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Correlations induced by transport in one-dimensional lattice gas
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Using dynamical mean-field theory, we study the two-, three- and four-point correlations in a
one-dimensional lattice gas driven by a uniform electric field. In the zero-temperature limit, the
ordering is precluded when the electric field exceeds a critical value. The electric field results in a
breaking of reQection symmetry in the four-point configurations.

PACS number(s): 05.50.+q, 64.60.Cn, 66.30.—1

I. INTRODUCTION

Nonequilibrium phenomena have extensively been
studied in lattice-gas models driven by electric fields (for
a recent review see the paper by Schmittman [1]). These
investigations are concentrated on two-dimensional sys-
tems with first-neighbor interactions. The critical tem-
perature of the order-disorder transition increases (de-
creases) with the field for attractive (repulsive) interac-
tions [2, 3]. For repulsive interaction the ordering is sup-
pressed when the electric field exceeds a threshold value

[3, 4, 6, 7]. Very recently Hwang, Schrnittman, and Zia
[5] have found that the three-paint correlation becomes
nontrivial in a driven two-dimensional lattice gas.

In a one-dimensional system the situation is different
because the critical temperature is zero. In early papers
the particle transport was studied within the framework
of linear approximation [8—10]. In a comparison with
two-dimensional systems Katz, Lebowitz, and Spohn [3]
briefly considered both the particle transport and the
structure function in such a system by Monte Carlo sirn-
ulation.

In the present paper we have adopted the dynamical
mean-field approximation used by Dickman [6, 7] for in-
vestigating the nonequilibrium phase transition in two-
dimensional systems. In a one-dimensional lattice gas,
this method becomes very simple and the analytical re-
sult reproduces the exact pair-correlation function [ll]
in the absence of an electric field. In comparison with
Monte Carlo data we have found, however, a small dif-
ference (a few percent) in the presence of an electric field.
This defect inspired us to extend the dynamical pair ap-
proximation. The four-point approximation is capable of
describing reflection symmetry breaking in configuration
of particles located on four adjacent sites. More precisely,
we have found that the probabilities of the configurations
(0010) and (0100) are not equivalent in the presence of
the electric field. Similar reflection symmetry breaking is
prohibited by the translation invariance for the two- and
three-point configurations as detailed in the subsequent
section. In Sec. III the model is studied at the level of
dynamical pair approximation. The results of the three-
and four-point approximations are presented in Sec. IV.
In numerical analyses including Monte Carlo simulations

we restrict ourselves to repulsive nearest-neighbor inter-
action in a half-filled lattice.

II. FORMALISM

We study a one-dimensional lat tice-gas model de-
scribed by the usual Hamiltonian

H = J) n;n, +i,

where J is the nearest-neighbor interaction and n; = 0 if
site i is empty and n; = 1 if occupied. The stochastic dy-
namics of the system is described by Kawasaki dynamics
[12] characterized by single-particle jumps to one of the
nearest-neighbor sites. The jump rate I'(i ~ i+ 1) from
site i to i + 1 is affected by a uniform electric field E at
a temperature T, namely,

I'(i ~ i+1 1+exp[P(EH p E)]
' (2)

where LH is the energy difference between the final and
initial states and P = 1/T

Assuming translation invariance the probability of a
given lc-point configuration (ni, . . . , nk) on subsequent
sites (i + 1, i + 2, . . . , i + k) of the lattice is denoted by
pk(ni, . . . , nk). These quantities are normalized,

) pk(ni, . . . , nk) = 1

and they satisfy the following conditions:

pk(ni . . nk) — pk+1(ni . nk nk+1)

pk(nl, . . . , nk) = .pk+1(no, nl, , nk) .

(4)

It is evident that on a single lattice point

pi(0) = 1 —c, pi(l) = c,

where c is the average particle concentration. According
to the above equations the probability of the two-point
configurations may be given as
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p2(0, 0) = (1 —c) + z,
p2(0, 1) = p2(1, 0) = c(1 —c) —z,
p2(1, 1) = c + z,

(6)

consequently the probability p4(0, 0, 1, 0) may differ from
p4(0, 1, 0, 0). This type of reflection symmetry breaking
is characterized by

Pk+1(nl nk+1)— Pk(ni, , nk)Pk (n2, , nk+1)
Pk-i(n2, , nk)

+gk(ni, . , nk+i) (7)

where z is the pair correlation function. It is emphasized
that we need only one additional parameter (z) to ex-
press the above probabilities for a fixed concentration.
Following this strategy at higher level, Eqs. (3) and (4)
may also be satisfied by suitable parametrization of the
configuration probabilities. For this purpose we suggest
an iterative way if k ) 1:

because there are three additional pairs of four-point con-
figurations which exhibit reflection symmetry breaking
with the same measure. In equilibrium (no electric field)
4=0.

In the half-filled system (c = -) the particle-hole sym-
metry reduces the number of free parameters. In this
particular case vi —v2 and mq

—zo4.

