC’s. As theD→C invasion is faster than theT
→D, theT’s can never destroy theD ’s and, due to the finite
lifetime of theT cluster, the stationary state is aC-D coex-
isting one. The exponential increase of the lifetime of thisT
cluster asp→0 explains the singular behavior observed
tCD .

For p,p1(L), the lifetimes of theT players are so long
that all theD clusters are surrounded byT’s. Accordingly,
the first scenario described above is always present, lea
to a pureC state. Conversely, forp.p2(L) the short lifetime
of the T’s insures that they disappear rapidly, allowing f
the growth of theD clusters. As a consequence the station
state is aC-D one.

B. Two-dimensional system

The players are located on the sites of a two-dimensio
square lattice. According to the payoff matrix~see Table I!,
two ranges of values ofb have now to be distinguished
namely, 1,b,3/2 and 3/2,b,2. For any value ofb in one
of those ranges, the dynamics is the same.

Let us first consider the simulations performed for t
value 3/2,b,2. The situation is summarized in Fig. 8,
which the stationary values of the strategy concentrations
plotted as a function ofp. For p,pc1

(MC)50.1329(1), the
system reaches a stationary state in which the three strat
e
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C,D, and T coexist. Here it is worth mentioning, that fo
small p values (p&0.03), the finite system can reach th
absorbing state if the initial state is chosen randomly. Bel
this size-dependent threshold value, the three-strategy
can be formed and sustained by a slow decreasing ofp dur-
ing the simulation. In this case the extinction ofT’s andD ’s
is a consequence of fluctuations~detailed below!, and the
coexistence of the three strategies is considered as the
stationary state in the limitL→`. The simulations per-
formed forp>0.005 show thatcD decreases linearly withp
whenp→0.

When pc1
(MC),p,pc2

(MC)50.3671(1), only strategiesC
andD survive. Finally, whenp.pc2

MC the system reaches
pureC absorbing state.

The phase diagram obtained by numerical simulations
be compared with the ones obtained using the exten
mean-field approximation described in Sec. III. At the lev
of the pair approximation, one findspc1

(pair)50.1704 and
pc2

(pair)50.4236, while for the square mean-field approxim
tion one findspc1

(sq)50.1482 andpc2
(sq)50.3980. These lates

results are plotted in Fig. 8. They compare well with the M
values given above.

Some complementary information can be obtained
studying the concentration fluctuations defined as

xa5Ld^~Na /Ld2ca!2&, ~a5 C,D,T!. ~9!

When p→0, the concentration fluctuationsxC and xT di-
verge, whilexD remains regular, as shown in Fig. 9. How
ever, the sizes of the systems investigated were not la
enough to conclude thatxC andxT diverge as power laws o
p in the limit p→0.

Moreover, the simulations suggest that for the station
state in which the three strategies coexist, the typical siz
T domains~as well as their persistence time! is proportional
to 1/p. A similar behavior was found in the forest fire mode
@22# introduced by Baket al. @23# to study the self-organized
criticality.

The pointspc1 andpc2 are critical points where a secon
order nonequilibrium phase transition takes place. Inde
theT concentration vanishes atpc1 ascT;(pc12p)b1, while
the D concentration vanishes atpc2 as cD;(pc22p)b2. In
order to justify this behavior a very careful numerical ana
sis was performed, using longer sampling times in the vic

FIG. 8. Stationary state densities ofD ~closed squares!, C ~open
circles!, andT ~open squares! strategies as a function ofp, as ob-
tained by MC simulation of a system of size 5123512 for 3/2,b
,2. The solid (D), dotted (C), and long-dashed (T) lines indicate
the predictions of the square mean-field-like approximation.
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ity of critical points. Fitting the numerical data leads to t
above mentioned values of the critical points andb15b2
50.57(3), which is compatible with the directed percolatio
exponent as expected on general grounds@20#. This fact is
confirmed by the study of concentration fluctuations defin
by Eq. ~9!. Sharp increases of the concentration fluctuatio
are expected at second order phase transitions. Figure
lustrates this point. The concentration fluctuations ofC, D,
and T strategies behave, near the transition pointpc1, asx
;(pc12p)2g1, with g150.37(6). A similar behavior was
found at the transition pointpc2, with an exponentg2
50.37(9). These values are very close to the one of direc
percolation:gDP'0.35 in two dimensions@20#.

