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Abstract

Simple combinations of common competitive mechanisms can easily result in cyclic competitive dominance relationships between

species. The topological features of such competitive networks allow for complex spatial coexistence patterns. We investigate self-

organization and coexistence in a lattice model, describing the spatial population dynamics of competing bacterial strains. With

increasing diffusion rate the community of the nine possible toxicity/resistance types undergoes two phase transitions. Below a critical

level of diffusion, the system exhibits expanding domains of three different defensive alliances, each consisting of three cyclically

dominant species. Due to the neutral relationship between these alliances and the finite system size effect, ultimately only one of them

remains. At large diffusion rates the system admits three coexisting domains, each containing mutually neutral species. Because of the

cyclical dominance between these domains, a long term stable coexistence of all species is ensured. In the third phase at intermediate

diffusion the spatial structure becomes even more complicated with domains of mutually neutral species persisting along the borders of

defensive alliances. The study reveals that cyclic competitive relationships may produce a large variety of complex coexistence patterns,

exhibiting common features of natural ecosystems, like hierarchical organization, phase transitions and sudden, large-scale fluctuations.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Considering cyclic patterns of population interactions is
still uncommon, although the few existent theoretical
studies on such systems emphasize the important role they
might play in the maintenance of biodiversity (Durrett and
Levin, 1998; Gilpin, 1975; May and Leonard, 1975;
Hofbauer and Sigmund, 1998; Czárán et al., 2002).
Substantial field evidence for the existence of real cyclic
interaction topologies have accumulated in the past few
decades, many of which come from studies of ecological
succession, biomass flow in food webs and competition.
For example, it is long known that in certain plant
communities the successional states of the vegetation may
follow one another in a cyclic order, cf. Watt (1947). In
food webs, material flows from primary producers to top
predators, while decomposers merge distant parts of the
e front matter r 2007 Elsevier Ltd. All rights reserved.
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food web, by making the material available again for
primary producers in the form of mineral resources. This,
however, is not a homogeneous cycle regarding the nature
of the population interactions, because decomposers are in
a different (commensal) ecological relation to the rest of
the species in the food web which play a predatory type of
game among themselves.
Our focus in this study is on competitive dominance

networks. These seem to exhibit both hierarchical and
cyclic topological features, depending on how general our
concept of competition is. According to the resource
competition theory of Tilman (1982), the competitive
ability of species depends on the particular resource under
consideration. Considering one resource, if species A is
dominant over B and species B is dominant over C then
species C cannot be dominant over A. Due to the presence
of trade-offs between different traits, none of the species
can be dominant for all resources, therefore an overall domi-
nance network is not feasible. By the inclusion of direct
interactions between species the competitive relationships
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might be even more intricate, allowing for cyclic domi-
nance networks. The best known classical examples
of cyclic competition are three-species competitive
(overgrowth) cycles which seem to be rather frequent in
marine (benthic) communities (Buss and Jackson, 1979;
Russ, 1982; Buss, 1990; Johnson and Seinen, 2002).

The relevance of cyclic interactions in maintaining
competitive coexistence is even more conspicuous in
microbial communities, however. Recent research on
bacteriocins (Chao and Levin, 1981; Durrett and Levin,
1997; Iwasa et al., 1998; Pagie and Hogeweg, 1999;
Nakamaru and Iwasa, 2000; Czárán et al., 2002; Kerr
et al., 2002) suggests that competitive cycles are in fact
the rule rather than the exception in communities of
microorganisms.

Bacteriocins are toxins produced by bacteria against
other species of bacteria or often even against conspecific
strains, used as ‘‘chemical weapons’’ to eliminate compe-
titors from the common habitat. The toxins are small
peptides with diverse points of attack and mechanisms of
killing—some inhibit the buildup of the cell wall, others
bilge the cell membrane, yet others stop or impair DNA
replication, to mention just a few of the many possibilities.
The genetic background of bacteriocin production and
resistance is also rather colorful, but there are two features
in common for almost all known bacteriocin systems: the
corresponding genes reside on extrachromosomal DNA,
i.e., on plasmids, and they are organized in operon-like
structures. The same bacterium may carry many different
plasmids, each harboring a different bacteriocin operon.

