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A coupled-chain approximation is presented for lattice-gas models driven by an external electric
field. The method is used to study a square lattice gas exhibiting anisotropic ground states consisting
of alternately occupied and empty rows or columns. This approximation suggests a small decrease
in T, when increasing the electric field and the continuous phase transition becomes first order.

The chain mean-field approximation was derived to ex-
plain the magnetic behavior of chainlike materials.1'2 In
coupled-chain arrays the problem was reduced to that of
a single Ising chain in an effective field determined self-
consistently by the neighboring ones. The resulting one-
dimensional problem is exactly solvable.® This method
has been successfully adapted for lattice-gas models to
study oxygen ordering in the family of YBayCuzO7_,
compounds.* The above papers':?4 are restricted to equi-
librium systems. Very recently, however, the nonequi-
librium phenomena have attracted considerable interest
since their analysis goes beyond the ability of traditional
statistical physics based on Gibbs ensembles. Such sta-
tionary states far from thermal equilibrium may be easily
generated by the application of a driving force producing
a persistent material transport.

The effect of an external field on segregation was first
studied by Katz, Lebowitz, and Spohn® in a square lat-
tice gas with attractive nearest-neighbor interaction. The
stochastic dynamics of the system is characterized by
single-particle jumps to one of the adjacent empty sites
and the jump rate is affected by an electric field parallel
to one of the principal axes. In this system the phase
boundaries become parallel to the applied field and the
critical temperature increases with its strength. Detailed
analyses (for a review see the paper by Schmittman®)
have shown that the field results in anisotropic correla-
tions despite the cubic symmetry of the host lattice.

The stationary state of the above driven system was
exactly determined by van Beijeren and Schulman? in
the limit of an infinite ratio of jump rates parallel and
perpendicular to the field direction. Furthermore, they
assumed the driving force to be infinitely strong. In this
particular case the jumps against the field are forbidden
and all the correlations along the field are destroyed. In
this treatment the problem is reduced to d — 1 spatial
dimensions and the master equation governs the parti-
cle exchanges between neighboring chains. This method
was generalized by Krug et al.® by taking the density
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fluctuations into account. These treatments predicted
mean-field-like critical behavior with a small increase of
transition temperature 7.

The above approximations are restricted to fields of
infinite strength. For finite driving fields, however, the
interaction between the particles results in such correla-
tions which influence the phase transitions significantly.
We studied these correlations in a one-dimensional sys-
tem in a previous paper.® The ordering process is pre-
cluded when the electric field exceeds the threshold value
related to the interaction. The forward and backward
directions may be distinguished as a consequence of per-
sistent material transport. We showed that the predic-
tion of a dynamical pair approximation agrees reason-
ably well with the results of Monte Carlo simulations.
More precisely, this method reproduces the exact result
in the absence of an external field. This is why the one-
dimensional dynamical pair approximation is considered
as a basis for extending the above methods to finite fields.

In this paper we concentrate on a driven lattice gas
with repulsive interactions of equal strength between
the first and second neighbors (Jy=J2=J=1) on a half-
filled square lattice. In the fourfold degenerate ground
state the rows (or columns) are alternately occupied or
empty.1® In previous papers the equilibrium properties'®
as well as the domain growth dynamics'®!! are stud-
ied in detail. This system exhibits intrinsically the
anisotropic jump behavior assumed as a condition by van
Beijeren and Schulman” in their approximation. Due
to the anisotropic particle distribution the longitudi-
nal diffusion constant and conductivity are larger than
the transversal ones.'? In the presence of an external
field the equivalence between the horizontal and verti-
cal directions is no longer valid. Monte Carlo simula-
tions and a four-sublattice mean-field analysis are car-
ried out to investigate the stability of the different states
when the driving field is switched on.}? The states in
which the chains are perpendicular to the field become
metastable or unstable depending on the temperature
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and field strength. In the stable stationary state the
chains are oriented along the field. Consequently, this
system is an excellent candidate for demonstrating the
capability of the present coupled-chain approximation for
driven systems.

The dynamical pair approximation is the lowest level of
the dynamical mean-field theory suggested by Dickman?3
for investigating the driven systems mentioned above.
Within this approximation the probability of a given k-
point configuration on neighboring sites is described as
a product of two-point distribution functions. In a one-
dimensional system the results of the dynamical pair ap-
proximation are evaluated analytically.® In the stationary
state under electric field E the probability of the (1,0)
pair configuration is

—1++/1+4c(1-c)(B-1) )
2(B - 1) ’ M

p2(1, O) =

where
_exp(—pJ) + cosh(BE) @)
exp(B8J) + cosh(BE) ’

¢ is the concentration, and T = 1/ is the temperature.
The probability of other pair configurations is determined
by sum rules as detailed in Ref. 9.

