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H I G H L I G H T S
c Spatial evolutionary games are extended by fraternity.
c Behaviors are explored by numerical simulations and stability analysis.
c Coexistence of fraternity and selfishness is demonstrated.
c Role-separating spatial patterns can promote cooperation.
a r t i c l e i n f o

Article history:

Received 17 August 2012

Received in revised form

6 October 2012

Accepted 8 October 2012
Available online 16 October 2012

Keywords:

Evolutionary games

Social dilemmas

Egoism

Fraternity
93/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.jtbi.2012.10.014

esponding author. Tel./fax: þ36 1 3922678.

ail address: szabo@mfa.kfki.hu (G. Szabó).
a b s t r a c t

We have studied an evolutionary game with spatially arranged players who can choose one of the two

strategies (named cooperation and defection for social dilemmas) when playing with their neighbors. In

addition to the application of the usual strategies in the present model the players are also

characterized by one of the two extreme personal features representing the egoist or fraternal

behavior. During the evolution each player can modify both her own strategy and/or personal feature

via a myopic update process in order to improve her utility. The results of numerical simulations and

stability analysis are summarized in phase diagrams representing a wide scale of spatially ordered

distribution of strategies and personal features when varying the payoff parameters. In most of the

cases only two of the four possible options prevail and may form sublattice ordered spatial structure.

The evolutionary advantage of the fraternal attitude is demonstrated within a large range of payoff

parameters including the region of prisoner’s dilemma where egoist defectors and fraternal cooperators

form a role-separating chessboard like pattern.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-agent game theoretical models give us a general math-
ematical tool to describe real-life situations in human societies
and to study biological systems when varying the interactions,
evolutionary rules, and connectivity structure among the players
(Maynard Smith, 1982; Nowak, 2006a; Sigmund, 2010; Pacheco
et al., 2008). In many cases the interactions are approximated by
the sum of pair interactions between neighboring (equivalent)
players distributed on the sites of a lattice or graph (for a survey
see Nowak and May, 1993; Szabó and Fáth, 2007; Perc and
Szolnoki, 2010). The simplest spatial versions of two-strategy
games have demonstrated new outcomes of evolutionary process,
which are missing if well-mixed players are postulated.

To give an example, the most exhaustively studied symmetric
two-person two-strategy game is the so-called Prisoner’s Dilemma
ll rights reserved.
(PD) game where the equivalent players can choose cooperation or
defection. For mutual cooperation (defection) both players receive
a payoff R (P) while for their opposite decisions the cooperator
(defector) gains S (T). For the PD game the payoffs satisfy the
conditions: SoPoRoT , that enforces both selfish players to
choose defection (representing the state called the ‘‘tragedy of
the commons’’, Hardin, 1968) meanwhile the mutual cooperation
would be more beneficial for the players. Being trapped in the
state of mutual defection is in stark contrast to our everyday
experience of high level of cooperation. To resolve this discrepancy
several cooperation supporting conditions and mechanisms were
identified (Nowak, 2006b; Pacheco et al., 2006a; Fu et al., 2009,
2012; Poncela et al., 2009; Pacheco et al., 2006b; Tomassini et al.,
2010; Gómez-Gardeñes et al., 2008; Fort, 2008; Perc, 2011; Vukov
et al., 2011; Pinheiro et al., 2012). Alternative ways to explain the
emergence of cooperation are originated from the observation that
humans follow more complex behavior that cannot be well
described by simple unconditional cooperator and defector acts.
Human experiments (Fehr and Falk, 2002; Camerer, 2003; Nowak,
2006a; Sigmund, 2010; Traulsen et al., 2010) highlighted that
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individuals possess different personal features or emotions (Szolnoki
et al., 2011), e.g., selfish (von Neumann and Morgenstern, 1944),
altruistic (Sigmund et al., 2002), fraternal (Scheuring, 2010; Szabó
and Szolnoki, 2011), punishing (Clutton-Brock and Parker, 1995;
Fehr and Gächter, 2002; Kurzban and Houser, 2005), reciprocative
(Berg et al., 1995), envy (Garay and Mori, 2011; Szolnoki et al.,
2011), just to name a few examples. Following this avenue, now we
introduce a spatial model where players are not limited to the use of
the pure cooperator and defector strategies but they are also
motivated by an additional personal feature characterizing their
egoist or fraternal attitude. Accordingly, the present work gener-
alizes and extends previous specific efforts about the consequences
of collective decisions (Szabó et al., 2010) and other-regarding
preferences for a uniform level of fraternal behavior (Szabó and
Szolnoki, 2011). Here it is worth mentioning that the fraternal
behavior can prevent the society from falling into the ‘‘tragedy of
commons’’ state. Consequently, the advantage of the fraternal
behavior can be interpreted as an evolutionary driving force
supporting societies to maintain/develop the altruistic personal
features. Studying the present model we wish to explore the
consequences of the spatial competition (evolutionary process)
between the above described strategy profiles. It is emphasized,
furthermore, that for the quantum games (Abal et al., 2008; Li et al.,
2011) the players exhibit a behavior similar to those played by
fraternal players.