III. DYNAMICAL PAIR APPROXIMATION

In this notation gk(ni, . . . , nk) indicates an extra cor-
relation that goes beyond the prediction of a mean-Geld
theory of lower level. The possible values of these correla-
tions, however, are strongly constrained by Eqs. (3) and

(4). For the three-point configuration these quantities
are expressed by introducing two additional variables, v~

and v2.

res(0, 0, 0) = gs(1, 0, 1) = —gs(0, 0, 1)
= —gs(1, 0, 0) = vi,

gs(0, 1, 0) = res(1, 1, 1) = —
tls (0, 1, 1)

= —tls(1, 1, 0) = v2 .

No reflection symmetry breaking can be observed in the
two- and three-point configurations because p2(1, 0)
p2(0, 1), ps(1, 0, 0) = ps(0, 0, 1), and ps(1, 1, 0)
ps(0, 1, 1). These equalities may be considered as special
cases of a, more general relation derived from Eqs. (4);

Pk(o, , o, 1) = Pk(1, o, , o),

where the dots represent empty (occupied) sites in the
first (second) expression.

V,'ith the four-point configurations, however, some re-
flection symmetry breaking is allowed because

g4(0, 0, 0, 0) = g4(1, 0, 0, 1) = —g4(0, 0, 0, 1)
= -rj4(1, 0, 0, 0) = u)1,

g4(0, 0, 1, 0) = rj4(1, 0, 1, 1) = -t14(0, 0, 1, 1)
= —t14(1, 0, 1, 0) = u) 2,

g4(0, 1, 0, 0) = r)4(1, 1, 0, 1) = —g4(1, 1, 0, 0)
= —g4(0, 1, 0, 1) = u)s,

ij4(0, 1, 1, 0) = g4(1, 1, 1, 1) = —tt4(0, 1, 1, 1)
= —g4(l, 1, 1, 0) = iv4.,

The dynamical mean-field theory can be carried out
at difFerent levels (for details see the papers by Dickman
[6, 7] and further references therein). In the dynamical
pair approximation we assume that gk(ni, . . . , nk) = 0 if
k ) 2. In other words, the probability of a given k-point
configuration is determined by the pair distributions as

Pk(ni ~ nk) —P2(ni n2)

k —1
p2(n, , n, +1)

pi(n, )

exp( —Pj) + cosh(PE)
exp(P j) + cosh(PE)

(14)

In the absence of' an electric field (E = 0) these expres-
sions reproduce the exact result obtained by the transfer
matrix technique (see, for example, the book by Baxter
[11]). In the presence of an electric field, however, we
should use Monte Carlo simulations to check the accu-
racy of the above approach.

The Monte Carlo simulations were carried out on a
half-filled (c = 2) lattice of 4096 sites with periodic
boundary conditions. In the standard simulations we re-
stricted ourselves to repulsive interaction (j = 1). The
runs were performed at diferent temperatures and elec-
tric fields. The particle current and probabilities of two-,
three-, and four-point configurations were calculated by
averaging over 100000 Monte Carlo steps per site in each
run.

A comparison between the pair approximation and the

Consequently, we have only one parameter (z) to be eval-
uated for a fixed concentration.

The elementary jumps give gain and loss contributions
to the probability of a given pair configuration. The rate
of such a process is the product of the jump probability
given by Eq. (2) and the probability of the four-point con-
figuration, which includes the pair and its neighbors af-
fecting the jump. In the stationary state the time deriva-
tive of P2(ni, n2) vanishes for any configuration. Summa-
rizing all the contributions for p2(0, 0) (or any other) one
obeys the following result:

—1+ gl + 4c(1 —c)(B —1)
p2(l, 0) =

2(B —1)

where
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the Monte Carlo data are omitted because of their small
deviations from the results of pair approximation.

IV. THREE- AN D FOU R-POINT
AP PROXIMATION

0.250.0 0.2 0.4 0.6 0.8 1.0
T

FIG. 1. Probability of (1,0) pair configuration as a func-
tion of temperature. Monte Carlo data are shown for different
electric fields: E = 0 (*); E = 0.5 (~); E = 1 (Q); E = 1.5
(o). Solid lines represent the results of dynamical pair ap-
proximation.

Monte Carlo simulation is demonstrated in Fig. 1 where
the solid lines are obtained from Eqs. (13) and (14). In
this figure the statistical error of the Monte Carlo simula-
tions is comparable to the line thickness. The diA'erence
between the results of these methods, having a maximum
at F. 1, is less than three percent.

The results clearly show that the system goes to an
ordered state with decreasing temperature if E & 1. No
ordering can appear at zero temperature when the elec-
tric field is strong enough to overcome the strength of
interaction, i.e. , E )

~

J
~

(these statements remain valid
for attractive interaction too). Similar behavior was ob-
served in a two-dimensional lattice gas with repulsive
first-neighbor interaction for sufficiently strong fields [4,
7].

