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a b s t r a c t

Evolutionary potential games represent a set of biological and ecologicalmodels equivalent
to multiparticle physical systems for a suitable dynamical rule. In these systems the pair
interaction is described by a payoff matrix of two-player games possessing a wider class
of interactions. Potential games satisfy criteria related to the Kirchhoff laws and have pure
Nash equilibria. Using the bi-matrix formalism of game theory we show a simple method
for checking the existence of potentialwhich is related to the absence of cyclic components.
It will be shown that potential exists if the game is orthogonal to a suitable set of cycling
elementary games resembling voluntary matching pennies games. Relationships among
these cyclic components and consequences of player’s equivalence are also discussed.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In spatial evolutionary games [1–4] players are located at the sites of a lattice and their income comes from two-player
games with their neighbors. In these systems the players can represent biological objects, social agents, and particles
when studying ecological, economic, and physical systems. The pair interactions between the equivalent neighbors are
described by a payoff matrix with elements quantifying the incomes received by themwhen choosing one of their n options,
henceforth called strategies [5,6]. These strategies identify the types of species on each site of the biological system, the
selected human behavior (e.g., selfish or altruistic) in social models, and the microscopic states of atoms forming crystalline
structure. The payoffs measure the capability of creating offsprings (fitness) [7], the strength of motivation to choose one of
the strategies [8], and the negative potential energy in the systems mentioned. The similar mathematical background has
motivated the application of the concepts and methods of the statistical physics for the systematic investigation of many
complex systems in the last decades.

We have to emphasize that the direct analogy between evolutionary games and thermodynamical systems is ensured
if the pair interactions are described by the so-called potential games [9–11] and the evolution of strategy distribution
is controlled by a logit rule [8,12] favoring the choice of strategies with a probability increasing exponentially with the
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individual income for the consecutive unilateral strategy updates. In fact, the latter systems evolve into a Boltzmann
distribution [10,13–16]. Additionally, the results of mean-field approximations can well describe the system behavior if
we ignore the underlying connectivity structure.

Most of the previous analyses are focused on systems where the pair interactions are defined by symmetric one-shot
non-cooperative games [5,6,17]. For these games the players are equivalent and they exchange payoffs when exchanging
strategies. Their possible incomes can be defined by a single payoff matrix A. If this payoff matrix is symmetric (A = AT )
then the players share the payoffs fraternally eliminating the difference between the individual and community interest.
Furthermore, it is a potential game with a potential matrix V = A.

In the knowledge of the potentialmatrix one can determine the preferred Nash equilibrium (defined by the largestmatrix
element of V) playing the role of ground state in the corresponding physical system. For non-symmetric payoff matrices
the existence of potential, as well as the evaluation of the potential, were clarified by exploiting the concept of matrix
decomposition [18–22]. Similarly to basis vectors, this approach builds up the matrix from a suitable set of basis matrices
classified into four orthogonal types of interactions: namely, games with self- and cross-dependent payoffs, coordinations,
and cyclic components. In this approach the n × n matrices are considered as n2-dimensional vectors that implies the
introduction scalar product, orthogonality, and Cartesian coordinate systems. The four orthogonal classes of pair interactions
become visible for a rotated coordinate system with axis representing elementary games of types mentioned above. The
presence of any cyclic components prevents the existence of potential and also the thermodynamical behavior for the
application of logit rule.

In other words, for symmetric n-strategy potential games the payoff matrix is orthogonal to all the independent cyclic
elementary games involving a rock–paper–scissors type three-strategy subgame and (n − 3) neutral strategies. These
elementary games can be considered as voluntary rock–paper–scissors game where the choice of the neutral strategies
provide zero income for both players. An independent set of elementary cyclic components can be selected by those
(n − 1)(n − 2)/2 voluntary rock–paper–scissors components which includes the first strategy. Evidently, one can choose
other independent subsets of rock–paper–scissors subgame components when the distinguished role of the first strategy is
replaced by another one.

