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Abstract. A Coulomb lattice-gas model with a host-lattice screening mechanism is adapted to
describe the ordering phenomena in alkali-metal fullerides of body-centred-cubic structure. It
is assumed that the electric charge of an alkali ion residing at a tetrahedral interstitial site is
completely screened by its first-neighbour C60 molecules. The electronic energy of the Cx−

60 ion
is also taken into consideration as a charged spherical shell. By means of these assumptions
an effective (short-range) pair interaction between two alkali ions is obtained. The resultant
lattice-gas model is analysed by using two- and six-sublattice mean-field approximations. The
thermodynamic properties are summarized in phase diagrams for different shell radii.

1. Introduction

In a previous paper [1] (henceforth referred to as I) we have introduced a lattice-gas model to
describe the ordering of alkali atoms intercalated into solid C60 of face-centred-cubic (FCC)
structure. This model is now adapted to a body-centred-cubic (BCC) host, in view of the fact
that these structures are also observed in experiments (see the reviews in references [2, 3]).

Lattice-gas (Ising) models provide an adequate description of ordering phenomena
in intercalated alloys. Difficulties arise, however, when determining the effective pair
interaction between two intercalated particles. In AxC60 alkali fullerides the alkali atoms
transfer their s electrons to C60 molecules. As a result the Coulomb energy becomes
dominant in the formation of different ordered structures [4, 5]. At the same time these
transferred electrons take part in the screening of the Coulomb interaction between two
alkali ions. In the knowledge of the screening mechanism, one could derive an effective
pair interaction, which is expected to be a short-range one. Unfortunately, we know of no
satisfactory approach for determining the screening in these materials.

In the present model we assume a simple screening mechanism. First of all the effect
of dielectric media is considered via the dielectric constantε. Furthermore, the charge of
each alkali ion is completely screened by the first-neighbour C60 molecules. This means that
there is a uniform distribution of transferred s electrons in the first-neighbour C60 molecules.
This simplification seems also to be an appropriate approximation for a metallic system if
the Thomas–Fermi length is not greater than the shortest A–C60 distance ('6.3 Å).

In accordance with the above assumption, the charge assembled on a given C60 molecule
may vary: its value depends on the number of alkali ions residing around the molecule. A
series of UHF-MNDO calculations has confirmed that the electronic energy of a solitary
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Cx−60 ion may be approximated asE(x) = a+ bx + cx2, where the quadratic term mediates
an interaction between those alkali ions transferring charges to the same C60 molecule(s).
This contribution may be considered as the electrostatic energy of a charged spherical shell
with a radiusR = 4.45 Å, because the terma + bx does not affect the thermodynamic
behaviour. The effect of dielectric media is taken into account by means of the application
of the Kirkwood–Onsager theory [6] as in I. Rabeet al [5] suggested such a spherical-shell
model, choosingR = 3.5 Å (and ε = 1) which is equivalent to the shell radius formed by
the carbon nucleus of the C60 molecule. We use the concept of this spherical-shell model
because of its descriptiveness, i.e. the electronic energy of the Cx−

60 ion will be estimated as
E(x) = (xe)2/2εR.

Without repeating the formalism introduced in I, we now concentrate on the mean-
field analysis of the model using six- and two-sublattice approximations. The results are
summarized in phase diagrams calculated for three different values ofR. In the first caseR
is estimated by using the data from UHF-MNDO calculations. Accepting the suggestion of
Rabeet al [5], in the second case, we have determined the phase diagram forR = 3.5 Å.
Finally we have chosen an intermediate value forR in order to display a phase diagram
different from the previous ones.

In the analysis of the above model we restrict ourselves to the rigid BCC structure. Our
main purpose is to analyse the general features of the present model in the parameter region
relevant for alkali-metal fullerides. A more rigorous comparison of the states appearing in
FCC, BCC and body-centred-tetragonal (BCT) host lattices [7–10] goes beyond the scope
of the present work.

2. The model

In BCC structures there are only tetrahedral interstitial sites for the intercalated alkali ions.
To describe the distribution of A+ ions we introduce a site variableηi which is 1 if the
interstitial sitei is occupied by an alkali ion and 0 for empty sites. The energy for any
configuration of alkali ions is given by the lattice-gas Hamiltonian

H =
∑
i

εηi + 1

2

∑
ij

Vij ηiηj (1)

characterized by the site energyε and the effective pair interactionVij . Both quantities are
determined by assuming the screening mechanism mentioned above.

