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a b s t r a c t

Spatial evolutionary games are studied with myopic players whose payoff interest, as a personal

character, is tuned from selfishness to other-regarding preference via fraternity. The players are located

on a square lattice and collect income from symmetric two-person two-strategy (called cooperation

and defection) games with their nearest neighbors. During the elementary steps of evolution a

randomly chosen player modifies her strategy in order to maximize stochastically her utility function

composed from her own and the co-players’ income with weight factors 1�Q and Q. These models are

studied within a wide range of payoff parameters using Monte Carlo simulations for noisy strategy

updates and by spatial stability analysis in the low noise limit. For fraternal players (Q¼1/2) the system

evolves into ordered arrangements of strategies in the low noise limit in a way providing optimum

payoff for the whole society. Dominance of defectors, representing the ‘‘tragedy of the commons’’, is

found within the regions of prisoner’s dilemma and stag hunt game for selfish players ðQ ¼ 0Þ. Due to

the symmetry in the effective utility function the system exhibits similar behavior even for Q¼1 that

can be interpreted as the ‘‘lovers’ dilemma’’.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The evolutionary game theory has been evolving and expand-
ing progressively in the last years due to the emergent experi-
mental facts and the deeper understanding of models developed
(for a survey see the books by Nowak, 2006; Sigmund, 2010, and
reviews by Szabó and Fáth, 2007; Perc and Szolnoki, 2010). In the
last decades huge efforts are focused on the emergence of coop-
erative behavior because of its importance in many human and
biological systems (Camerer, 2003; Gintis, 2010). In the first multi-
agent evolutionary systems the repeated interaction is described
by the payoff matrix of traditional game theory (von Neumann
and Morgenstern, 1944) and the evolution is governed by a dyna-
mical rule resembling the Darwinian selection (Maynard Smith,
1982). The systematic investigations have explored the relevance
of the games itself (as interactions including the set of strategies),
the connectivity structure, and also the dynamical rule. Recently,
the co-evolutionary games have extended the original frontiers of
evolutionary games by introducing additional (personal) features
and complex dynamical rules allowing the simultaneous time-
dependence in each ingredient of the mathematical model. The
possible personal character of players can be enhanced further in a
ll rights reserved.
way to postulate players who consider not just their own payoffs
but also the neighbors’ income.

To elaborate this possibility we will study the social dilemmas
with players located on a square lattice and collect income from
2�2 games played with all their nearest neighbors. Now, it is
assumed that the myopic players wish to maximize their own utility
function when they adopt another possible strategy. Throughout
this utility function the players combine the self-interest with the
other-regarding preference in a tunable way. Besides it, the applied
strategy adoption rule involves some noise (characterizing fluctua-
tions in payoffs, mistakes and/or personal freedom in the decision)
that helps the system evolve towards the final stationary state via a
spatial ordering process.

The present work was motivated by our previous study con-
sidering the consequence of pairwise collective strategy updates in a
similar model (Szabó et al., 2010). It turned out that the frequency of
cooperators is increased significantly in the case of prisoner’s
dilemma (PD) when two randomly chosen players favors a new
strategy pair if it increases the sum of their individual payoff. The
latter strategy update can be interpreted as a spatial extension of
cooperative games where players can form coalitions to enhance the
group income. Some aspects of the other-regarding preference is
modelled very recently by Wang et al. (2011) who studied a spatial
evolutionary PD game with synchronized stochastic imitation. On
the other hand, the experimental investigations of the human and
animal behavior (Flood, 1958; Milinski et al., 1997; Fehr and
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Gächter, 2002; Fehr and Fischbacher, 2003) have also indicated the
presence of different types of mutual helps (Mitteldorf and Wilson,
2000), like charity (Li et al., 2010), inequality aversion (Fehr and
Schmidt, 1999; Bolton and Ockenfels, 2000, 2006; Scheuring,
2010b,a; Xianyu, 2010), and juvenile–adult interactions (Lion, 2009).