Now we extend the above approach by considering the so-called bi-matrix games where the incomes of the distinguish-
able players are defined by two payoff matrices: A and B. Using a pedagogical style it will be shown that for these more
general systems the role of the voluntary rock–paper–scissors components can be replaced by simpler cyclic components
representing voluntary matching-pennies games where the two competing strategies are extended by additional neutral
strategies.

2. Basic concepts of bi-matrix games

We study non-symmetric games with two players (x and y) having n and m strategies. The players’ incomes can be
expressed by using the bi-matrix formalism [5,23–25], namely,

G(A,B) =

⎛⎜⎝(A11, B11) · · · (A1m, B1m)
...

. . .
...

(An1, Bn1) · · · (Anm, Bnm)

⎞⎟⎠ . (1)

In this notation the pair of bi-matrix components (Aij, Bij) refer to payoffs received by players x and y if they choose the
strategy pair (i, j) (1 ≤ i ≤ n and 1 ≤ j ≤ m). In these games the (selfish and intelligent) players wish to maximize their
own payoffs and are not allowed to communicate before choosing one of their strategies.

These games have one or more Nash equilibria [26] which are recommended for the players to choose because the
unilateral deviations from these strategy pairs are not advantageous for the deviant player. In short, both players are satisfied
under the given conditions. For a pure Nash equilibrium (i⋆, j⋆) it means that

Ai⋆j⋆ ≥ Akj⋆ and Bi⋆j⋆ ≥ Bi⋆ l (2)

for all possible values of k and l (k = 1, . . . , n and l = 1, . . . ,m). For strict Nash equilibria the payoff of the unilateral deviant
is decreased. Additionally, these systems can have one or more mixed Nash equilibria when the players can select one of the
suitable strategies with different probabilities [5].

A simple and attractive way of finding the possible pure Nash equilibria is based on the derivation of flow graph. In flow
graphs [27], and also in dynamical graphs [28], the nodes denote strategy pairs arranged in a rectangular form in the same
way as they occur in the bi-matrix (1). For both graphs the edges connect those strategy pairs where only one of the players
has modified her strategy. The corresponding dynamical graphs characterize systems where consecutive unilateral strategy
changes are allowed. In flow graphs the edges are directed and point toward the strategy pair providing higher income for
the player modifying her strategy.

Fig. 1 shows three different flow graphs. In the first (a) example the symmetric three-strategy game has three pure Nash
equilibria. The second (b) example illustrates a three-strategy bi-matrix games where the payoffs are given by integers
(1, . . . , 9) selected at random for both players. These examples illustrate, that for many real life situation it is enough to
characterize the payoffs by integers reflecting the rank of preference for both players. The third (c) flow graph illustrates the
preferred strategy changes the traditional rock–paper–scissors game.
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Fig. 1. Flow graphs for three-strategies in a symmetric game (a), in a bi-matrix game with payoffs chosen at random (b), and in the rock–paper–scissors
game (c). The nodes are denoted by boxes in which the upper labels refer to strategy pairs, the lower figures indicate payoffs received by the players. The
strict Nash equilibria are distinguished by gray color.

In a flow graph the strict Nash equilibria can be easily recognized because the corresponding nodes have only incoming
directed edges. We emphasize, furthermore, that only one strict Nash equilibrium can exist in each row and column. This
fact maximizes the number of pure and strict Nash equilibria [29–32]. In the absence of pure Nash equilibrium for the rock–
paper–scissors game the Nash theorem [26,33] prescribes the existence of a mixed Nash equilibrium for which the players
choose one of their three strategies with the same probabilities (1/3).