Even a single species may exist in three different
genotypes with respect to the production of, and its
resistance to, a single bacteriocin: one is sensitive to the
toxin ðSÞ, the other is resistant to it ðRÞ, and the third one is
a killer ðKÞ which is both resistant and a toxin producer.
Since both resistance and toxin production carries a certain
metabolic cost which lowers fitness, the three strains can be
ordered in terms of metabolic efficiency as S4R4K . That
is, the sensitive has no extra metabolic cost, the resistant
pays that of producing the resistance factor, and the killer
carries the metabolic burden of synthesizing both the toxin
and the resistance factor. Thus, based on metabolic
efficiency alone, i.e., in terms of resource competition,
S should be dominant over both R and K , and R would be
superior to K . This line of resource-competitive hierarchy
is bent to form a cycle by the interference-competitive
dominance of K over S due to toxic killing. In other words,
S, R and K play the Rock-Scissors-Paper game which is
known to be stable in a spatial setting: in a lattice model
implementation of the game the three strains maintain
coexistence in a spatially dynamic pattern (Tainaka,
1988; Kerr et al., 2002; Czárán et al., 2002; Kirkup and
Riley, 2004).

In any traditional analysis of the spatial Rock-Scissors-
Paper game identical invasion rates are assumed (for a
survey see the reviews by Tainaka, 2001; Szabó and Fáth,
2007). Detailed investigations have proven later that the
introduction of different invasion rates does not modify the
basic conclusions significantly. Namely, the self-organized
patterns remain similar while the average frequencies of the
strains depend on the ratios of invasion rates (Tainaka,
1993; Durrett and Levin, 1997). Boerlijst and Hogeweg
(1991) have shown that the corresponding patterns provide
stability against some types of external invaders. The
unusual response to external effects is discussed by Tainaka
(1993) and Frean and Abraham (2001). The main results in
lattice systems remain qualitatively unaffected if we assume
mutations from S to K , from K to R, and from R to S

(mutations in the opposite directions are ineffective,
because the mutant is immediately outcompeted by the
resident type, cf. Szabó and Czárán (2001b)).
By considering more than a single bacteriocin operon the

maximum number of different strains becomes the corres-
ponding power of three (the number of repetitive variations
of S, K and R types for each operon). Previous work
(Czárán et al., 2002) has demonstrated that in an evolving
many-toxin lattice system the final quasi-stationary state is
characterized by a high number of resistance genes and a
low number of toxin genes present within the population.
This so-called ‘‘hyperimmunity’’ state has a very dynamical
structure both in space and in terms of the actual toxin and
immunity alleles present at different times. Due to the
astronomical number of potentially different strains there
is little hope in any attempt to discover the regularities of
the competitive interactions within such an evolving,
spatial multi-toxin system. Therefore later we reduced the
number of toxins to two and examined the corresponding
nine-strain system in detail (Szabó and Czárán, 2001b).
Surprisingly, it has proven to admit a critical phase
transition along the uniform mutation rate as its critical
parameter. Above the critical rate of mutation the system
maintains all the nine strains in a spatially dynamic,
fine-grained pattern, whereas below the critical value it
nurses three indefinitely expanding domains, each of which
consists of three strains playing the Rock-Scissors-Paper
game among themselves. The strains within a domain form
‘‘defensive alliances’’ in the sense that all invasion attempts
by any single strain from among the remaining six is
doomed: the invader is extinguished by one of the members
of the three-strain alliance. In practice the simulations
ended with one of the three domains having taken over,
and each domain had the same chance of becoming the
winner. This outcome is the result of neutral drift due to
the finite size of the system.
Since subcritical rates of mutation typically resulted in

unlimited domain expansion, i.e., in homogeneous three-
species patches of ever increasing size, one might think that
the spatial constraints on the system (namely, the strictly
localized nature of competitive interactions) must play a
key role in the dynamics of the community. Mutations
can obviously perturb spatial structure, but in fact any
mechanism confounding the emergent self-organized
patchy structures might also be expected to change the
dynamics of species frequencies. A very simple way of
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disturbing the spatial structure of a community is allowing
for site swaps between neighbors. This mimics diffusive
movement on the lattice scale—and this is what we have
included in the present version of the model. Besides the
random initial pattern of the strains within the lattice,
diffusion is another source of spatial randomness in
community structure formation.