The above-mentioned relevant improvement in the level of
cooperation has inspired us to quantify the effect of the group size
and the number of players choosing new strategies simulta-
neously. From a series of numerical investigations we could draw
a general picture that can be well exemplified with the present
simpler model. More precisely, the most relevant improvement is
achieved for those cases where each myopic player has taken into
consideration all of her neighbor’s payoff together with her own
payoff with equal weight when selecting a new strategy. Now we
will study a more general model where the utility function of
each player is combined from her own payoff and her co-players’
payoff with weight factors (1�Q) and Q. In this notation Q¼0
represents a selfish myopic player who wish to maximize her own
personal income irrespective of others. The fraternal players with
Q¼1/2 favor to optimize the income (redistributed and) shared
equally between each pair when choosing another strategy. The
present model allows us to investigate the effect of other-regard-
ing preference in spatial models for different levels of altruism
(Q). For the most altruistic case (Q¼1) the players wish to
maximize the co-players’ income and the system behavior also
exhibits a state resembling the ‘‘tragedy of the commons’’ that
can be interpreted as the ‘‘lovers’ dilemma’’.

It is emphasized that the resultant formalism (payoff matrix)
of the other-regarding preference was already investigated by
Taylor and Nowak (2007) as a model to capture the kin- and
group-selection mechanisms (Taylor and Nowak, 2006; Wild and
Traulsen, 2007). The origin of the basic idea goes back to the work
of Maynard Smith (1982) and Grafen (1979) who studied animal
behaviors between relatives. The present work can be considered
as a continuation of the mentioned investigations. Now our
attention will be focused on the consequences of structured
population for a myopic strategy update.

Using the terminology of social dilemmas (Dawes, 1980; Santos
et al., 2006; Roca et al., 2009) the above-mentioned model with a
stochastic myopic strategy update is defined and contrasted with
other versions in the following section. The results of Monte Carlo
(MC) simulations are summarized in Section 3 for a finite noise level.
Section 4 is addressed to the spatial stability analysis in the zero
noise limit and the main results are discussed in the final section.
2. Model

2.1. Brief overview

The possible solutions of the two-person, two-strategy evolution-
ary games depend on the details including the spatial structure, the
range of interactions, the payoffs, the dynamical rule(s), the payoffs,
and the measure of noise (Szabó and Fáth, 2007; Roca et al., 2009;
Chen and Wang, 2009; Perc, 2009; Liu et al., 2010; Dai et al., 2010;
Rong et al., 2010). Before specifying the presently studied model
accurately we briefly survey the main features of these solutions.

We consider a simple model with players located on the sites x

of a square lattice (consisting of L� L sites with periodic boundary
conditions). Each player can follow one of the two strategies
called unconditional cooperation (sx¼C) or unconditional defec-
tion (sx¼D) within the context of social dilemmas. If these
strategies are denoted by two-dimensional unit vectors, as

sx ¼ C ¼
1

0

� �
and sx ¼D¼

0

1

� �
, ð1Þ
then the payoff of player x against her neighbor at site xþd can be
expressed by the following matrix product:

Px ¼ sþx A � sxþd, ð2Þ

where sþx denotes the transpose of the state vector sx. The payoff
matrix is given as

A¼
1 S

T 0

� �
, ð3Þ

where the reward of mutual cooperation is chosen to be unity
(R¼1) and the mutual defection yields zero income (P¼0) for
both players without any loss of generality. The cooperator
receives S (sucker’s payoff) against a defector who gets T, the
temptation to choose defection. This terminology was originally
introduced for the description of prisoner’s dilemma (PD) (where
T4R4P4S) and later extended for weaker social dilemmas
(Dawes, 1980; Santos et al., 2006), too.