The directed graphs (a) and (b) (in Fig. 2) have nodirected loops. In fact, the absence of directed loops ensures the existence
of pure Nash equilibria which can be easily justified by using a simple graph theoretical argumentation [27,34–36]. Namely,
if a directed path is started from a node of a directed graph by choosing one of the outgoing edges step by step then we
cannot return to the nodes of the resulting path in the absence of directed loops. These directed paths end in nodes without
outgoing edges. Otherwise, afterN−1 steps (N = nm is the number of nodes)we cannot find a unvisited node. If the directed
path is defined by selecting one of the incoming edges consecutively then the same argumentation justify the existence of
node(s) having only outgoing edges.

On the contrary, for the rock–paper–scissors game one can easily find four-node directed loops, for example, (1, 2) →

(2, 2) → (2, 3) → (1, 3) → (1, 2).
The flow graph of a potential game is free of directed loops. If G is a potential game then we can derive a potential matrix

V(A,B) =

⎛⎜⎝V11 · · · V1m
...

. . .
...

Vn1 · · · Vnm

⎞⎟⎠ . (3)

with components satisfying the conditions:

Vkj − Vij = Akj − Aij ,

Vil − Vij = Bil − Bij , (4)

where i, k = 1, . . . , n and j, l = 1, . . . ,m. Notice, that a large portion of payoff parameters are dropped when deriving the
potential. If potential exists then the elements Vij of the potential matrix can be evaluated by summing the payoff variations
(given by Eqs. (4)) of the strategy-modifying player through unilateral strategy changes along a path through the strategy
pairs of the dynamical graph. This approach is similar to those suggested by Miekisz [15].

The linear relationships (4) between the potential and payoff values can be exploited to explore some general features.
For example, if a game is composed of two potential games, e.g., G(A,B) and G′(A′,B′) with payoff matrices A+A′ and B+B′

then the resultant game has a potential matrix given asV(A,B)+V′(A′,B′). For a detailed analysis of the consequences of this
feature we suggest consulting the papers [10,16]. Nowwe only emphasize that this approach utilizes the similarity between
games (1) and vectors with a dimension of 2nm. Accordingly, in addition to the sum of two games, one can introduce the
scalar product of two games as

G(A,B) · G′(A′,B′) =

∑
i,j

[AijA′

ij + BijB′

ij], (5)

and the concept of orthogonality, as well. More precisely, the games G(A,B) and G′(A′,B′) are orthogonal to each other if

G(A,B) · G′(A′,B′) = 0. (6)

The concept of matrix decomposition and the classification of symmetric games into four types of elementary (orthogonal)
interactions [20] is based on the concepts mentioned. One can think that these elementary basis games serve as new basis
vectors which span the whole space of payoff parameters and reflects the inherent symmetries. This approach can help us
to study separately the effects of these fundamentally different pair interactions.
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Fig. 2. The dynamical graph of a two-strategy gamehas four strategy pairs and four edges forming a single loop. The nodes are denotedwith boxes including
the same parameters as in Fig. 1.

3. Existence of potential for two-strategy games

The potential matrix summarizes the individual incentives for consecutive unilateral strategy changes. At the same time,
the existence of potential requires that the potential variation Vi′j′ −Vij should be independent of the paths (in the dynamical
graph) defining how the players can get from the strategy pair (i, j) to (i′, j′) via unilateral consecutive steps. The latter
statement is satisfied if the sum of the payoff variations of the active players is zero along all the possible closed loops of the
dynamical graph.

For two-strategy games (n = m = 2) the dynamical graph (see Fig. 2) has only one loop that simplifies the problem,
because we have only one condition to be satisfied for the existence of potential. Quantitatively, if we start from the strategy
pair (1, 1) and go clockwise then the sum of the payoff variations of the active players along this loops vanishes, if

B12 − B11 + A22 − A12 + B21 − B22 + A11 − A21 = 0. (7)

If this single condition is satisfied by the payoff parameters (Aij and Bij) then one can easily evaluate the elements of the
potential matrix V. Disregarding an irrelevant constant this quantity can be given as

V(A,B) =

(
A11 (A11 + B12 − B11)
A21 (A21 + B22 − B21)

)
. (8)

Notice, that the first columns of the matrices A and V are identical and the missing two elements of V are evaluated by using
the Eqs. (4). Evidently, the samemethod can be adapted for arbitrary values of n andm if the existence of potential is already
justified.