Therefore we consider a two-toxin bacterial competition
model without mutations but with short range diffusion.
We wish to understand the role of cyclic competitive
dominance networks and spatial constraints in ecological
coexistence by investigating this simple model system. First
we discuss some topological features of the competitive
network, then review some features of the corresponding
spatially homogeneous (mean-field) model, and finally we
investigate the dynamics of its spatial counterpart in detail.

2. The competitive network

Assuming two bacteriocin operons present in a bacter-
ium population the topology of the competitive interac-
tions among the nine different strains is illustrated in
Fig. 1. The labels KK , KS, KR, SK , SS, SR, RK , RS

and RR correspond to the different genotypes with
regard to bacteriocin production and resistance. For
notational convenience these types will be denoted by
KK

KS

KR

SK

SSSR

RK

RS

RR

Fig. 1. The competitive relations of the nine species. Each species is

characterized by its toxin and resistance factor producing capabilities,

regarding two toxins. S, R and K stand for sensitive, resistant and killer,

respectively. Arrows point at the competitively inferior species. Thick lines

connect cyclic defensive alliances playing an important role in the

dynamics of the community—these are the edges along which the

competitively superior species wins on both accounts against the inferior

one.
numbers ranging from 0 to 8, respectively, in the equations.
We shall call these genotypes ‘‘strains’’ or ‘‘species’’ in the
sequel, but one has to keep in mind that these ‘‘species’’
need not be genetically distant in the biological sense: they
are definitely different in terms of the two bacteriocin
systems, but may (or may not) be genetically identical
otherwise. Since we assume neither mutations nor recom-
binations in this model it is safe to assume that the nine
genotypes are distinct species. However, apart from their
different positions in the competitive network (i.e., their
competitive relations to the other species) the nine strains
are assumed to be phenotypically equivalent.
These nine species occupy the surface of a solid medium

at a fixed total density. The densities of competitively
superior populations can increase at the expense of the
densities of inferior ones by competitive displacement. For
sake of simplicity, we assume that all invasion rates are
equivalent (and set to be 1 on a suitable time scale). This
means that once competitive interaction takes place
between two strains, the dominant certainly defeats the
inferior. Some features of this system are common for
both homogeneous (non-spatial) and spatially organized
settings—we shall discuss them briefly in turn.
In the absence of mutations the system admits many

stationary solutions, each corresponding to certain subsets
of the interaction graph. It is obvious that all the
homogeneous states (with just one of the species present)
remain unchanged whenever reached. These stationary
states, however, are not stable because they can be invaded
by competitively superior species. There exist nine two-
species stationary states with two neutral strains at
arbitrary proportions; one example for such a neutral pair
is ðKK þ RSÞm. The system admits three different three-
species states as well, each composed of three mutually
neutral species at arbitrary portions, for which ðKK þ

SRþ RSÞm is an example. These neutrally coupled two-
and three-species stationary states are also unstable against
external invasions. Most important for our present study:
the competition network contains nine cyclic three-species
subsystems playing the Rock-Scissors-Paper game among
themselves, i.e., the species of these subsystems form an
intransitive competition cycle: A beats B beats C beats A.
Three of these subsystems are favored by selection because
their members protect each other against external invaders
(Szabó and Czárán, 2001a, b). Note that these defensive
alliances are such that the winner dominates the loser on
both bacteriocin operons, which amounts to the seemingly
paradoxical statement that the most desperate enemies are
the most efficient allies. We shall return to this paradoxical
feature later.

3. Mean-field model and theory

The traditional mean-field model of this system cannot
account for the effects of spatially constrained mixing ðX Þ.
Yet, the mean-field analysis might confirm the existence of
most of the possible solutions and indicates the important
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dynamical role that some species combinations like
defensive alliances play in the dynamics of the system.