For this notation the S–T payoff plane can be divided into four
segments (see Fig. 1), where the possible Nash equilibria are
denoted by pairs of open, closed, or half-filled circles referring to
pure cooperation, pure defection, and mixed strategies, respec-
tively. For example, within the range of Harmony (H) game the
Nash equilibrium (from which no player has incentives to deviate
unilaterally) is the (Pareto optimal) mutual cooperation. On the
contrary, for the prisoner’s dilemma (PD) the only Nash equili-
brium is the mutual defection yielding the second worst payoff.
Fig. 1a illustrates that both the D–D and C–C strategy pairs are
Nash equilibria within the region of stag hunt (SH) game where
So0 and To1. For the Hawk–Dove (HD) game besides the D–C

and C–D strategy pairs there is an additional (so-called mixed)
Nash equilibrium where the players can choose either coopera-
tion or defection with a probability dependent on the payoff
parameters.

Many relevant features of these types of evolutionary games
have already been clarified. For example, if the frequency of
cooperators and defectors are controlled by a replicator dynamics
(favoring the strategy of higher payoff) within a well-mixed
population then the system evolves towards a final stationary
state related to the possible Nash equilibria as illustrated in
Fig. 1b (Nowak, 2006). Namely, cooperators (defectors) die out
within the region of PD (H game) while they can coexist for the
case of HD game. The radial segmentation of the region of SH
game in Fig. 1b indicates that here the system develops into one
of the homogeneous phase and the final result depends on the
composition of the initial state.

The spatial arrangement of players (with a short range inter-
action), however, affects significantly the evolutionary process
depending on the payoffs. For the present lattice system one can
evaluate the total sum of individual payoffs for the ordered
arrangement of C and D strategies. Fig. 1c shows that the
maximum total payoff is achieved for homogeneous cooperation
ðsx ¼ C,8xÞ if TþSo2. In the opposite case ðTþS42Þ the total (or
average) payoff is maximized if the cooperators and defectors are
arranged in a chessboard-like manner as indicated by the pattern.
Anyway, if the latter condition is satisfied for repeated two-
strategy games then the alternating D–C and C–D strategy profile
provides the highest average income (Sigmund, 2010; Szabó et al.,
2010).

The comparison of the Figs. 1a and c illustrates the relevant
differences between the suggestions of traditional game theory
when assuming two selfish players and the optimum total payoff
with respect to the whole society with players located on the sites
of a square lattice. Notice, that the chessboard-like arrangement
of cooperators and defectors can provide optimal total payoff
within a region involving a suitable part of the PD, the HD, and the
H games. The curiosity of these systems is more pronounced if we
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Fig. 1. Overview of possible solutions on T–S plane for different conditions. (a) Nash equilibria for two-person one-shot games. (b) Stable strategy pairs for replicator

dynamics in well-mixed population. (c) Optimal strategy choice on the square lattice with nearest-neighbor interactions and (d) the results of myopic strategy update in

the zero noise limit for the same connectivity structure. The chessboard-like patterns refer to similar arrangement of cooperators and defectors on the square lattice for

nearest-neighbor interactions. The regions of harmony (H), Hawk–Dove (HD), stag hunt (SH) games, and prisoner’s dilemma (PD) are separated by dashed-dotted lines.

The symbols refer to Nash equilibria (a), evolutionarily stable strategies (b), and strategy pairs on neighboring sites (c and d), where the empty, closed, and half-filled

circles indicate cooperative, defective, and mixed strategies.
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compare it with the consequences of different evolutionary rules
in the lattice models (Nowak and May, 1992, 1993; Szabó and
Fáth, 2007; Roca et al., 2009). Finally, in Fig. 1d we summarize
only the results of a spatial evolutionary game (Szabó et al., 2010)
obtained when the myopic players can choose another strategy if
this change increases their own payoff assuming quenched
neighborhood in the zero noise limit.