For two-strategy games the potential V has only three relevant parameters because adding an irrelevant constant to each
element (Vij → Vij + c ) is permitted by Eqs. (4). Similarly, some variations in the payoff matrices (e.g., Aij → Aij + aj and
Bij → Bij +bi with arbitrary constants aj and bi) will preserve the validity of Eq. (7) and the potential (8) remains unchanged.
The latter additional terms can be considered a linear combination of elementary games, called gameswith cross-dependent
payoffs [16,20], which give zero contribution to V.

In a previous review [16] the reader can find a possible decomposition of the two-strategy bi-matrix games into the linear
combinations of eight orthogonal elementary games. In this notation G(A,B) is described as:

G(A,B) =

8∑
p=1

α(p)g(p), (9)

where the elementary games g(p) are orthogonal to each other, that is, g(p)
·g(q)

= 0, if p ̸= q. For this decomposition there is
only one elementary game (called matching pennies) which prevents the existence of the potential. The matching pennies
game is a zero-sum game given as

g(mp)
=

(
(1, −1) (−1, 1)
(−1, 1) (1, −1)

)
. (10)

Using this expression, a two-strategy bi-matrix game (given by (1) for n = m = 2) is a potential games if it is orthogonal to
g(mp), that is, G(A,B) · g(mp)

= 0. This criterium coincides with the condition (7) derived above.
For the game defined by g(mp) one of the players is always forced to reverse his/her strategy unilaterally that yields a

clockwise circulation along the single four-edge loop (see Fig. 2) if they are allowed to change strategy alternately (or in
randomorder). The effect of this termcanbe interpreted as a driving force of circulationwhichdestroys the detailed balance if
a stochastic logit rule is applied to games on networks. Additionally, this update creates entropy production [19,28]. Anyway,
the matching pennies game has a single mixed Nash equilibrium where the players choose one of the strategy at random
and independent of each other.

In the subsequent section we show that similar features and relationships are inherited for the multistrategy games.
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Fig. 3. The dynamical graph (a) and a possible spanning tree (b) for n = m = 3. In the graph (c) the dashed lines indicate four additional edges while the
dotted circles illustrate the simplest four loops selected. Boxes without labels refer to strategy pairs in the same way as before.

4. Multistrategy bi-matrix games

When extending the previous analysis for the multistrategy games (n,m > 2) then we face a problem related to the
large number of loops in the dynamical graph (see plot (a) in Fig. 1) which are not independent. The emerging difficulties,
however, are reduced by the symmetries occurring in the dynamical graphs, too. Notice, that each subgraph is complete if it
contains the nodes of a row (or column) with the suitable edges. Furthermore, this structure is resembling a square lattice
with periodic boundary conditions and with additional edges between any horizontal or vertical pairs of nodes. These facts
are consistent with the symmetries ensuring that the translation (or permutation) of strategy labels does not change the
possible behaviors in this set of games.

The Kirchhoff laws [37] serve as a theoretical background to overcome these difficulties. Similar difficulties emerge for
the quantitative analysis of electronic circuits. Now we adopt and apply the standard recipe developed to determine the
number of independent loops [27,38] and select suitable ones. Accordingly, the number of independent loops is equivalent
to the number of deleted edges when we reduce the graph to a spanning tree. Elementary calculation gives that the number
of edges of the dynamical graph is nm(n − 1)(m − 1)/2 while the number of edges of the spanning tree is nm − 1.

Fig. 3 compares the dynamical graph and apossible spanning tree forn = m = 3. Themain steps of the sketched algorithm
can trivially be extended to the cases with n,m > 3. The independent loops can be selected via the shortest loop including
one of the missing edges we add when extending the spanning tree step by step. Fig. 3 illustrates how the spanning tree is
extended by four edges and four independent loops, if n = m = 3. In general, for n,m > 3, the same algorithm extends the
spanning tree with (n − 1)(m − 1) new edges and four-edge loops. In fact, these loops define the relevant and independent
set of loops because any other new edges belong to a loop containing nodes within a single row or column. For the latter
cases only one player changes strategy and the sum of his/her payoff variations is zero for each (vertical or horizontal) loop.