Given linear interactions, the equations of motion for
the mean-field approximation to the simulated system take
the following form:

dri

dt
¼ ri

X8
j¼0

Aijrj for i ¼ 0; . . . ; 8, (1)

where ri stands for the density of species i and A is the
adjacency matrix of the competition network (see Fig. 1).
That is,

A ¼

0 1 �1 1 1 0 �1 0 �1

�1 0 1 0 1 1 �1 �1 0

1 �1 0 1 0 1 0 �1 �1

�1 0 �1 0 1 �1 1 1 0

�1 �1 0 �1 0 1 0 1 1

0 �1 �1 1 �1 0 1 0 1

1 1 0 �1 0 �1 0 1 �1

0 1 1 �1 �1 0 �1 0 1

1 0 1 0 �1 �1 1 �1 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

.

(2)

These equations have a lot of trivial solutions—we have
mentioned some of these in the previous section. For
example, a possible single-species solution is: r0 ¼ 1 and
r1 ¼ � � � ¼ r8 ¼ 0. A two-species solution is r0 ¼ 1� �,
r5 ¼ � ð0o�o1Þ and ri ¼ 0 for all other species.

If the system is initiated with a random species
composition then chaotic oscillations of species densities
ensue as shown in Fig. 2. This oscillating behavior satisfies
several constraints due to the symmetries of A. One can
easily check that both the sum and the product of species
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Fig. 2. Typical chaotic oscillations of species densities in the mean-field

model if the system is started from a random initial composition.
densities are conserved quantities, i.e.,

X8
j¼0

rj ¼ 1 (3)

expressing normalization and

Y8
j¼0

rj ¼ C0 ¼ constant. (4)

The first conservation law comes from the antisymmetry
of A, i.e., Aij ¼ �Aji. The second constraint, (4), comes
from the fact that the sum of the matrix elements in each
column is zero, that is

P8
i¼0 Aij ¼ 0. Moreover, the product

of the species densities within each cyclic defensive alliance
remains constant:

r0r4r8 ¼ C1 ¼ constant, (5)

r1r5r6 ¼ C2 ¼ constant, (6)

r2r3r7 ¼ C3 ¼ constant, (7)

because A0i � A4i þ A8i ¼ 0 for arbitrary i, etc.
The latter constraints prevent any species from going

extinct in the mean-field system. Note that this system has
many other cyclic three-species subsets (e.g., ðKKþ

KS þ KRÞc) for which similar constraints do not apply in
general, except with all the rest of the species missing.
Considering those subsets which consist of the species of

two cyclic defensive alliances further conserved quantities
can be derived. For example, within the subsystem ðKS þ

KRþ SK þ SRþ RK þ RSÞ (for which r0 ¼ r4 ¼ r8 ¼ 0)
the non-vanishing species densities satisfy additional
conservation laws:

r1r3 ¼ C13 ¼ constant, (8)

r2r6 ¼ C26 ¼ constant, (9)

r5r7 ¼ C57 ¼ constant. (10)

Interestingly, these conservation laws apply for those
neutral pairs whose well-mixed phase is also considered as
a defensive alliance in the corresponding six-species
subsystem (Szabó, 2005).
Except for Eq. (3) all the above conservation laws are

broken in the spatial system, which exhibits more complex
behavior than the mean-field approximation.

4. The spatial model

The spatial model is similar to that used in Szabó and
Czárán (2001b), except for the lack of mutations and the
inclusion of diffusion. We consider a N ¼ L� L square
lattice of sites with periodic boundary conditions. Each site
x 2 N is described by a site variable sx ¼ 0; . . . ; 8 expres-
sing that it is occupied by a single individual belonging to
one of the nine bacterial species. The dynamics of the
population is driven by local interactions; competitive
replacements and diffusion events between neighboring
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Fig. 3. Monte Carlo results for the competing and neutral pair

probabilities pc (open squares) and pn (open diamonds) as a function of

the site exchange probability X . Changes in these pair probabilities

indicate two phase transitions at X c1 ¼ 0:0560ð5Þ and X c2 ¼ 0:0720ð5Þ.
Cyclic defensive alliances dominate the stage at high pc values below X c1,

while neutral coalitions are stable at high pn values above X c2. In the

second phase between X c1 and X c2 both types of species associations are

present in a dynamical pattern.