The calculation detailed in I results in an effective pair interaction dependent on the
ion–ion distancerij as shown in figure 1 forR = 4.45 Å. Henceforth the energy is measured
in units of e2/(εa) wherea is the lattice constant. Notice thatVij may take two values for
certain values ofrij . This effective interaction is repulsive for short distances and becomes
attractive on increasing the ion–ion distance. In agreement with expectations, the strength
of Vij decreases rapidly withrij .

The interaction mediated by Cx−60 ion(s) gives a repulsive contribution to the total pair
interaction untilrij exceeds a threshold value. Obviously, the strength of this contribution
increases when decreasingR.

In the present model the site energy may be easily determined:

ε = −1.3752
e2

εa
+ e2

8εR
. (2)

In the knowledge of the model parameters we are able to determine the energy of each
ordered particle distribution. For this purpose the tetrahedral interstitial sites are divided
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Figure 1. The effective pair interaction versus the ion–ion distance forR = 4.45 Å.

4

3 C

7

8

B

6

1

B

8

9

A

1

6

5

2

A

9

2

5

4

3 C

7

Figure 2. The tetrahedral interstitial sites of the BCC lattice are divided into 12 sublattices.

into 12 simple cubic sublattices indicated by hexadecimal codes from 1 to C as illustrated
in figure 2.

Within this sublattice division we can distinguish 212 ordered states in which the sites
belonging to the same sublattice are uniformly occupied or empty. Figure 3 shows the
energies per C60 of these states as a function of the alkali contentx. Here it is worth
mentioning that the charges of the C60 molecules are uniform within an ordered state.
Consequently, the energies plotted in figure 3 are the sums of the corresponding Madelung
energy and the estimated electronic energy of C60.

Figure 3 demonstrates clearly that this model has only three stable ordered structures
if R = 4.45 Å. For the stablex = 0 (x = 6) state all of the tetrahedral sites are empty
(occupied). In the half-filled system (x = 3) the stable state is equivalent to the well known
A15 structure, i.e. the sublattices 2, 4, 6, 7, 9 and B are completely occupied whereas the
rest of the sites are empty. If the equivalent sublattices are combined, the formation of this
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Figure 3. The energy of the 12-sublattice ordered states as a function of alkali-metal content
for R = 4.45 Å. The black diamonds and squares refer to states described by the two- and
six-sublattice formalisms. The solid line connects the stable phases.

structure may be well described by using a much simpler two-sublattice formalism.
The states with the minimum energy forx = 1, 2, 4 and 5 exhibit additional symmetry;

more precisely, the occupations in sublatticesα andα + 6 are equivalent forα = 1, . . . ,6.
The combination of the equivalent sublattices results in the six-sublattice formalism studied
previously [11]. In this case the tetrahedral sites are divided into six interpenetrating BCC
sublattices; therefore the translation symmetry of the host lattice remains valid in the above-
mentioned states. The role of these states becomes important when studying the system for
lower R.

The decrease ofR gives anx-dependent contribution to the energies (see figure 3)
without modifying the energy differences for fixedx. The minimum-energy states for
x = 1 and 5 become stable ifR/a < 0.3411. The simultaneous appearance of the stable
states forx = 1 and 5 is a consequence of the particle–hole symmetry. In thex = 1 stable
state only the sites of one of the six sublattices are occupied. IfR/a < 0.3342 then the
system exhibits stable states forx = 2 and 4. In thex = 2 stable state the simultaneous
occupation of the first-neighbour sites is excluded.

The above ground-state investigations support the assertion that the mean-field analysis
may be restricted to the two- and six-sublattice approximations.

3. Mean-field approximation

The six-sublattice mean-field approximation was previously introduced to describe the
ordering processes in superionic AgI where the I− ions form a BCC cage lattice for the
mobile Ag+ ions [11]. This sublattice division is obvious because the number of tetrahedral
interstitial sites is just six times the number of points in the BCC host lattice. In this
approach, the equilibrium states are characterized by the average sublattice occupationsσν
(ν = 1, . . . ,6). The energy per C60 molecule is expressed in terms of these quantities as