2.2. Model specification

In the present work the latter dynamical rule is extended by
allowing players to consider not only their own but also their
neighbors’ payoffs. The system is started from a random initial
strategy distribution where both C and D strategies are present
with the same frequency. The evolution of the strategy distribu-
tion is controlled by repeating the random sequential strategy
updates in myopic manner. Accordingly, in each elementary step
we choose a player x at random who can modify her strategy from
sx to sx

0 (e.g., D-C or vice versa) with a probability:

Wðsx-sx
0 Þ ¼

1

1þexp½ðUðsxÞ�Uðsx
0 ÞÞ=K�

, ð4Þ

where K characterizes the average amplitude of noise (that can
appear for fluctuating payoffs) disturbing the players’ rational
decision and the utility function combines the payoffs of the
player x with the payoffs of her co-players within the same
games. Namely,

UðsxÞ ¼
X
d

½ð1�Q Þsþx A � sxþdþQsþxþdA � sx�, ð5Þ

where the summation runs over all nearest neighbors. In this
notation Q characterizes the strength of altruism of the player.
For simplicity, we now assume that all players have the same Q

value, thus the whole population is described by the same
attitude of selfishness. For Q¼0 the players are selfish and the
resultant behavior has already been explored in a previous work
(Szabó et al., 2010). If Q¼1/2 then each player tries to maximize a
payoff obtained by sharing equally the common payoffs between
the interacting players. In the extreme case (Q¼1) players focus
exclusively on maximizing the other’s income. To give real-life
example, the latter behavior mimics the attitude of lovers or the
behavior of relatives in biological systems as discussed by Taylor
and Nowak (2007, 2006).

Notice that the present model can be mapped into a spatial
evolutionary game with selfish (Q¼0) players for myopic strategy
update if we introduce an effective payoff matrix

Aeff ¼
1 ð1�Q ÞSþQT

ð1�Q ÞTþQS 0

 !
: ð6Þ
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The effective payoff matrix becomes symmetric for Q¼1/2 and
the corresponding model is equivalent to a kinetic Ising model
where the evolution of spin configuration is controlled by the
Glauber dynamics in the presence of a unit external magnetic
field (Glauber, 1963). In the latter case the system evolves
towards a stationary state where the probability of a configura-
tion can be described by the Boltzmann statistics and the laws of
thermodynamics are valid (Stanley, 1971; Blume, 2003).

Finally we emphasize that the simultaneous exchanges S2T

and Q2ð1�Q Þ leave the system (Aeff) unchanged. This is the
reason why the MC analysis can be restricted to the cases where
0rQ r1=2.
3. Monte Carlo results

The MC simulations are performed when varying the payoffs S

and T at a few representative values of Q for LZ400 and K¼0.25.
In most of the cases the system is started from a random initial
state and after a suitable thermalization time tth the stationary
state is characterized by the fraction of cooperators (rA and rB)
averaged over a sampling time ts in the sublattices A and B

corresponding to the white and black boxes on the chessboard. In
fact there exist two equivalent sublattice ordered arrangements
of cooperators and defectors: (1) rA-1 and rB-0; (2) rA-0 and
rB-1 if K-0. During the transient time both types of ordered
arrangements are present in a poly-domain structure and a
typical linear size of domains growth as lp

ffiffi
t
p

. Such a situation
can occur for example within the region of HD game as demon-
strated in Fig. 2. Finally one of the ordered structure prevails the
whole spatial system. Evidently, the requested thermalization
time (to achieve the final mono-domain structure) increases with
system size as tthpL2.

It is emphasized that the domain growing process is blocked
for those dynamical rules forbidding the adoption of irrational
choices (when UðsxÞ4UðsxÞ