Fig. 4. Typical spatial distribution of species within a 300� 300 box after

1500 MCS for X ¼ 0. The system exhibits growing domains of the three

cyclic defensive alliances ðKK þ SS þ RRÞc, ðKS þ SRþ RKÞc and

ðKRþ SK þ RSÞc. The initial state was a random pattern of the nine

species. Species colors are defined in Fig. 1.
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sites. Since competitive interactions produce identical sites,
site swaps due to diffusion are visible only between
competitively neutral, yet different pairs of sites. Accord-
ingly, the state of the lattice is updated by repeating the
following elementary steps. First we choose two nearest
neighbor sites x and y at random. Nothing happens when
sx ¼ sy. If sx is competitively superior to sy then the ðsx; syÞ

pair transforms into ðsx; sxÞ. In the opposite case, ðsx; syÞ

transforms into ðsy; syÞ. If sx and sy is a neutral pair then the
ðsx; syÞ pair changes to ðsy; sxÞ with probability X . One
Monte Carlo step (MCS) means repeating this elementary
step N times, hence it will be used as a lattice size
independent temporal unit in the sequel.

5. Results of the spatial model

Simulations were performed at different linear lattice
sizes ðLÞ. On small lattices ðL � 10Þ the random initial state
typically develops into a homogeneous state or the mixture
of two or three (mutually) neutral species. For larger lattice
sizes (L � 100) self-organizing patterns driven by cyclic
invasions develop, which enables the coexistence of several
species. To obtain and study more complex patterns we
have to choose L to be significantly larger than any
characteristic length of the system (e.g., the typical linear
size of domains or super-domains) in the final stationary
state. For the quantitative analysis of these states we have
recorded the average densities of the species ri ði ¼

0; 1; . . . ; 8Þ and the probabilities pc and pn of finding
competing or neutral pairs on two neighboring sites. To
quantify the magnitude of fluctuations we have also
determined the variable

w ¼
N

9

X8
j¼0

h½hrji � rj�
2i, (11)

where h� � �i is the time average for a sufficiently long time
window of sampling.

Surprisingly, the Monte Carlo results suggest three
phases and two phase transitions along the X parameter
of the model (see Fig. 3) as indicated by changes in pc and
pn. These curves indicate two critical values of diffusion;
the break points in pn and pc at X c1 ¼ 0:0560ð5Þ and X c2 ¼

0:0720ð5Þ are the positions of the two phase transitions.
Notice that within the second and the third phase the value
of pn increases monotonously with X .

The first phase, corresponding to low migration prob-
abilities, was already discussed in detail in Szabó and
Czárán (2001b). Simulations started from an uncorrelated
initial distribution of the species at X ¼ 0 produce growing
domains of the three cyclic defensive alliances [ðKKþ

SS þ RRÞc, ðKS þ SRþ RKÞc and ðKRþ SK þ RSÞc] as
illustrated in Fig. 4. The average linear size of domains
increases with

ffiffi
t
p

. Since the lattice size is finite in any
simulation, the final stationary state of the system will be
dominated by one of the three cyclic defensive alliances.
Which of the alliances takes over finally is a matter of
(equal) chance. The takeover is also indicated by the vanish
of the relative frequency of neutral pairs pn. Fig. 3 shows
that this behavior is found at XoX c1 ¼ 0:0560ð5Þ.
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Notice that the site-swapping process does not affect the
formation of spatial distributions within the bulk of the
defensive alliances. This is the reason why the domain-
expansion process is hardly affected by the actual value of
X if XoX c1. In the opposite case ðX4X c1Þ mixed phases
of neutral species occur, and some of them can invade the
territories of the cyclic defensive alliances. We have
checked the invasion dynamics along the straight-line
boundaries separating a cyclic defensive alliance from a
well-mixed phase of two or three neutral species. We found
that the cyclic defensive alliance occupies the neighboring
territory with an average invasion velocity proportional to
X c1 � X if XoX c1. Conversely, the territory of a cyclic
defensive alliance can be invaded by several well-mixed
(symmetric) phase of two neutral species with an average
velocity proportional to X � X c1. For example, the
territory of the ðKK þ SS þ RRÞc alliance could be
occupied by the associations ðKK þ RSÞm, ðKK þ SRÞm,
ðSS þ KRÞm, etc., which are invadable themselves too.