For the existence of potential the upper-left four-edge loop in Fig. 3(c) defines a criterium equivalent to those given
by Eq. (7), and similar expressions can be derived for the other relevant and independent four-edge loops. These criteria,
however, can also be expressed via the help of orthogonality, as before. For this goalwe introduce a set of voluntarymatching
pennies games defined by bi-matrices (8) which are extended with (n − 2) rows and (m − 2) columns containing 0s.
Quantitatively, for the voluntary matching pennies games g(vmp)((i, j), (i′, j′)) = g(vmp)((i′, j′), (i, j)) and player x wins 1 from
y for the strategy profiles (i, j) and (i′, j′); the chances are equalized by the strategy pairs (i, j′) and (i′, j) when player y gets 1
from x. For this definitionwe assumed that i < i′ and j < j′. If the order of strategy labels (i ↔ i′ or j ↔ j′) is reversed for one of
the players then their payoffs are exchanged, quantitatively, g(vmp)((i, j′), (i′, j)) = g(vmp)((i′, j), (i, j′)) = −g(vmp)((i, j), (i′, j′)).
For these elementary games the players x and y have (n − 2) and (m − 2) additional options to decline participation. They
receive nothing if (at least) one of them chooses a neutral strategy. To keep the formulas simple, here the parameters n and
m are omitted.

Using this set of elementary games, the existence of the potential can also be expressed by (n − 1)(m − 1) orthogonality
relations:

G(A,B) · g(vmp)((i, j), (i + 1, j + 1)) = 0, (11)

where 1 ≤ i < n and 1 ≤ j < m.We emphasize, that the above orthogonality conditions are restricted to an independent and
complete subset of the voluntary matching pennies games. At the same time it means, that there are many other voluntary
matching-pennies games which can be built up from those used in (11). For example,

g(vmp)((i, j), (i + p, j + q)) =

i+p−1∑
p′=i

j+q−1∑
q′=j

g(vmp)((p′, q′), (p′
+ 1, q′

+ 1)), (12)

where p, q > 1, while i + p < n, j + q < m.
For the independent and complete subset of voluntary matching pennies games defined by Eqs. (11) the strategy pair

(1, 1) plays a distinguished role which can be replaced by any other one (e.g., by (i, j)) for a suitable cyclic permutation
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Fig. 4. The dynamical graph (a) and a spanning tree (b) for n = m = 4. Plot (c) illustrates that adding three vertical edges (illustratedwith dashed lines) can
generate three four-edge loops (dotted lines) including strategy pair (1,1). To avoid confusion the horizontal and vertical loops (related to trivial conditions)
are not shown.

of the labels. By this way one can introduce further independent and complete subsets of voluntary matching pennies
games. Evidently, the permutation of the strategy labels yields further variants. The common features of these subsets
of elementary components is that here the players play voluntary matching pennies games with neighboring strategies
(g(vmp)((i, j), (i + 1, j + 1))).

Following the same recipe one can easily define another subset of voluntary matching pennies games which is consistent
with the orthogonality criteria derived previously for the symmetric games [21]. Fig. 4 summarizes the essence of another
algorithm for n = m = 4. Now, the spanning tree is similar to those used in Fig. 3 and it can be extended with all the
missing horizontal edges in each row without receiving nontrivial conditions. Similarly, the addition of all the missing
vertical edges in the first column yields only trivial conditions. To avoid confusion the additions of these edges are not
denoted in Fig. 4. The additions of the relevant edges (denoted by dashed line in Fig. 4(c)) connect the strategy pairs (1, j)
and (i, j) (1 < i ≤ n and 1 < j ≤ m) giving (n− 1)(m− 1) conditions for the existence of potential along the four-edge loops
(1, 1) → (1, j) → (i, j) → (i, 1) → (1, 1). These conditions are equivalent to the following orthogonality conditions:

G(A,B) · g(vmp)((1, 1), (i, j)) = 0 (13)

for the i and j values given above.
In the light of the above results a bi-matrix game can also be separated into the sum of a potential game G(pot) and a

cyclic component G(cyc) (G(A,B) = G(pot)
+ G(cyc)) in a way that G(pot)

· G(cyc)
= 0 where the cyclic component is the linear

combination of a suitable subset of voluntary matching pennies games. For example,

G(cyc)
=

n∑
i=2

m∑
j=2

α(i, j)g(vmp)((1, 1), (i, j)). (14)

In the next section we discuss the consequences of the above features for the symmetric matrix games where the
cyclic component can be built up as the linear combination of a suitable set of voluntary rock–paper–scissors games. The
comparison forecasts an intimate relationship between the voluntary matching pennies and rock–paper–scissors games.

5. Symmetric multistrategy games

For symmetric games B = AT and n = m, thus the payoffs can be defined by a single payoff matrix A. In these games the
choice of the strategy pair (i, j) provides payoffs Aij and Aji for the first and second players, respectively.

First we emphasize that the criterium (3) is always satisfied for the symmetric two-strategy (n = m = 2) games. This is
the reason why the symmetric two-strategy games are potential games.

According to Eqs. (14), for the symmetric three-strategy (n = m = 3) games potential exists if four criteria are satisfied.
On the contrary, the previous analyses [16,20,21] predicted only one criterium to be satisfied. The apparent contradiction
can be resolved by recognizing that G(A,AT ) · g(vmp)((1, 1), (i, i)) = 0 for each payoff matrix A. In fact, the latter criterium is
a generalized version of the previous one and it is valid for all the symmetric two-strategy subgames when both players are
constrained to use the same two strategies, here 1 or i. This feature is related to the fact that for symmetric games the players
with equivalent strategy (e.g., (i, i)) receive equivalent payoffs (Aii), and the unilateral deviation from this strategy pair yields
a payoff increase Aji − Aii for any one choosing strategy j. The latter feature ensures that two of the four criterium (14) are
satisfied due to the symmetries mentioned. On the other hand, the remaining two criteria coincide and can be replaced by
single one, namely

A12 − A21 + A23 − A32 + A31 − A13 = 0, (15)
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which expresses the orthogonality (A · A(rsp)
= 0) between A and the payoff matrix A(rsp) of the traditional rock–paper–

scissors game.
In the light of the above results it is not surprising that the rock–paper–scissors game can be built up from two three-

strategy voluntary matching pennies games, that is, g(rps)
= g(vmp)((1, 2), (2, 3)) − g(vmp)((2, 1), (3, 2)). The validity of this

relation can be easily checked with using the bi-matrix formalism, that is,

g(rps)
=

( (0, 0) (1, −1) (−1, 1)
(−1, 1) (0, 0) (1, −1)
(1, −1) (−1, 1) (0, 0)

)
=

((0, 0) (1, −1) (−1, 1)
(0, 0) (−1, 1) (1, −1)
(0, 0) (0, 0) (0, 0)

)
−

( (0, 0) (0, 0) (0, 0)
(1, −1) (−1, 1) (0, 0)
(−1, 1) (1, −1) (0, 0)

)
. (16)

Evidently, two other decompositions can be obtained by cyclic permutation of labels. For example, g(rps)
= g(vmp)((2, 3),