According to the four-sublattice mean-field
approximation!? the continuous transition from the dis-
ordered state to the stable one is in no way affected by
the driving field. This prediction was not confirmed by
the Monte Carlo simulations because the electric field in-
duced excess defects and resulted in a small decrease of
T. for E < 0.5. This shortcoming of the four-sublattice
mean-field approximation inspired us to develop a more
sophisticated technique described as follows.

The ordered state of the two-dimensional lattice gas
may be described as a set of parallel chains with aver-
age concentration ¢ + z(T") and ¢p — z(T") alternately.
The traditional chain mean-field approximation connects
these chains with each other via an average chemical po-
tential. In the driven systems, however, the concept of
chemical potential is not applicable because of the lack of
a consistent theory. This difficulty may be circumvented
if we formulate the condition of steady state.

The transversal jumps increase and decrease the con-
centration in the chains concerned. The rate of such
an elementary process is the product of the jump rate
and the probability of the 12-point configuration, which
includes the pair and its neighbors affecting the jump.
Here we assume that the relation between the neighbor-
ing chain configurations is completely determined by the
alternate concentrations. In the stationary state the sum
of the contributions over all the possible configurations
vanishes. This manipulation gives an implicit equation
for (T') which can be solved numerically. Henceforth,
the numerical solution is restricted to the half-filled lat-
tice (cop = 0.5).

This approximation suggests the phase transition to be
continuous if the driving field does not exceed a thresh-
old value, i.e., F < Ey, = 0.90. In thermal equilibrium
T.(E = 0) = 0.4716 and the transition temperature de-
creases with the field as shown by the solid curve in Fig. 1.
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FIG. 1. Ciritical temperature vs external field; solid and
dashed lines represent second- and first-order phase transi-
tions. The dotted line represents the analytical continuation
of the second-order phase transition.

The variation of T, is proportional to E? in the low
field limit. The analytical continuation of this second-
order phase transition is denoted by a dotted curve in
Fig. 1. This curve indicates that a hysteresis may ap-
pear in a limited region as was discussed by Dickman.4
It is worth mentioning that previous Monte Carlo sim-
ulations suggest a slightly higher transition temperature
(TMC = 0.525) in equilibrium.10:11

If the driving field exceeds the threshold value then the
ordering process is first order and the transition temper-
ature tends to a constant value [T.(E = oo) = 0.3114]
as plotted in Fig. 1. The transition temperature is
0.807.(E = 0) at the tricritical point (E = Ey).

The existence of a tricritical point has already been
suggested by Leung et al.!® and Dickman!? in a square
lattice gas with a repulsive first-neighbor interaction. In
this system an ordered (chessboard-like) phase appears
below a critical temperature. The phase transition re-
mains continuous only for weak driving fields, and T,
decreases with the field strength. For a larger field the
transition becomes first order and disappears above a
threshold value. In other words, this type of ordered
structure is destroyed by the strong electric field.

In the present model, however, the transition tempera-
ture remains finite in the strong field limit, i.e., the chain
structure oriented along the field is stable for arbitrary
strength. At the same time, the ordered states with per-
pendicular chains are completely destroyed by the strong
fields. In the low temperature limit the stable states
become completely ordered and the particle jumps are
blocked along the occupied chains therefore the driving
field cannot affect this type of ordered state.

Preliminary Monte Carlo simulations confirm the small
decrease of the critical temperature. Rigorous Monte
Carlo simulations require long runs because of the en-
hanced fluctuations induced by the driving field. This
analysis is in progress.

It is worth mentioning that the present model has been
studied by following the method (dynamical pair approx-
imation) suggested by Dickman.!34 Unfortunately, this
method as well as the equilibrium pair approximation
predict a first-order phase transition for this model. The
failure of the dynamical pair approximation is particu-
larly interesting because our chain approximation may be



8262 BRIEF REPORTS 47

considered as a simplified dynamical pair approximation.
More precisely, in our approximation the configurations
in neighboring chains of alternate density are indepen-
dent of each other whereas the dynamical pair approxi-
mation takes the transversal correlations explicitly into
consideration.

In summary, we have described a simple coupled-chain
approximation for studying driven lattice gases. This
method is based on the analytical solution of the one-
dimensional driven lattice gas in a dynamical pair ap-
proximation. The capability of this approximation is
demonstrated by applying it to a two-dimensional lat-
tice gas in which the particles form parallel chains along
the applied field. In this system the particles prefer the

longitudinal jumps to the transversal ones and the dif-
ference results in a time scale separation of longitudinal
and transversal relaxation rates. This feature seems to
be very advantageous for this very simple approxima-
tion. According to the coupled-chain approximation the
ordering temperature decreases with the field strength
and tends to a constant value. Furthermore, the continu-
ous phase transition becomes first order when the driving
field exceeds a threshold value. These suggestions agree
reasonably well with the results of preliminary Monte
Carlo simulations.
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