As a result, significantly different behavior is found
for large values of X as demonstrated by a snapshot in
Fig. 5. In this case one can observe the formation of three
domains [ðKK þ SRþ RSÞm, ðKS þ SK þ RRÞm and ðKRþ

SS þ RKÞm], each containing three mutually neutral
species. For these associations we can distinguish two
types of external invaders. The first type finds two
competitively inferior species, and only the third member
of the association is capable to strike back. For the second
type of invaders the situation is reversed: they face two
competitively superior and only one inferior species when
Fig. 5. Typical (400� 400) snapshot in the self-organizing stationary state

for X ¼ 0:16. There are three coexisting domains ðKK þ SRþRSÞm,

ðKS þ SK þ RRÞm and ðKRþ SS þ RKÞm, each containing three mutually

neutral species.
attacking the association. Surprisingly, the first (and
second) type of invading species belong to the same neutral
triplet. Consequently, the association ðKK þ SRþ RSÞm is
dominant over ðKS þ SK þ RRÞm defeating ðKRþ SSþ

RKÞm, which dominates over ðKK þ SRþ RSÞm in turn.
Shortly, the cyclic dominance between the three well-mixed
neutral triplets maintains a self-organizing pattern analo-
gous to those observed for the spatial Rock-Scissors-Paper
game.
When displaying the temporal changes of species

distribution one can easily observe the corresponding
movement of invasion fronts. Both the typical domain
size and the average thickness of boundary layers depend
on the intensity of mixing ðX Þ. In this self-organizing
pattern the average densities of species are the same, ri ¼

1
9

for all i.
The second phase between X c1 and X c2 resembles

both the first and the third phase in many respects, but
the quantities pc or pn, and the quantitative analysis
of fluctuations also indicate striking differences between
them. Fig. 6 shows a snapshot of the second phase,
illustrating the appearance of all possible three-species
cyclic defensive alliances and two-species neutral domains
as well as the cyclic invasions among the latter.
Besides, one can also observe the well-mixed states of

two neutral species. In fact, a previous analysis of the six-
species subsystems (Szabó, 2005) has justified the appear-
ance of this state for X40:0595ð5Þ. This means, for
example, that at the boundaries of ðKK þ SS þ RRÞc and
ðKRþ SK þ RSÞc the two-species well-mixed states,
Fig. 6. A typical (500� 500) snapshot of the spatial distribution of species

and associations at X ¼ 0:066 and L ¼ 2000. Both three-species cyclic

defensive alliances ðKK þ SS þ RRÞc, ðKS þ SRþ RKÞc and ðKRþ SK þ

RSÞc and two-species neutral domains ðKK þ RSÞm, ðSS þKRÞm and

ðRRþ SKÞm are present.
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produces high w values in the second phase.
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[ðKK þ RSÞm, ðSS þ KRÞc and ðRRþ SKÞm] become
stable. Consequently, one of the latter phases expands
until encountering its mortal enemy which can defeat both
of its members. Recalling the former example, the domain
of ðKK þ RSÞm can be occupied by species RK . The
invasion of species RK , however, is immediately followed
by the invasion of one of the competitively superior
ones (species SK , SR and RR). Thus, within a short time
the domain of ðKK þ RSÞm is completely eliminated. In
some time the phase boundary between ðKK þ SS þ RRÞc
and ðKRþ SK þ RSÞc builds up again and a new
two-species well-mixed phase pops up—the birth of a
Phoenix from its ashes (Foster, 2006). In the present
case, however, the newborn Phoenix may have different
colors.