For the sake of comparison the present analysis is also
performed for all 2�2 social dilemmas games [including PD,
Hawk-Dove (HD) and Stag-Hunt (SH) games] when varying the
values of T and S (for R¼1 and P¼0 without loss of generality).
Finally we mention that the present four-strategy model is
analogous to those cases when the spatial social dilemmas are
studied by considering voluntary participation (Szabó and Hauert,
2002), punishments (Rand et al., 2009; Sekiguchi and Nakamaru,
2009; Helbing et al., 2010), and the use of sophisticated strategies
like Tit-for-tat (Nowak and Sigmund, 1992) or others (Ohtsuki,
2004; Ohtsuki and Iwasa, 2006; Rand et al., 2009).

Due to the biological motivations (Maynard Smith, 1982) in the
early evolutionary games the time-dependence of the strategy
distribution is controlled by the imitation of a better performing
neighbor. In human societies, however, we can assume more
intelligent players who are capable to evaluate their fictitious
payoff variation when modifying strategy (Sysi-Aho et al., 2005;
Szabó and Fáth, 2007). The corresponding so-called myopic evolu-
tionary rule is analogous to the Glauber (1963) dynamics used
frequently in the investigation of stationary states and dynamical
processes for the kinetic Ising model (Binder and Hermann, 1988).
In biological systems the latter mechanism can be interpreted as
the survival of possible mutants with a probability increasing with
the current fitness. Contrary to the imitation of a neighbor, the
mentioned myopic dynamical rule permits the formation of sub-
lattice ordered distribution of strategies (and/or personalities)
resembling the anti-ferromagnetic structure in the Ising systems.
For the case of spatial PD the chessboard like arrangement of
cooperators and defectors is favored if TþS42R. This latter
criterion coincides with those one when the players have the
highest average income in the repeated two-person PD game if
they alternate cooperation and defection in opposite phase.

It will be demonstrated that the present model exhibits
different disordered and sublattice ordered spatial arrangements
as well as phase transitions when varying the payoff parameters
for several fixed levels of noise. It means that in contrary to
preliminary/naive expectation the fraternal players may survive
in the presence of egoist competitors.

The rest of this paper is organized as follows. First, we describe
our four-strategy lattice model. The results of Monte Carlo (MC)
simulations at a fixed noise level are detailed in Section 3 while
phase diagram in the low noise limit are discussed in Section 4.
This diagram can be obtained by means of stability analysis of the
possible two-strategy phases against the point defects. The
essence of this method and an analytical estimation for the
direction of interfacial invasion between the mentioned phases
are briefly described in Section 5. Finally, we summarize our main
finding and discuss their implications.
2. The model

In the present model the players are located on the sites of a
square lattice with L� L sites. The undesired effects of boundaries
are eliminated by using periodic boundary conditions in the
simulations. At each site x four types of players are distinguished,
namely, sx¼De, Ce, Df, and Cf. In our notation De and Ce refer to
egoist defector and cooperator while Df and Cf denote fraternal
defector and cooperator for the PD games. For other types of
games (e.g., HD or SH) we will use the above mentioned
abbreviations of types that we call strategies henceforth. In the
mathematical formulation of utilities these strategies are denoted
by the following unit vectors:

De ¼

1

0

0

0

0
BBB@

1
CCCA, Ce ¼

0

1

0

0

0
BBB@

1
CCCA, Df ¼

0

0

1

0

0
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1
CCCA, Cf ¼

0

0

0

1

0
BBB@

1
CCCA: ð1Þ

The utility UðsxÞ of the player x (with a strategy sx) comes from
games with her four nearest neighbors and can be expressed by
the following sum of matrix products:

UðsxÞ ¼
X
d

sx � Asxþd: ð2Þ

Here the summation runs over the four nearest neighboring sites
of x and the payoff matrix A is given as

A¼

0 T 0 T

S 1 S 1

0 s 0 s
s 1 s 1

0
BBB@

1
CCCA, ð3Þ

where s¼ ðTþSÞ=2. The matrix elements in the upper-left 2�2
block of the whole payoff matrix define the payoffs between egoist
players (De and Ce). The present notation is adopted from the
literature of social dilemmas where T refers to ‘‘temptation to
choose defection’’, S is abbreviation of ‘‘ sucker’s payoff’’, the
‘‘punishment for mutual defection’’ is chosen to be zero (i.e.,
P¼0), and the ‘‘reward for mutual cooperation’’ is set R¼1 for a
suitable unit. In contrary to the egoist individuals the fraternal
players revalue their payoffs by assuming equal sharing of the
common income. In other words, the fraternal players wish to
maximize their common income therefore their utility is expressed
by a partnership game (Hofbauer and Sigmund, 1998) represented
by the lower-right 2�2 block of the payoff matrix (3). It is
emphasized that the utility of a given player is based on her own
character and is independent of the personal feature (egoist or
fraternal) of the co-players. Notice, furthermore, that for the
present symmetric game the pair of egoist and fraternal players
have the same utility (1 or 0) if both follow the same strategy
(cooperation or defection).

The main advantage of the present approach is that we have
only two payoff parameters (T and S) when studying the competi-
tion between the egoist and fraternal players. Further advantage
of this parametrization is that the spatial evolutionary game with
only egoist (or fraternal) players were already studied for myopic
strategy update at arbitrary payoffs (Szabó et al., 2010; Szabó and
Szolnoki, 2011) and the results will serve as references for later
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comparisons. Accordingly, in each elementary step we choose a
player x at random and her strategy is changed from sx to s0x
(chosen at random, too) with a probability

Wðsx-s0xÞ ¼
1

1þexp½ðUðsxÞ�Uðs0xÞÞ=K�
, ð4Þ

where K describes the noise amplitude disturbing the players to
achieve their optimum utility. It is worth noting that not only the
‘‘best myopic response’’ is allowed according to the suggested
strategy update protocol. Less favorable changes, with smaller
probability, are also possible. This freedom of microscopic
dynamics makes possible to avoid frozen states implied in an
early work of Sysi-Aho et al. (2005). The iteration of these
elementary steps drives the system from any initial state to a
final stationary one that is characterized by its own spatial
structure and by the strategy frequencies.

To characterize the wide scale of ordered states we introduced
four sublattices (with representative sites forming a 2�2 block)
as it is used in the investigation of several Ising models previously
(Binder and Landau, 1980). In the stationary state the average
strategy frequencies are determined in each sublattices. Both the
quantitative analysis and the visualization of the spatial strategy
distributions have justified, however, that the behavior of the
present system can be well described by a simpler, two-sublattice
formalism we use henceforth. More precisely, the square lattice is
divided into two sublattices (resembling the chessboard like
distinction of sites), a¼ 1 and 2, and the spatial distribution is
described by the strategy frequencies ra,s (s¼De,Ce,Df , and Cf) in
both sublattices. Evidently,

P
sra,s ¼ 1 for a¼ 1,2. For later con-

venience in several plots the emerging ordered phase is also
characterized by the sum of the total frequencies of two strate-
gies, for example, nðCeþCf Þ ¼

P
aðra,Ceþra,Cf Þ=2 denotes the aver-

age frequency of Ce and Cf strategies in the whole system.
The quantitative analysis has justified that all the possible

two-strategy subsystems will play relevant role in the stationary
behavior of this system. Two possible subsystems, when only
egoist (sx ¼De,Ce) or fraternal (sx ¼Df ,Cf ) strategies are per-
mitted, have already been mentioned above (Szabó and
Szolnoki, 2011). In addition we have two trivial cases, when only
cooperative (more precisely sx ¼ Ce,Cf ) or defective (sx ¼De,Df )
strategies are permitted in the system. In both cases the players
get the same utility independently of the local arrangement of
personal features. Consequently, the ‘‘cooperative’’ (or ‘‘defec-
tive’’) strategies can coexist in a random, time-dependent
structure resembling the high noise limit (K-1) for any pair of
strategies. For the other two possibilities (sx ¼De,Cf or sx ¼ Ce,Df )
the corresponding subsystem can be mapped into the case
of egoist players with a suitable transformation of payoff
parameters.
Fig. 1. Typical (40�40) snapshots of strategy distributions in the stationary states

for S¼1.5 and K¼0.25 if T¼0.3 (a), 1.0 (b), 1.5 (c), and 2.2 (d). The strategy colors

are indicated at the top. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)
3. Monte Carlo results