H =
∑
ν

εσν + 1

2

∑
ν,τ

Jντ σνστ (3)
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whereε is defined by equation (2) and the mean-field coupling constantsJντ summarize
the effective interactions (Vij ) between a site of sublatticeν and all of the sites belonging
to sublatticeτ . Due to the symmetries of this sublattice structure there are only three
independent mean-field coupling constants [11]. The numerical calculations yield

J11 = · · · = J66 = −1.164 45
e2

εa

J12 = · · · = J65 = +0.082 51
e2

εa

J14 = · · · = J63 = −0.304 68
e2

εa

(4)

if R = 4.45 Å.
In the second approach we distinguish only two sublattices (α andβ) as described in the

previous section. Now the mean-field energy per C60 molecule is defined by the following
expression:

H = 3
∑
r

εσr + 3

2

∑
r,s

J ′rsσrσs (5)

wherer, s = α, β and the values ofJ ′rs are determined numerically for the same radius:

J ′αα = J ′ββ = −1.833 60
e2

εa

J ′αβ = J ′βα = +0.694 51
e2

εa
.

(6)

Within this formalism the twofold-degenerate A15 structure is given asσα = (1− σβ) = 0
or 1. Obviously, the energies of the empty (σα = σβ = 0) and completely occupied
(σα = σβ = 1) states are equivalent to those suggested by the six-sublattice formalism.

Using the same method, one can also evaluate the mean-field coupling constants of the
12-sublattice approximation. The values of these parameters are, of course, strongly related
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Figure 4. The phase diagram suggested by mean-field approximation forR = 4.45 Å. The
dashed line represents a continuous two-sublattice ordering process. The phases are labelled
with the alkali contents of the ordered states.



4216 G Szab´o and L Udvardi

to the previous ones defined by equations (4) and (6). More precisely,Jντ andJ ′rs are the
linear combinations of the mean-field coupling constants of the 12-sublattice approximation.

The equilibrium state characterized by sublattice occupations is determined by min-
imizing the Gibbs potential for fixed temperature and chemical potential. Following I, the
results of this mean-field analysis are summarized in phase diagrams.

In agreement with the particle–hole symmetry, the phase diagrams are also symmetric,
as illustrated in figure 4. In this figure the dashed line represents the critical temperature of
the continuous sublattice ordering from the high-temperature (σα = σβ) distribution towards
the A15 structure. Below the critical temperature,σα differs fromσβ and the alkali content
per C60 molecule is given asx = 3(σα + σβ). In the subsequent phase diagrams this state
is denoted as A, referring to the symmetry of the A15 structure.

The two-sublattice ordering process is analogous to the formation of antiferromagnetic
order in Ising models. The critical (Ńeel) temperature may be expressed in terms of the
coupling constants as a function ofx; that is,

kBTN = x(6− x)
36

(J ′αβ − J ′αα). (7)

This transition temperature has a maximum atx = 3 and vanishes whenx goes to 0 or 6.
Accepting the numerical valueε = 9 deduced by Sanguinetti and Benedek [12] from the
charge-induced vibrational shift, the above expression predictsTN ≈ 1000 K for x = 3.
Instead of this continuous transition, at low temperatures the system segregates into two
phases with different alkali contents (indicated by solid lines in figure 4). The values given
refer to the alkali contents in the ordered states atT = 0.
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Figure 5. The phase diagram in the mean-field approximation forR = 3.5 Å exhibits a eutectoid
phase transition atx ' 4.5.

We have determined the phase diagram forR = 3.5 Å (R/a = 0.303), suggested by
Rabeet al [5]. In this case only half (36 x 6 6) of the symmetric phase diagram is
represented in figure 5.

This figure shows stable ordered structures forx = 3, 4, 5 and 6 at low temperatures.
The x = 3 state transforms continuously to the random distribution with a critical temp-
erature given by equation (7). A part of this curve is denoted by the dashed line in figure 5.
As demonstrated, state A can exist for a wide range ofx. The ordered structures with
nominal compositionsx = 4 and 5 become unstable upon increasing the temperature above
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kBT4 = 0.1835e2/(εa) and kBT5 = 0.1971e2/(εa). Furthermore, the model exhibits a
eutectoid phase transition atx ≈ 4.5. This phenomenon implies the stability of an ordered
structure withx = 4.5 for smallerR.

Here it is worth mentioning that the cubic symmetry is broken in the ordered structures
if x = 1, 2, 4 and 5. It seems reasonable to suggest that a distortion of the host lattice
occurs because of the breaking of cubic symmetry related to the ordering process. A similar
phenomenon was investigated by O’Sullivanet al [13] and by Seok and Oxtoby [14] when
studying the ordering process in the superionic phase of AgI.