Notice that the intensity of diffusion is irrelevant within
both types of domains and becomes relevant only at the
boundary layers separating the two types of coalitions. On
the one hand, neutral coalitions attain maximum stability
in the well-mixed phase which is not affected by further
enforced mixing: neutral coalitions are well mixed even at
low values of X . On the other hand, since cyclic dominance
coalitions do not contain neutral pairs at all, site swaps
between neutral pairs is out of question in those. Diffusion
plays a decisive role within the boundary layer, however:
the larger the X value, the easier it becomes for the neutral
coalitions to invade the domains of cyclic dominance
coalitions.

The consecutive elimination of two-species well-mixed
phases generates wild fluctuations in species densities.
Fluctuation can yield the extinction of some species and
finally the system approaches one of the absorbing states
(with two or three mutually neutral species) at lattice sizes
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Fig. 7. Species densities as a function of time during the MC simulations

at X ¼ 0:066 and L ¼ 800. The elimination of two-species well-mixed

phases generates wild fluctuations in species densities. At lattice sizes not

large enough the fluctuations may lead to the extinction of some species.

Finally the system approaches one of the absorbing states with two or

three mutually neutral species surviving.
not large enough, as shown in Fig. 7. The catastrophic role
of fluctuations can be avoided by choosing suitable lattice
sizes (e.g., L ¼ 3200). In this case the self-organizing
patterns can be maintained for long times (the longest
run time was 2� 106 MCS).
The variation of fluctuations is quantified by the average

value of w for different mixing rates. Fig. 8 shows clearly
that w is significantly larger in the second phase compared
to the other two phases. At the same time we could not
detect relevant variation of w within the second phase. The
large uncertainties in w are related to the long relaxation
times. It is worth mentioning that the present data do
not suggest the divergence of w when approaching the
transition points X c1 and X c2.
The classification of the phase transitions at X c1 and X c2

requires further systematic investigations including a
quantification of the ways of coexistence for many-species
associations.

6. Discussion

Our model presents a surprisingly rich variety of
ecological coexistence patterns, resulting from cyclic
competitive relationships. With increasing the diffusion
parameter X , the model exhibits three conspicuously
different dynamical behaviors in turn, with two subsequent
phase transitions. These phases correspond to particular
‘‘communities’’ which differ markedly in both the set of
coexisting species and the associated spatial pattern.
A common feature of all phases is the presence of few-

species domains, which contain either cyclically dominant
or mutually neutral species. These domains interact with
each other in various ways, resulting in a spatial structure
that can be characterized by different spatial and temporal
scales. This kind of embedded, multi-level spatiotemporal
pattern is a general feature of natural ecosystems, which is,
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however, rarely reproduced by simple population dynami-
cal models with local interactions.

At low diffusion rates domains of defensive alliances are
formed by cyclically (double) dominant species (e.g.,
KK þ SS þ RR). Double dominance within the alliance
implies that the two possible external invaders of any
member of an alliance are inferior to the next member of
the alliance (the one that defeats the attacked member on
both loci). For example, SS can be attacked by KS and SK ,
but both KS and SK are dominated by KK , the successor
of SS within the alliance. And KK is always there to defend
SS, because it is chasing it all the time. This means that any
member of an alliance is defended by its within-alliance
successor, which is its strongest competitor—i.e., its most
desperate enemy. Intensive cyclic competition within the
domains of the alliances maintains a self-organizing
pattern and helps the allied members to protect each other
against external invaders. This property warrants the
integrity of these patches and their dominance over many
other cyclic, three-species associations (e.g., KK þ KSþ

KR). Due to the high level of symmetry within the
interaction topology of the system the three cyclic defensive
alliances are equivalent. Consequently, their domains
expand parallel and sooner or later all except one of them
goes extinct. We are currently exploring the effects of
relaxing much of the symmetry assumed so far.

At high diffusion rate, the structural role of individual
species and three-species domains is reversed. The domains
are composed of three competitively neutral species.
Surprisingly, the three domains themselves are in cyclic
dominance relationship with each other. As a consequence,
this spatial Rock-Scissors-Paper game between domains
enables the coexistence of all the nine species.