The present model is systematically analyzed by MC simula-
tions when varying the payoff parameters (T and S) for a fixed
noise level, K¼0.25. During the simulations we have determined
the strategy frequencies in both sublattices (ra,s) and the average
payoff per capita in the final stationary state. The system size is
varied from L¼400 to 2000 in order to have sufficiently accurate
statistical data (the statistical errors are comparable to the line
thickness). The larger system sizes are used when approaching
the critical transitions belonging to the Ising universality class
(Szabó et al., 2010). Simultaneously, the undesired effects of the
divergency of relaxation time and of the fluctuation (multiplied
by the system size) at the critical points (Stanley, 1971) are
reduced by the increase of sampling and thermalization time
from ts ¼ tth ¼ 104
2106 MCS (1 MCS¼L� L elementary steps

described above) when approaching the transition points. As a
result, our numerical data exhibit smooth variation even in the
vicinity of the critical points.

If the system is started from a random initial state, then one
can observe growing domains yielding the above mentioned
sublattice ordered arrangement of strategies. The general features
of this phenomenon is already well described in the literature of
ordering process (for a survey see Bray, 1994). As the typical size l

of domains grows algebraically with the time (more precisely,
lpt1=2) therefore we need extremely long relaxation time to
approach the final (mono-domain) ordered structure for large
sizes. The latter difficulty is avoided by starting the consecutive
simulations from a prepared, partially ordered initial states whose
symmetry agrees with those of the final stationary state.

First we illustrate the variation of strategy distributions by
four snapshots obtained for different values of T at fixed values of
S and noise K. The first snapshot (at T¼0.3, S¼1.5, and K¼0.25) of
Fig. 1 shows a random distribution of Ce and Cf strategies
decorated rarely with the presence of Df strategy. For these payoff
values rDf-0 in the zero noise limit. In snapshot b of Fig. 1 (T¼1)
one can observe a sublattice ordered arrangement of Ce and Df

strategies with a low frequency of point defects. Surprisingly, for a
significantly higher value of T (see snapshot d) the simulations
have indicated another sublattice ordered arrangement composed
of De and Cf strategies. The transition between the latter two
patterns is continuous as represented by snapshot c where locally
both types of the ordered structures are recognizable. It is more
interesting, however, that within the intermediate region Cf

strategy is replaced for Ce within one of the sublattices and
simultaneously the players with strategy Df (in the complemen-
tary sublattice) modify their strategy to De. In other words,
a sublattice ordered structure is present permanently meanwhile
the strategy composition varies smoothly in both sublattices.
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The above mentioned process is quantified by an appropriate
combination of strategy frequencies (e.g., nðDeþCf Þ) as illustrated
in Fig. 2 when increasing the value of T. At the top of this figure
the positions of the labels a, b, c, and d indicate the value of T for
which the strategy distributions are shown in the corresponding
snapshots of Fig. 1. The consecutive states and transitions are
demonstrated by the sum of the frequency of Ce and Cf strategies
in both sublattices (ra,Ceþra,Cf ) as a function of T for a fixed S and
noise level. These curves illustrate clearly the sublattice ordering
in the arrangement of strategies if T exceeds a threshold value Tc

(indicated by the left-hand vertical arrow in Fig. 2) dependent on
K and S. Notice that these quantities do not indicate the transition
that becomes visible when plotting the total frequency of De and
Cf [denoted as nðDeþCf Þ] strategies as well as nðDf þCeÞ. The
quantities nðDeþCf Þ and nðDf þCeÞ approach 1 if the two given
strategies (namely a cooperative and a defective strategy) form a
chessboard like pattern. The right-hand arrow in Fig. 2 shows the
value of T where nðDf þCeÞ becomes larger than nðDeþCf Þ. Within
the coexistence region (at a finite K value) the cooperative (Ce and
Cf) as well as the defective (De and Df) strategies are located
within the same sublattice.