As mentioned above, there exists a very narrow range ofR where the ordered state
x = 5 is observable whereas the statex = 4 is unstable. In order to illustrate typical
behaviour within this region, we have evaluated the phase diagram forR/a = 0.337.
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Figure 6. The phase diagram forR/a = 0.337.

In figure 6 the dashed line refers to the critical temperature of the continuous sublattice
ordering described above. In this phase diagram there is a region denoted as A+A′ where
two A phases coexist with different compositions. At lower temperatures (see region A+6)
the difference betweenσα and σβ disappears for large alkali content (x ' 5.5). State 5
(with five of six occupied sublattices) becomes stable ifkBT < 0.1615e2/(εa).

The above series of phase diagrams display the electronic energy effect of the Cx−
60 ion

on the thermodynamic behaviour. In contrast to the early experiments and calculations, the
present model suggests the appearance of state 5 if state 4 is stable. Very recently, however,
Lof et al [15] found a local minimum nearx = 5 when measuring the temperature- and
concentration-dependent conductivity of potassium-doped C60 films. This observation may
be interpreted as an experimental indication of the existence of such a state. Here it is
emphasized that this state is sixfold degenerate and therefore a polydomain structure is
expected to appear in experiments.

4. Summary and conclusions

Using two- and six-sublattice mean-field approximations we have studied a lattice-gas model
of intercalation alloys in which the Coulomb interaction between the intercalated elements
is screened out by the charges distributed on the BCC host lattice. We have assumed that
the intercalated particle residing in a tetrahedral interstitial position transferse/4 charges to
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the (four) nearest-neighbour host-lattice molecules. The energy of the charged host-lattice
molecule is treated as the electrostatic energy of a charged spherical shell of radiusR. The
family of alkali fullerides is the best candidate as regards satisfying the above conditions.
This fact has motivated the choice of parameters when determining the thermodynamic
behaviour suggested by this model. Although our analysis is restricted to alkali fullerides,
we can derive predictions for alkaline earths if 2e is substituted fore in all of the formulae,
including the energy unit in the figures.

The model takes the electrostatic interactions into consideration exactly, at zero
temperature, i.e. it reproduces the Madelung energies for the ordered structures. Owing
to its simplicity, the model has only two parameters: the lattice constant is taken from
experiments and the value ofR is estimated from a series of UHF-MNDO calculations. In
this case the model suggests only three stable ordered structures. Besides the empty (x = 0)
and fully occupied (x = 6) states we have found a stable A15 structure (x = 3). The fully
occupied (x = 6) state is observed experimentally for A= K, Rb and Cs. For smaller-atom
alkali elements (Li, Na), however, the interstitial voids are too large compared with the
ionic sizes. Yıldırımet al [16] suggest clusters of four to nine sodium atoms inside the
octahedral voids of the FCC lattice. The structure of Na6C60 exhibits an FCC host lattice
with single occupation of tetrahedral sites and fourfold filling of the octahedral voids [17].
Obviously, the description of these former structures goes beyond the range of validity of
the present lattice-gas formalism.

According to the electrostatic force calculations, the FCC structure is preferable to the
BCC one forx 6 3 [4, 5]. This theoretical prediction agrees with experiments [2, 3]. Up
till now only the Ba3C60 compound has been found to exhibit the A15 structure [18].

In the present model the robust A (A15) state can exist over wide ranges of temperature
and alkali content as indicated in the phase diagrams. By the analogy with antiferromagnetic
ordering, this particle arrangement transforms continuously to the random distribution when
the temperature is increased.

The most surprising prediction of the present calculation is that of the existence of
the A5C60 phase when the A4C60 compound is stable. In these ordered structures the cubic
symmetry is broken and therefore lattice distortions are expected to accompany the ordering
processes. For example, the A4C60 compounds have been observed with BCT structure [4]
which may be considered as a distorted BCC lattice with four out of six sublattices to be
occupied. The present model permits the existence of the stable A4C60 compounds together
with A5C60 ones ifR/a < 0.334. Recently the electronic structure of Ba5C60 has been
analysed theoretically [19] although this structure has not been detected experimentally.
The breaking of the cubic symmetry in these former states raises many questions related to
the role of lattice distortion.
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