The intermediate phase represents another, more com-
plex structure keeping all the species coexistent. In the
corresponding spatiotemporal patterns both types of
coalitions (three-species cyclically dominant and neutral)
are present at the same time. Along the borders separating
two three-species cyclic coalitions, however, additional
phases (consisting of two neutral species in a well-mixed
spatial distribution) occur and expand until they meet their
strongest enemy that can invade their territories. Thus the
neutral, two-species coalitions are continuously eliminated
and re-constituted along the borders between the cyclic
defensive alliances.

From a theoretical point of view the present model
represents a multi-species spatial system exhibiting many
possible solutions. The large number of possible solutions
comes from a simple fact; the solutions of all the possible
subsystems are also solutions of the whole system. This
situation raises the natural question: Which solution will be
preferred by the update rules defined at the microscopic
level? The Monte Carlo simulations have justified that a
small number of possible solutions have a distinguished
role. These favored solutions are observable on large
territories of the arena and can be considered as biological
entities at a larger spatial scale and of a specific internal
structure. In many cases the long-time outcome is governed
by the competition between these higher-level objects
(associations) as discussed by Johnson and Boerlijst
(2002). At the same time, the boundary layers play only a
minor role in general. Sometimes, however, the role of
boundary layers becomes crucial, as they might control the
composition of the separated associations—as it happens
in a four-species cyclic competition model with a site swap
between neutral pairs (Szabó and Sznaider, 2004). The
present model demonstrates that boundary layers between
species associations may catalyze the appearance and the
expansion of new associations.
Our competition model is a simple description of

‘‘chemical warfare’’ between bacterial species. Neverthe-
less, in order to assess the importance of cyclic dominance
networks within ecosystems in general, it is worth
investigating what the cyclical competitive subsystems in
our bacterial example are caused by. The implicit assump-
tions of our model were that both adaptation to an
environment and artificially altering the environment is
costly. Moreover, we assumed that the remaining energy is
devoted to an efficient way of resource utilization. Due to
the limited amount of metabolic resources, the resultant
trade-off between the different traits guarantees a cyclic
competitive dominance network between species investing
differently into particular traits. These weak requirements
foreshadow the generality of cyclic competitive relation-
ships in nature.
The high number of potentially involved traits, which

implies a large number of potential phenotypes, raises the
question how the structural properties of the emerging
network change with an increasing number of components.
In the bacterial model, one toxin and resistance factor
result in a Rock-Scissors-Paper type of interaction net-
work, whereas two toxins and resistance factors result in
an already much more sophisticated competitive network
with longer internal loops. Our model system contains
nine four-species cyclic subsystems [e.g., ðKK þ SKþ

RS þ RRÞ] whose behavior was already studied for
different mixing mechanisms. What turned out is that the
four-species state (maintained by cyclic invasions) segre-
gates into expanding domains of neutral pairs if mixing ðX Þ
exceeds a threshold value. Recalling the latter example, the
cyclic association ðKK þ SK þ RS þ RRÞc can transform
into well-mixed ðKK þ RSÞm or ðSK þ RRÞm because these
are also defensive alliances within the given four-species
subsystem (Szabó and Sznaider, 2004; Szabó, 2005).
Finally, we emphasize that this model involves three six-
species subsystems (those containing the species of two
cyclic defensive alliances) in which the phase transitions
enforced by the variation of X were investigated earlier
(Szabó, 2005). In general, with increasing combinations of
different interference, adaptation and resource utilization
traits an incrementally complicated competitive network
structure is expected, with longer and longer cycles
appearing in addition to short ones. Notice, however,that
although the investigated competitive network contained
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higher, four-species and six-species subsystems, they did
not show up as spatially distinct structural units, suggesting
that short cycles indeed play a special role.

The behavioral richness of the present model is related to
the existence of two different types of species coalitions
whose stability against each other is tuned by a single
parameter ðX Þ. More complex behavior is expected for less
symmetric models, e.g., by assuming different invasion
rates and/or varying the topology of the interaction
network. Such modifications can yield cyclic dominance
relations between the associations which would be equiva-
lent (and neutral) in the symmetric case (Perc et al., 2007).
We think that cyclically dominated spatial species associa-
tions may be much more common in ecological systems
than they are in the ecological literature at present.
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