(3, 1)) − g(vmp)((3, 2), (1, 3)).
For multistrategy (n = m > 3) symmetric games some of the above features are preserved in a generalized form. For

example,G(A,AT ) ·g(vmp)((i, i), (j, j)) = 0 (1 ≤ i < j ≤ n). The existence of the potential requires additional conditionswhich
may coincide. More precisely, G(A,AT ) · g(vmp)((i, j), (i′, j′)) = −G(A,AT ) · g(vmp)((j, i), (j′, i′)) = 0 in the symmetric potential
games for a matrix A. In order to reduce number of criteria the latter relationships can be exploited if we introduce the
voluntary rock–paper–scissors games. More precisely, the elementary game g(vrsp)(i, j, k) denotes an n-strategy symmetric
game involving a rock–paper–scissors type cyclic dominance among the strategies i, j, and k (1 ≤ i < j < k ≤ n) and (n− 3)
neutral strategies providing zero payoffs for both players as before. In other words, g(vrsp)(i, j, k) can be obtained from g(rps)

(given by Eq. (16) ) by adding (n − 3) suitable rows and columns with pairs of zeros.
Using the voluntary rock–paper–scissors games a potential exists if the game satisfies the following orthogonality

criteria:

G(A,AT ) · g(vrsp)(1, i, j) = 0 (17)

for 1 ≤ i < j ≤ n. Thus, due to symmetry the number of independent orthogonality criteria is reduced to (n − 1)(n − 2)/2
(from (n − 1)2) in agreement with previous results [21]. Additionally, the calculations can be simplified as detailed in the
paper mentioned.

Finally we mention that each voluntary rock–paper–scissors game can also be built up from two voluntary matching
pennies games, as it is illustrated by Eq. (16) for n = 3. Quantitatively,

g(vrps)(i, j, k) = g(vmp)((i, j), (j, k)) − g(vmp)((j, i), (k, j)) (18)

if 1 ≤ i < j < k ≤ n and also for the cyclic permutation of indices i, j, and k.

6. Summary

We have studied the existence potential in bi-matrix games which requires the systematic analysis of the sum of payoff
variation along the loops of the dynamical graph consisting of strategy pairs (nodes) and unilateral changes (edges). The
present graph theoretical approach is based on the standard method developed for the investigation of electronic circuits.
The technical difficulties of this problem is related to the large number of loops to be tested. At the same time the symmetries
of the dynamical graph and also the peculiar features of the games have simplified the solution.

Similar analyses were performed previously for the symmetric n-strategy game. Now the analyses are extended for the
investigation of bi-matrix games. It turned out that the use of themore general bi-matrix formalism simplifies the application
of the method mentioned. Thus we have (n − 1)(m − 1) independent conditions (equations) imposed by the existence of
potential in the bi-matrix games if the two players have n andm strategies. It is found that the corresponding equations are
equivalent to orthogonality criteria between the bi-matrix game and a suitable subset of voluntary matching pennies games
we introduced.

The present results are contrasted with those obtained previously for the symmetric games where the existence of
potential is related to simpler orthogonality conditions between the actual payoff matrix (A) and a suitable subset of payoff
matrices corresponding to the voluntary rock–paper–scissors games. According to the concept of matrix decomposition
a symmetric game can be considered as a sum of a potential game and a cyclic game where the latter one is the linear
combination of an independent subset of voluntary rock–paper–scissors games. In the light of the present results, for the
bi-matrix games similar decomposition exists and here the cyclic components are constructed as a linear combinations of
an independent subset of voluntary matching pennies games.

Symmetric games can be considered as a special case of bi-matrix games (when B = AT ) which implies relevant
relationships between the voluntary rock–paper–scissors and matching pennies games. Now it is found that any voluntary
rock–paper–scissors game can be built up from two suitable voluntary matching pennies games.