In the knowledge of distribution functions we can eas-
ily determine the particle current as well as the dc con-
ductivity. The temperature and concentration depen-
dence of dc conductivity agree with the previous results
[8—10]. For c =

2 the ordering process prevents the par-
ticle jumps; therefore particle transport decreases with
temperature if E &

~
J~. In contrast to this, particle

current I goes to a saturation value I, when decreasing
the temperature for E ) ~J~. Persistent current is an
appropriate characteristic of this nonequilibrium state.
This phenomenon is displayed in Fig. 2. In this figure

1.0

"0
I'"IG. 2. Electric-field dependence of particle current re-

lated to the saturation value for different temperatures: (a)
T = 0.05; (b) T = 0.2; (c) T = 0.5.

In the three-point approximation the probability of any
particle configuration is given by three parameters, z, vi,
and v2. At this level of the dynamical mean-field theory,
however, one finds that vi ——v2 ——0. In other words,
the three-point approximation cannot go beyond the pair
approximation detailed above. It is emphasized that vi
and v2 do not vanish at the higher level of the dynamical
mean-field theory as sketched below.

In the four-point approximation it is assumed that
rlt(ni, . . . , nt) = 0 for k ) 4. In this case the proba-
bility of the configurations is characterized by seven pa-
rameters. On the analogy of pair (and three-point) ap-
proximation these quantities are determined by a set of
equations from the time derivative of the probability for
those configurations which are linearly independent.

It is easy to check that a comparison between the
time derivatives of ps(0, 0, 0) and p4(0, 0, 0, 0) as well as
ps(1, 1, 1) and pq(l, 1, 1, 1) gives

tDi: O)4: 0 (15)

independently of c and E. The remaining quanti-
ties (z, vi, n2, to2, ws) are evaluated numerically. In the
present work we simplified the numerical analysis by re-
stricting ourselves to a half-filled system providing vj-
V2.

In the four-point approximation the temperature de-
pendence of the pair correlation z agrees reasonably well
with those results obtained from the dynamical pair ap-
proximation. The agreement with the Monte Carlo data,
however, became much better. More precisely, the nu-
merical results reproduce the Monte Carlo data within
the statistical error (less than 10 ) except for a narrow
region of the electric field (E 1) where the deviation is
less than one percent. These results confirm the general
conclusions drawn on the basis of pair approximation.

In agreement with expectations the extra correlations
v] Q)2 Q)3 vanish for E = 0. Furthermore, these quanti-
ties also vanish in the limit T ~ 0 except for the value of
the electric field E = I. This latter fact refers to a crit-
ical behavior when the electric field exceeds the critical
value (E = 1) in the zero-temperature limit. Obviously,
for a more accurate description in this critical region we
need to extend the dynamical mean-field approximation
to a higher level. In the high-temperature limit no cor-
relations can be observed.

The most striking result of the present work is the
reQection symmetry breaking generated by the electric
field. This phenomenon is illustrated in Fig. 3 where the
solid line is derived from the four-point approximation.
The size of the data symbols is characteristic of the sta-
tistical error of the Monte Carlo simulation. This figure
clearly shows that 4' is an odd function of electric field for
a fixed temperature. According to our numerical analysis
4' oc E in the low-field limit. This relationship suggests
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I'IG. 3. ReRection symmetry breaking induced by electric
field for a fixed temperature T = 0.5. Solid line is predicted by
the four-point approximation, squares represent Monte Carlo
data.

a simple way of determining the direction of particle cur-
rent from the particle distribution at a given moment.

V. CONCLUSIONS

We have studied the two-, three-, and four-point corre-
lations in a half-filled one-dimensional lattice gas driven
by a uniform electric field. In this system there is a
competition between the first-neighbor interaction and
the electric field. The first-neighbor interaction forces
the system to form an ordered structure in the zero-
temperature limit at, the same time the biased hopping
mechanism prevents the survival of any local order. As
a result of this competition the ordering process is pre-

vented by the electric field if its magnitude exceeds the
strength of the first-neighbor interaction. The lower
the temperature the sharper the order-disorder transi-
tion when increasing the electric field (E -' I). In the
(nonequilibriurn) disordered phase a saturation particle
current remains present in the limit T ~ 0.

Despite its simplicity, dynamical pair approximation
gives a satisfactory description of the phenomenon men-
tioned above. Due to the absence of extra correlations
this approach reproduces the exact results for E = 0.
In the low-temperature limit the extra three- and four-
point correlations we have studied are proportional to E
or E . This is the reason that the pair approximation de-
scribes correctly the concentration and temperature de-
pendence of the dc conductivity.

In equilibrium, the right- and left-hand directions are
equivalent. This equivalence, however, is no longer valid
in the presence of an electric field. It is found that the
electric field induces extra correlations including reflec-
tion symmetry breaking which may be observed in the
probabilities of four-point configurations. In the knowl-
edge of the stationary particle distribution this reflection
symmetry breaking allows us to determine the direction
of particle current. The measure of these extra correla-
tions, however, is very weak except in the close vicinity
of the order-disorder transition at low temperatures.
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