The above data suggest thatp50 is another critical point.
However, for the reasons explained above, it was not p
sible to extract reliable exponents.

It is interesting to analyze how the three strategies coe
for small values ofp. As an example, let us consider th
snapshot of the stationary state of a system withp50.04~see
Fig. 10!.

One can observe that ‘‘dark areas’’~made of defectors!
invade the territory~‘‘white areas’’! of cooperators; simulta
neously, the ‘‘dark areas’’ are invaded by theT actors~open
squares!. However, the domination of theT’s is prevented by
the external constraint, which leads to the growth ofC areas
within the T territory. Whenp decreases, theT territory ex-
pands, while the growth of white areas slows down. The d
islands become sparse. Conversely, an increase of the v

FIG. 9. Concentration fluctuations for theD ~closed squares!
andT ~open squares! strategies for a 5123512 system.

FIG. 10. Distribution of defectors~black boxes!, cooperators
~white area!, and ‘‘tit for tat’’ strategies~open squares! in a lattice
of size 1003100, which a subset of a larger system of size 2
3256, for p50.04.
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of p accelerates the spreading of theC areas as well as thei
occupation by the defectors. Consequently, theD population
increases withp, and the number ofT competitors decrease
and vanishes atp5pc1.

As a result of these cyclic dominant processes, a s
organized domain structure is maintained in the syste
Analogous spatiotemporal structures were already obse
by Satulovsky and Tome´ in a two-dimensional predator-pre
system@16#, and by Tainaka and Itoh when studying com
peting species@24#. Both models belong to the family o
spatially extended Lotka-Volterra models, predicting an
cillatory behavior of concentrations in the simple mean-fie
approximation@25#.

One can also analyze the evolution of the typical strate
configurations in the vicinity of the phase transition taki
place at (p5pc1). One recognizes isolated colonies ofT
strategies whose motions remind us of the branching ann
lating random walk models. It is known that this model al
belongs to the DP universality class@26#.

The rate of mutual cooperation is related to the aver
payoff per site. The maximum average payoff~whose value
is 4! is reached when all the players cooperate with th
neighbors. On the other hand, the minimum average pa
per sites coincides with the maximum ofD concentration.

In Fig. 11 the average payoff per site is compared with
quantity 4(cC1cT). One can see that the agreement betwe
these two quantities is generally reasonable, and is e
quite good for p,pc1. The differences between the tw
quantities only come from the fights taking place at t
boundariesD-C or D-T. However, for this range of values o
p, theD players form clusters due to the presence of theT’s;
accordingly these fights are not frequent.

Finally, let us briefly consider the case for which the p
rameterb belongs to the second possible range: 1,b,3/2.
The results of the simulations are qualitatively similar to t
case 3/2,b,2. The critical values ofp are lower, namely,
pc150.112(1) andpc250.297(1). Themost relevant differ-
ences can be observed in the limitp→0, where the maxi-
mum concentration of theT strategy is strikingly lower (cT
,0.15) than that reported in the previous case~see Fig. 8!.

C. Three-dimensional system

We now consider the case in which the players are loca
on the sites of a three-dimensional cubic lattice. Accord

FIG. 11. Average payoff per site sites vsp in the two-
dimensional model. The closed squares represent the MC data
tained forb51.83 andL5512. The diamonds indicate the quanti
4(cC1cT).
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to the payoff matrix~see Table I!, five ranges of values o
b:1,b,2 now have to be distinguished, separated by
valuesb55/4, 4/3, 3/2, and 5/3. Any value ofb in one of
those ranges will lead strictly to the same behavior. Mo
over it turns out that all the values ofb:1<b<2 lead quali-
tatively to the same behavior.