0). The latter cases yield frozen poly-
domain patterns, where rA ¼ rB as described by Sysi-Aho et al.
(2005) and Wang et al. (2006). The present evolutionary rule
allows the irrational choices with a probability decreasing very
fast when K-0. Consequently, the expected value of tth is also
increased drastically if K-0 (Bray, 1994). The resultant technical
difficulties can be avoided if the system is started from a biased
initial state where one of the sublattice is occupied by only
cooperators (or defectors) while other sites are filled randomly
with C or D players.
Fig. 2. The system evolves through such typical patterns into a state conquered by

only one of the ordered chessboard-like arrangement. This snapshot shows

cooperators (white boxes) and defectors (black boxes) on a 100� 100 portion of

a larger system for T¼1.5, S¼0.5, Q¼0 and K¼0.25 at time t¼30 MCS (Monte

Carlo steps) if the system started from a random initial state.
For selfish players (Q¼0) the results of MC simulations are
summarized in Fig. 3 in the low noise limit where the readers can
distinguish three types of ordered structure. Namely, the above-
mentioned sublattice ordering occurs within the territory of HD
game. The ‘‘homogeneous’’ D and C phases are separated by a
first-order transition located along the line S¼ T�1 when varying
the payoff parameters. More precisely, rA ¼ rB-1 in the limit
K-0 if S4T�1 and To1. On the contrary, the system evolves
into a state called ‘‘tragedy of the commons’’ (rA ¼ rB-0 if K-0)
when SoT�1 and 0. In the case of finite noise, the sharp ordered
phases disappear and point defects can emerge resulting in
intermediate values for cooperator frequency. Notice that the
transitions from the homogeneous phases to the symmetry
breaking sublattice ordered structure follow similar scenario.
Namely, the stationary frequency of cooperators evolves towards
a state (where rA ¼ rBC1=2) when approaching the critical point
from the homogeneous regions while jrA�rbj vanishing algebrai-
cally from the opposite direction. The width of the transition
regime in both side of the critical point is proportional to K.

he sublattice ordering as a continuous transition belongs to the
Ising universality class (Szabó et al., 2010; Stanley, 1971). This
means that the vanishing order parameter ðjrA�rBjÞ follows a
power law behavior when approaching the critical point and
simultaneously the correlation length, the relaxation time, and
the magnitude of fluctuations diverge algebraically. The latter
effects imply an increase in the uncertainty of the numerical
data. To avoid this problem we used a significantly larger size
(typically L44000) and longer thermalization and sampling time
(tthCts4106 MCS) in the close vicinity of the transition points.
Using this method we could reduce the statistical error comparable
to the line thickness.

All the above-mentioned three phases and also the main
characteristics of the phase transitions are present for Q¼1/3 as
demonstrated in Fig. 4. The most striking difference between
Figs. 3 and 4 is the shift of the phase boundaries. As a conse-
quence for Q¼1/3 the territory of the ‘‘tragedy of the commons’’
(in the T–S plane) is reduced. Similar behavior was observed in a
model where the evolution is controlled by pairwise collective
strategy update (Szabó et al., 2010).

Fundamentally different behavior is found for the fraternal
players (Q¼1/2) as illustrated in Fig. 5. In this case the results
depend only on TþS and the system does not fall into the state of
the ‘‘tragedy of the commons’’. It is emphasized that in the zero
noise limit the system evolves into the state providing the
maximum total payoff (compare Figs. 1c and 5).
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The above numerical investigations were repeated for several
noise levels, too. These numerical data have justified that in the
zero noise limit the T–S phase diagrams coincide with those we
derived from stability analysis of the spatial patterns.
4. Stability analysis

To have a deeper understanding about the ordering process,
we first study the stability of the sublattice ordered arrangement
of strategies against a single strategy flip in the zero noise limit.
The two possibilities are demonstrated in Fig. 6. In the first case a
defector reverses its strategy if the cooperation yields higher
utility, that is, if

4½ð1�Q ÞTþQS�o4 ð7Þ

or after some algebraic simplification

QSo1�ð1�Q ÞT : ð8Þ

Due to the absence of the second neighbor interactions all the
defectors (within the chessboard-like structure) are enforced
to cooperate in the low noise limit if the condition (8) is
satisfied. Consequently, in this case the sublattice ordered
arrangement of cooperation and defection transforms into
homogeneous cooperation.