The above analysis is repeated for other values of S at the same
value of noise. The results are summarized in Fig. 3 where the
solid lines illustrate the frequency of Ce and Cf strategies in the
absence of sublattice ordering (that is, when r1,Ceþr1,Cf ¼

r2,Ceþr2,Cf ) meanwhile the dashed lines show the cases of
r1,Ceþr1,Cf 4r2,Ceþr2,Cf . For the latter curves the prevalence of
De and Cf (or Df and Ce) strategies are indicated by the variation of
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colors. More precisely, different (green and blue) dashed lines are
used to distinguish the cases of r1,Ce4r1,Cf from the reversed
relation. The readers can observe similar series of transitions in
Fig. 2 if T41.

For �1oSo1 the numerical analysis shows only one transi-
tion from the well-mixed state of the Ce and Cf strategies
[r1,Ce ¼ r2,Ce ¼ r1,Cf ¼ r2,Cf ¼1/2] to a sublattice ordered phase
where r1,Cf and r2,De goes to 1 when T is increased from 0 to 3.
A third type of transition scenario can be observed in Fig. 3 in the
zero noise limit if So�1. In the latter case the high level of
cooperation drops suddenly to a low level state at a threshold
value of T increasing linearly with S. For the latter state De and Df

strategies form a well-mixed spatial arrangement. The further
increase in T, however, yields a continuous increase in r1,Cf ¼ r2,Cf

and above a second threshold value of T the system transforms
into a sublattice ordered state where r1,Cf and r2,De approaches
1 in the large T limit.

All the above mentioned continuous phase transitions consist
of two consecutive phenomena when T is increased. First the level
of cooperation approaches 1/2 and afterward the sublattice
ordered structures are built up on the analogy of anti-
ferromagnetic ordering belonging to the Ising universality class
(Stanley, 1971). The effect of noise level (K) is also studied for
several values of parameters. It is found that the width of
transition regions is proportional to K in both sides of the critical
transition point. Consequently, the K dependence of the above
mentioned phases disappear in the zero noise limit and this fact
allows us to determine the phase diagram with the use of a
simple stability analysis as detailed in Section 5.
4. Phase diagram in the low noise limit

Before discussing the above results in the zero noise limit
(K-0) we briefly survey some general features of this model if
only two strategies are permitted. The simplest behavior can be
observed when all the players are fraternal. In the latter case Cf

strategies prevail the whole system if TþSo2 while the Df and
Cf strategies form a chessboard like structure in the opposite case
(TþS42). For both structures the system achieves the maximum
average payoff, that is, the fraternal players eliminate the
dilemma (Szabó and Szolnoki, 2011).

On the contrary, if all the players are egoist then the strategies
De and Ce form a chessboard like (sublattice ordered) pattern
(i.e., r1,De ¼ 1 and r2,Ce ¼ 1) when T41 and S40, otherwise the
cooperators (r1,Ce ¼ r2,Ce ¼ 1 if To1 and S4T�1) or the defectors
(r1,De ¼ r2,De ¼ 1 if So0 and SoT�1) form a homogeneous
structure (Szabó and Szolnoki, 2011). The above results are
summarized in Fig. 4b and c, where the colored patterns illustrate
the spatial distribution of strategies in the zero noise limit
meanwhile the first plot a indicates the possible Nash equilibria
on the four segments of the T–S parameter plane for the tradi-
tional two-person one-shot games. Here it is worth mentioning
that the terminology of the defective and cooperative strategies is
not adequate within the region of Harmony game.

In the presence of all the four strategies the phase diagram
changes drastically for the zero noise limit as indicated in Fig. 4d
where the corresponding phase boundaries are consistent with
the results of the analytical stability analysis detailed in the
following section. Here one can observe four two-strategy phases
that are missing when only egoist or fraternal behaviors are
permitted (compare the plot d with b or c). It means, at the same
time, that the so-called egoist and fraternal players coexist with
equal portion in all the four phases. The coexistence of Ce and Cf

(as well as De and Df) strategies in a random time-dependent
structure is a direct consequence of the equal payoff they receive
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within the given structures. It is more important, however, that
the boundary separating the well-mixed CeþCf and DeþDf

phases is shifted downward (compare the plots c and d in
Fig. 4) due to the presence of fraternal players. The latter positive
effect of the fraternalism on the elimination of the tragedy of the
commons can also be observed in the downward shift (and
rotation) of the other phase boundary (for T41) limiting the
territory where only De and Df strategies can survive.