Finally we underline the relevance and usefulness of the graph theoretical background we used. For the illustration of
the wide scale of its applicability we have briefly surveyed some results related to the analysis of the pure Nash equilibria
existing for the potential games. It is demonstrated that the corresponding graphs represent clearly the inherent symmetries,
the entanglement of loops, and distinguish the relevant and irrelevant (trivial) loops in the dynamical graphs. Now, these
tools helped us to find different independent and complete sets of the voluntary matching pennies games.
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[15] J. Miȩkisz, Statistical mechanics of spatial evolutionary games, J. Phys. A: Math. Gen. 37 (2004) 9891–9906.
[16] G. Szabó, I. Borsos, Evolutionary potential games on lattices, Phys. Rep. 624 (2016) 1–60.
[17] R. Cressman, Evolutionary Dynamics and Extensive Form Games, MIT Press, Cambridge, MA, 2003.
[18] O. Candogan, I. Menache, A. Ozdaglar, P.A. Parrilo, Flows and decomposition of games: Harmonic and potential games, Math. Oper. Res. 36 (2011)

474–503.
[19] G. Szabó, L. Varga, I. Borsos, Evolutionary matching-pennies game on bipartite regular networks, Phys. Rev. E 89 (2014) 042820.
[20] G. Szabó, K.S. Bodó, B. Allen, M.A. Nowak, Four classes of interactions for evolutionary games, Phys. Rev. E 92 (2015) 022820.
[21] G. Szabó, K.S. Bodó, K.A. Samani, Separation of cyclic and starlike hierarchical dominance in evolutionarymatrix games, Phys. Rev. E 95 (2017) 012320.
[22] G. Szabó, G. Bunth, Social dilemmas in multistrategy evolutionary potential games, Phys. Rev. E 97 (2018) 012305.
[23] J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems, Cambridge University Press, Cambridge, UK, 1988.
[24] M.J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, Cambridge, MA, 1994.
[25] H. Gintis, Game Theory Evolving, Princeton University Press, Princeton, 2000.
[26] J. Nash, Non-cooperative games, Ann. of Math. 54 (1951) 286–295.
[27] F. Harary, R.Z. Norman, D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, New York, 1966.
[28] J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Modern Phys. 48 (1976) 571–585.
[29] M. Dresher, Probability of a pure equilibrium point in n-person games, J. Combin. Theory 8 (1970) 134–145.
[30] W. Stanford, On the number of pure strategy nash equilibria in finite common payoffs games, Econ. Lett. 62 (1999) 29–34.
[31] Y. Rinott, M. Scarsini, On the number of pure strategy nash equilibria in random games, Games Econ. Behav. 33 (2000) 274–293.
[32] S. Takahashi, The number of pure Nash equilibria in a random game with nondecreasing best responses, Games Econ. Behav. 63 (2008) 328–340.
[33] J. Nash, Equilibrium points in n-person games, Proc. Natl. Acad. Sci. USA 36 (1950) 48–49.
[34] B. Bollobás, Modern Graph Theory, Springer, New York, 1998.
[35] J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag, London, 2009.
[36] R.B. Bapat, Graphs and Matrices, Springer-Verlag, London, 2014.
[37] G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanisher Ströme gefürt wird,

Annu. Rev. Phys. Chem. 72 (1847) 497–508.
[38] T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi, T. Ueckerdt, K.A. Zweig, Cyclic bases in graphs characterization, algorithms, complexity, and

applications, Comp. Sci. Rev. 3 (2009) 199–243.

http://refhub.elsevier.com/S0378-4371(19)30070-6/sb1
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb2
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb3
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb4
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb5
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb6
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb7
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb8
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb9
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb10
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb11
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb12
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb12
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb12
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb13
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb14
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb15
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb16
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb17
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb18
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb18
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb18
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb19
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb20
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb21
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb22
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb23
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb24
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb25
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb26
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb27
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb28
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb29
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb30
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb31
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb32
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb33
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb34
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb35
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb36
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb37
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb37
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb37
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb38
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb38
http://refhub.elsevier.com/S0378-4371(19)30070-6/sb38

	Games, graphs and Kirchhoff laws
	Introduction
	Basic concepts of bi-matrix games
	Existence of potential for two-strategy games
	Multistrategy bi-matrix games
	Symmetric multistrategy games
	Summary
	Acknowledgment
	References