One can easily check that the appearance of a single defector
in the state of homogeneous cooperation is favored if
QS41�ð1�Q ÞT which is the opposite of the condition (8). The
random sequential repetition of this type of point defect yields a
poly-domain structure resembling to those plotted in Fig. 2. As
mentioned before, this poly-domain structure is not stable for
K40 because the fluctuations changes the sizes of ordered
domains and their vanishing is not balanced by the appearance
of new domains. Finally the system evolves into one of the
sublattice ordered structure.

From the above analysis one can conclude that the equation

Q ðS�1Þ ¼�ð1�Q ÞðT�1Þ ð9Þ

determines the position of the phase boundary separating the
sublattice ordered phase from the homogeneous cooperation in
the T–S plane. This mathematical expression reflects clearly that
the straight line phase boundary rotates anti-clockwise around
the point (T¼S¼1) from the vertical direction to the horizontal
one when increasing the value of Q from 0 to 1.

The above-described analysis can be repeated to study the
stability of the sublattice ordered structure against a single
strategy change from C to D as plotted on the right-hand side of
Fig. 6. It is found that the sublattice ordered structure evolves into
the homogeneous D phase if ð1�Q ÞSo�QT and the resulting
equation

ð1�Q ÞS¼�QT ð10Þ

gives a boundary line separating the sublattice ordered phase from
the homogeneous defection state in the payoff plane. This phase
boundary is also a straight line rotating clockwise around the point
T¼S¼0 from the horizontal (Q¼0) to the vertical (Q¼1) direction.

The phase boundaries (9) and (10) divide the T–S plane into
four segments excepting the case Q¼1/2 when the given straight
lines are parallel. For Q¼0 these segments are equivalent to those
types of games indicated in Fig. 1. The above stability analysis
allows the existence of both the homogeneous C and D phases
within the region of SH game. The simulations indicate the
presence of both phases in a poly-domain structure during a
transient period. The final result of the competition between
these two ordered structure can be deduced by determining the
average velocity of the boundary separating the regions of
homogeneous cooperation and defection. For the present dyna-
mical rule the most frequent elementary changes are the shifts of
a step-like interface as illustrated in Fig. 7. Evidently other
elementary processes are also observable with a vanishing prob-
ability when K-0. The latter elementary processes (e.g., the
creation of a new step) can affect only the average velocity of
the interface. Using the above observation as a working hypoth-
eses we can derive a condition for the direction of invasion that is
justified by the MC simulations.
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Namely, along the horizontal interface the step moves right in
the zero noise limit if Uðsx ¼DÞ4Uðsy ¼ CÞ. This yields D invasion if

2½ð1�Q ÞTþQS�42½1þð1�Q ÞSþQT�: ð11Þ

In the opposite case C invasion is preferred and the system evolves
into the state where all the players cooperate. Thus, the position of
the phase boundary separating the homogeneous C and D phases
can be given by a straight line

S¼ T�
1

1�2Q
ð12Þ

in the T–S plane.
Here it is worth mentioning that the phase boundary given by

(12) coincides with those suggestion derived from the criterion of
risk dominance (Harsanyi and Selten, 1988) favoring the selection
of those strategy that provides higher utility if the co-player
chooses her strategy at random. In other words, the present
myopic strategy update (on the square lattice) can be considered
as a realization of the criterion of risk dominance in the crucial
local constellations because the players x and y are surrounded by
two cooperators and two defectors.