In the four-strategy phase diagram (see Fig. 4d) there is
another striking result. Namely, we have found two twofold
degenerated sublattice ordered structures that are different from
those plotted in Fig. 4b and c. For both structures the egoist
players achieve the higher utility, that is, they exploit the
fraternal individuals by choosing a suitable option. Within the
upper region (S4T and TþS42) Df and Ce strategies build up a
chessboard like structure, while in the right-hand region (T41,
SoT, and S4�T) the De and Cf players form a similar stable long
range ordered spatial arrangement. This coexistence of the De and
Cf strategies, however, cannot be maintained if the sucker’s payoff
becomes less than a threshold value, namely, if So�T .
Fig. 5. In the sublattice ordered arrangements of the De and Cf strategies (focal

plot) six types of point defects can be created as demonstrated by the surrounding

patterns.
5. Stability analysis

The above mentioned analytical expressions of the phase
boundaries can be derived by studying the stability of the ordered
strategy arrangements against the consecutive creation of differ-
ent point defects in the low noise limit. This method proved to be
efficient for the investigation of a similar two-strategy system
studied in a previous paper (Szabó and Szolnoki, 2011). Now we
briefly survey the extended version of this approach by
considering what happens when we create different point defects
in the chessboard like arrangement of the De and Cf strategies as
illustrated in Fig. 5.

First we study the case when a Cf strategy is substituted for
one of the De strategy in the sublattice ordered structure of De and
Cf. For the present dynamical rule the given player favors this
strategy change if it is beneficial for her, namely, if UðDeÞ ¼

4ToUðCf Þ ¼ 4, where UðDeÞ and UðCf Þ denotes the utility of the
given player in the initial and final constellation. The iteration of
this elementary step (for any other De players) drives the system
into the homogeneous state where sx ¼ Cf 8x if To1, because the
consecutive changes are performed in one of the sublattices and
do not influence each other. Conversely, in the homogeneous
state of Cf the players of sublattice 1 favor the De strategy if T41
and the iteration of these elementary steps yields the chessboard
like structure (see the focal plot of the Fig. 5) where r1,Cf ¼

r2,De ¼ 1. Evidently, if players in the other sublattice (a¼ 2) are
allowed to modify their strategy then the system evolves into the
so-called anti-chessboard like structure (r2,Cf ¼ r1,De ¼ 1). If any
player can modify her strategy then the iteration of the individual
strategy changes yields a poly-domain structure of the two
equivalent ordered patterns. In the presence of noise, however,
this poly-domain structure evolves into one of the long range
ordered ones through a domain growing process (Bray, 1994).

Consequently, a limited segment of the line T¼1 can be
considered as a phase boundary separating the sublattice ordered
arrangement of the De and Cf strategies from the well-mixed state
of Ce and Cf players in the T2S plane. The lower segment of this
phase boundary is derived by studying what happens in the latter
sublattice ordered strategy arrangement (DeþCf ) if De and/or Df

strategies are substituted for the Cfs in a way described above. The
similar analysis gives another phase boundary (S¼�T , for T41)
separating the sublattice ordered structure of the De and Cf

strategies from the region of ‘‘the tragedy of the commons’’ where
only the defective De and Df players are present.

We do not wish to discuss all the possible cases we studied.
It is worth mentioning, however, that a similar stability analysis
of the sublattice ordered structure of the Df and Ce strategies
against the substitution of Ce or Cf for Df gives the third phase
boundary (S¼ 2�T for To1) mentioned above. Up to now we
have discussed the derivation of three phase boundaries exhibit-
ing a common feature. Namely, if these boundaries are crossed by
increasing T, we can observe similar symmetry breaking. More
precisely, a random structure transforms into a sublattice ordered
one. For low noises these transitions exhibit similar features
characterizing the Ising universality class. Deviations from this



Fig. 6. Two elementary steps playing determinant role in the evolution of inter-

face separating the gray and white phases.
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general behavior can occur in the vicinity of the tricritical points
(T¼1 and S¼1 or S¼�1) as well as for high levels of noise when all
the four strategies are present with sufficiently large probabilities.