Figure 12 shows a typical phase diagram which is qu
tatively similar to the one found for the two-dimension
model. MC simulations have been performed for systems
sizes 323, 643, and 803, for five representative values ofb
exploring all the different ranges.

When the value ofp increases, the system undergoes t
subsequent phase transitions. The critical values ofp vary
weakly with b. For example, for 3/2,b,2, we obtained
pc1

(MC)50.1441(1) andpc2
(MC)50.4292(5), while for 1,b

,3/2 we foundpc1
(MC)50.1512(2) andpc2

(MC)50.4130(3).
As expected, the vanishing concentrations behave nea
critical points as a power law, and both transitions belong
the directed percolation universality class. Forb51.6, the
numerical analysis of the MC data in the vicinity of th
second transition gives pc2

(MC)50.4165(2) and b2

50.79(4), in good agreement with the corresponding
rected percolation value ofb50.81(2) @27#.

The analysis of the concentration fluctuationsxT andxD
in the vicinity of the pointsp5pc1 andp5pc2 leads to the
critical exponentg50.18(8). Thelarge uncertainty is due to
the small extension of the critical regime~typically up2pcu
<1023). The above value ofg is compatible with the scal
ing law for the DP exponents.

As far as mean-field-like approximations are concern
they are supposed to be better when increasing the numb
nearest neighbors~dimensions!. The algebra soon become
very cumbersome; therefore our analysis is restricted to
pair approximation. The results are given in Fig. 12. One
see that the approximate results are in good agreement
the MC data, but in the close vicinity of the critical point
Note finally that thep dependence of the average payoff
qualitatively similar to that found for the two-dimension
model ~see Fig. 11!.

VI. CONCLUSIONS

We have quantitatively studied the emergence of coop
tion in a spatially extended version of the prisoner’s dilem
game, with three possible strategies~cooperation, defection
and tit for tat! in the absence and presence of externa
enforced cooperation. The players are distributed on
d-dimensional simple cubic lattice, and their interactions
restricted to nearest neighbors.

In the absence of external constraint the time evolution
controlled by a local adoption of a neighboring strateg
whose introduction is motivated by the Darwinian select
rule. When starting the simulations with a random init
state comprised of only cooperators and defectors, one f
that, ind51,2, and 3 dimensions, the stationary state of
system is a pure defector one. However, if theT strategy is
also present in the initial state, then the stationary stat
dominated by mutual cooperation.
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The external constraint, forcing the players to adopt st
egyC with probabilityp, has the following consequences.
only C andD strategies are present in the initial state, th
the external constraint enforces the cooperation for all va
of p. However, if the three strategiesC,D, andT are initially
present and if the dimensionality of the system is larger th
1, then the external constraint reduces the cooperation m
tained byT for small values ofp. The cooperation will be
enforced only if the constraint is large enough (p.pc1).
These conclusions are reached both from an extended m
field analysis and from MC simulations for two- and thre
dimensional systems. The general features are not affe
by the value ofb, characterizing the temptation to defect.

Our study confirms the crucial role of theT strategy
which is able to prevent the spreading of defection. TheT
strategy, however, dies out in the one-dimensional system
well as in the models for which the simple mean-field theo
is exact.

The above conclusions are in agreement with several
torical facts coming from both political and economic
worlds. For example, it shows that forcing a fraction of t
population to cooperate in a naive way~theC strategy! does
not improve the overall cooperation in the society. It is bet
to educate more individuals in such a way that they will
able to play the more sophisticated tit for tat strategy if o
desires to improve cooperation. From a nonequilibriu
phase transition point of view, the above investigations h
confirmed that the two second order phase transitions a
ciated with the extinction processes belong to the robust
rected percolation universality class. Finally we emphas
that similar behaviors are expected for spatially extend
Lotka-Volterra-like systems with three~or more! species,
provided that one of the species is externally favored.
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FIG. 12. Stationary state densities ofD ~closed squares!, C
~open circles!, andT ~open squares! strategies, as a function ofp as
obtained by MC simulation of a system of size 80380380. The
solid (D), dotted~C!, and long-dashed~T! lines indicate the predic-
tions of the pair approximation.
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