The results of the above stability analysis are summarized in
Fig. 8. It is emphasized that the three phase boundaries (given by
Eqs. (9), (10), and (12)) meet at a so-called tricritical point (if
Q a1=2) and divide the T–S plane into three parts in agreement
with the expectations deduced from the MC results in the low
noise limit. Fig. 8 illustrates graphically what happens if the value
of Q is increased gradually. The territory of the homogeneous
cooperation and the sublattice ordered structures expand in the
T–S plane at the expense of the homogeneous defection if Q-1=2.
Evidently this process is accompanied with a relevant increase in
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Fig. 8. T–S phase diagram in the zero noise limit for four different values of Q. The orde

references to colour in this figure legend, the reader is referred to the web version of
the total payoff for the payoff parameters involved. This process is
saturated for Q¼1/2 when the system achieves the optimum total
payoff for any payoff matrix. For further increase of Q the process
is reversed within some territory of H and SH games where the
system can evolve into the ‘‘tragedy of the commons’’ as demon-
strated in Fig. 8 for Q¼1 when the system (effective payoff) can
be mapped to the case of selfish player by exchanging the payoffs
S2T. Consequently, the overstatement of the other-regarding
preference may also results in a social dilemma.

5. Summary

We have introduced a spatial evolutionary game with a
myopic strategy update rule to study what happens if the players’
characters, regarding the target utility, are tuned continuously.
The two extreme characters are the egoist players (maximizing
their own income irrespective of others) and the completely
altruistic players or lovers who try to maximize the others’
income irrespective of their own payoff. This feature is quantified
by introducing a utility function composed from the player’s and
the co-player’s incomes with suitable weight factors. It turned out
that all the relevant results can be explained by considering an
effective payoff matrix in agreement with previous investigations
(Grafen, 1979; Maynard Smith, 1982; Taylor and Nowak, 2007).
Despite its simplicity this model indicated clearly the importance
of the fraternal behavior. Namely, the highest total income is
achieved by the society whose members share their income
fraternally. Any deviation from the fraternal behavior can result
in the emergence of the ‘‘tragedy of the commons’’ within a
suitable region of payoff parameters even for altruistic players
characterized by the other-regarding preference.
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Finally, to exemplify the lover’s dilemma we end this work by
citing the opening sentences of the paper by Frohlich (1974):
‘‘There is a famous story written by O’Henry about a poor young
couple in love at Christmas time (‘‘The Gift of the Magi’’). Neither
has any money with which to buy the other a present, although
each knows what the other wants. Each has only one prized
possession: he, his father’s gold pocket watch; she, her beautiful
long hair. He has long been coveting a gold watch fob, while she
has long admired a pair of tortoise shell hair combs in a nearby
shop. The conclusion of the story is the exchange of gifts, along
with a description of their means of getting the money for their
purchases. He gives her the combs (having pawned his watch to
raise the money). She gives him the watch fob (having cut and
sold her hair).’’ The mentioned example is discussed exhaustively
in the text book by Barash (2003).
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Szabó, G., Szolnoki, A., Varga, M., Hanusovszky, L., 2010. Ordering in spatial

evolutionary games for pairwise collective strategy updates. Phys. Rev. E 82,
026110.

Taylor, C., Nowak, M.A., 2007. Transforming the dilemma. Evolution 61, 2281–2292.
Taylor, C., Nowak, M.M., 2006. Evolutionary game dynamics with non-uniform

interaction rates. Theor. Popul. Biol. 69, 243–252.
von Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic

Behaviour. Princeton University Press, Princeton.
Wang, W.-X., Ren, J., Chen, G., Wang, B.-H., 2006. Memory-based snowdrift game

on networks. Phys. Rev. E 74, 056113.
Wang, Z., Du, W.-B., Cao, X.-B., Zhang, L.-Z., 2011. Integrating neighborhoods in the

evaluation of fitness promotes cooperation in the spatial prisoner’s dilemma
game. Physica A 390, 1234–1239.

Wild, G., Traulsen, A., 2007. The different limits of weak selection and the
evolutionary dynamics of finite populations. J. Theor. Biol. 247, 382–390.

Xianyu, B., 2010. Other-regarding preference and the evolutionary prisoner’s
dilemma on complex networks. Physica A 389, 1105–1114.


	Selfishness, fraternity, and other-regarding preference in spatial evolutionary games
	Introduction
	Model
	Brief overview
	Model specification

	Monte Carlo results
	Stability analysis
	Summary
	Acknowledgments
	References