The phase boundary S¼T (T41) is curious. Along this line the
straightforward application of the above stability analysis pre-
dicts the appearance of metastable states. For example, in the
sublattice ordered arrangement of the De and Cf strategies (see the
focal plot of Fig. 5) the random substitution of Df for De is favored
if S4T and the iteration of this process results in another
sublattice ordered pattern where r1,Cf ¼ r2,Df ¼ 1. The latter
structure, however, is unstable against the strategy change from
Cf to Ce. This means that the transition from the sublattice ordered
structure of the DeþCf strategies to the Df þCe is performed via
the formation of a metastable state if T decreased. The story does
not ends here, because in the opposite direction (when T is
increased) the transformation is mediated by the formation of
another metastable phase where the Ce and De strategies form a
chessboard like structure. The domains of these metastable
structures are recognizable in the snapshot Fig. 1c.

The determination of the phase boundary within the region of
the Stag-Hunt game requires a completely different approach
because here the previous stability analysis predicts two stable
phases. Namely, in the well-mixed structure of the defective (De

and Df) strategies the present dynamical rule does not support the
creation of a solitary cooperator (Ce or Cf). Similarly, the creation
of a solitary defector (De or Df) is also prohibited in the random
distribution of the Ce and Cf strategies in the low noise limit. The
situation is analogous to case described well by the ferromagnetic
Ising model. In the absence of an external magnetic field the
ferromagnetic system exhibits growing domains of the two stable
structures. During this process the most relevant two elementary
steps (see Fig. 6) are executed at random and yield a slow domain
growth in the absence of the external magnetic field. In the
presence of the external magnetic field, however, one of these two
steps is preferred and one can observe an invasion process whose
direction is determined by the variation of total energy. On the
analogy of the above mentioned picture we assume that the white
area in Fig. 6 is filled by Ce and Cf strategies at random and De and
Df strategies are located on the sites of the gray territory. In that
case the average utility at the defective x site can be given as
/UdðxÞS¼ Tþs meantime the average utility at the cooperative y

site is /UcðyÞS¼ 2þSþs. If /UdðxÞS4/UcðyÞS then the (gray)
territory of defectors expands and finally the system evolves into
the well-mixed state of the De and Df strategies. In the opposite
case the cooperative (Ce and Cf) strategies will invade the whole
system. In short, this simple picture predicts a phase boundary
S¼ T�2 (To0) in the S2T plane in agreement with a numerical
results. Evidently, the present scenario requires the creation of a
nucleon (with two opposite steps) along the straight line inter-
faces via the noisy effects.

Interestingly, the above criterion of the selection of the
winning phase coincides with the prediction of risk dominance
introduced by Harsanyi and Selten (1988). When applying the
suggestion of the risk dominance for the symmetric games we
assume that the players know nothing about which strategy the
opponent(s) will choose. In that case the possible opponent’s
strategies are assumed to be chosen with equal probabilities and
in the spirit of risk dominance the players favor the choice
providing the higher income. Players x and y (in the upper plot
of Fig. 6) are testing the incomes under the same conditions and
the favored choice determines the direction of invasion.
6. Summary

In order to study the spatial competition between the fraternal
and egoist players in the social dilemmas we have introduced a
four-strategy evolutionary game where the utilities are related to
the two traditional parameters of the two-strategy games by
revaluating the utilities with respect to their own personality. The
evolution of strategy distribution is governed by a (Glauber type)
myopic strategy update allowing the choice of any other strate-
gies (involving changes in personality) with a probability depen-
dent on the variation of the utility between the initial and final
choice. This multi-agent model is analyzed by MC simulations on
a square lattice for a low noise level. The resultant behavior in the
final stationary state could be well reproduced by a simple
stability analysis in the low noise limit.

The above investigations have justified that the present system
evolves into one of the four two-strategy phases where the egoist
and fraternal players coexist by forming either ordered or dis-
ordered spatial strategy distributions in the low noise limit. It is
more important, however, that the presence of fraternal players
has shrunk the territory of ‘‘the tragedy of the commons’’. The
latter result can be interpreted as a consequence of the evolu-
tionary processes favoring the coexistence of the selfish (or
exploiting) players with the fraternal ones who make a sacrifice
for the survival of cooperation.
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