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Abstract
The spatial rock-scissors-paper game (or cyclic Lotka–Volterra system) is
extended to study how the spatiotemporal patterns are affected by the rewired
host lattice providing uniform number of neighbours (degree) at each site.
On the square lattice this system exhibits a self-organizing pattern with
equal concentration of the competing strategies (species). If the quenched
background is constructed by substituting random links for the nearest-
neighbour bonds of a square lattice then a limit cycle occurs when the portion
of random links exceeds a threshold value. This transition can also be observed
if the standard link is replaced temporarily by a random one with a probability
P at each step of iteration. Above a second threshold value of P the amplitude
of global oscillation increases with time and finally the system reaches one
of the homogeneous (absorbing) states. In this case the results of Monte
Carlo simulations are compared with the predictions of the dynamical cluster
technique evaluating all the configuration probabilities on one-, two-, four- and
six-site clusters.

PACS numbers: 05.50.+q, 89.75.Hc

1. Introduction

The rock-scissors-paper like cyclic dominance among three states (modes, species, strategies,
opinions) is widely studied in different spatial systems. For example, the Rayleigh–Bernard
convection in fluid layers rotating around a vertical axis exhibits the Küpper–Lortz instability
[1] resulting in a cyclic change of the three possible directions of parallel convection rolls
[2–4]. Such a situation can appear in biological (ecological) systems too [5–8]. Very recently,
Kerr et al [9] have justified experimentally that the cyclic dominance between the toxic,
sensitive and resistant microbes maintains their coexistence as predicted previously by several
theoretical works [10–12]. The emergence of cyclic invasions has also been observed for
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some three-strategy evolutionary games where this phenomenon promotes cooperation among
selfish individuals [13–15].

The above three-state systems exhibit some general features. Namely, spiral formation (or
rotating three-edge vortices and antivortices) can occur on the two-dimensional backgrounds
[16–18] as is observed for the Belousov–Zhabotinskii reaction as well as for the numerical
investigation of excitable activator–inhibitor media [19]. This self-organizing structure can
provide stability against some external invaders and thereby it plays a crucial role in ecological
systems [20, 21]. Furthermore the cyclic dominance yields a paradoxical response to the
external support of one of the species [22, 23] and global oscillation can occur when varying
either the model [24] or the structural parameters [25] if long range interactions are allowed.

In this work the spatial rock-scissors-paper game will be extended for such regular
networks where each site has four neighbours. We discuss how the quenched randomness and
annealed randomness of the network affect the spatiotemporal distribution of species. Such a
comparison has already been performed for a rumour propagation model [26, 27]. Now, the
randomness is introduced in a small-world manner [28] leaving the degree of sites unchanged.
This restriction does not influence the small-world feature of the network and it simplifies the
application of some theoretical approximation at least for the case of annealed randomness.
However, the main conclusion remains valid for both types of randomness. The Monte Carlo
(MC) simulations indicate that these systems undergo a transition (Hopf bifurcation) from a
stationary state (with fixed average concentrations) to a global oscillation. The amplitude
of oscillation increases with the measure of randomness and the increasing oscillation
terminates at one of the absorbing (homogeneous) states above a second threshold value
for annealed randomness. We show that neither the mean-field nor the pair approximations
can explain these transitions. The failure of these descriptions has inspired us to use the
more sophisticated dynamical cluster techniques where one determines all the configuration
probabilities on a k-site cluster. At the levels of k = 1 and 2 this technique is equivalent to the
mentioned mean-field and pair approximations. The essence of this simple method is described
in [29, 30].

2. The model

We consider a very simple model where the sites of a regular graph are occupied by one of
the three species (si = 1, 2, 3) that dominate cyclically each other. The evolutionary process
is governed by the sequence of elementary invasions along the randomly chosen edges of the
graph. Namely, first we choose a site and one of its linked (neighbouring) sites at random.
If these two sites are occupied by different species then the predator occupies the prey’s site,
i.e., the (1, 2) and (2, 1) pairs transform into (1, 1), (2, 3) and (3, 2) into (2, 2), and (1, 3)
and (3, 1) into (3, 3). Starting from a random initial state the above process is repeated until
the system reaches the stationary state or the limit cycle we study. This system was already
analysed systematically by several authors for the case when the sites form a d-dimensional
lattice [17, 31].

Two types of random structures will be contrasted with each other. In the first case the
structure is quenched after the generation of edges. Figure 1 illustrates an example whose
creation is similar to those suggested by Watts and Strogatz [28]. Note, that the present
algorithm (explained in the caption of figure 1) conserves the degree of sites, i.e., the number
of neighbours remains fixed (z = 4) for each site. In the second case the ‘neighbourhood’
is not fixed in time, that is a randomly chosen new site can be replaced for any standard
neighbours during the elementary invasions explained above. These types of random networks
can characterize the interaction among individuals in social systems [24, 28, 32–34]. In both
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Figure 1. Structure of a regular small-world network whose construction starts from a square
lattice. First the randomly chosen AB link is removed and the site B is rewired to the randomly
chosen site C. To have four connections at site C we eliminate one of the previous links (here CD)
and add a new link DE at random. This process is repeated till Q portion of the nearest-neighbour
bonds is replaced by random links. Finally the last site (here H ) is wired to the first one (A).
The edges pointing out along the periphery refer to periodic boundary conditions assumed for the
original square lattice.

cases the random links connect two sites that are at an arbitrary distance from each other in
the original structure.

The measure of quenched randomness is characterized by the Q portion of random links
substituted for the nearest-neighbour bonds. If Q = 0 this structure reproduces the square
lattice and for Q = 1 it is equivalent to a random regular graph [35] where the typical local
structure is analogous to a Cayley tree for large number of sites N. Previous investigations
indicated that some phenomena on the random regular graphs can be well described analytically
if the background is assumed to be a Bethe lattice in the limit N → ∞ [24, 36]. In other
words, the structure with Q = 1 can be considered as a possible realization of the Bethe lattice
in the simulations for large N.

Unfortunately, the present random regular structures with 0 < Q < 1 are not yet
investigated rigorously, although many other classes of networks are well studied [37–40]. We
think that the constraint of regularity leaves the relevant features unchanged and the present
structure remains similar to those introduced by Watts and Strogatz [28] on a square lattice.
When increasing Q the present structure exhibits a continuous transition from the square lattice
to the random regular graph.

Besides the above quenched randomness we will investigate the consequences of the
annealed (temporal) randomness in the structure. In this case the standard links are defined
by the bonds between the nearest-neighbour sites forming a square lattice. Occasionally the
standard link is replaced by a random one with a probability P characterizing the strength of
annealed randomness. Evidently, for P = 0 the structure is equivalent to the square lattice.
On the other hand, in the limit P → 1 this system satisfies the conditions of mean-field
approaches.

3. Simulations

The MC simulations are performed on a network consisting of N = L × L sites where the
linear size of the square lattice (L) is varied from 400 to 3200. The regular small-world
networks are constructed from a square lattice repeating the rewiring steps −2N ln(1 − Q)
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Figure 2. The MC simulations show four typical trajectories plotted on the ternary phase diagram.
All the simulations are started from the same initial state (denoted by symbol X) on the square
lattice for L = 3200. If P = 0 then the system develops into the central fixed point (dashed line).
For P = 0.2 the growing spiral trajectory (dotted line) ends at one of the homogeneous states. The
solid line indicates only the limit cycle towards the growing (or shrinking) spiral trajectories that
evolve for P = 0.05. In the mean-field limit (P = 1) the trajectory (dashed-dotted line) returns
periodically to the initial state.

times as explained in the caption of figure 1. (The logarithmic correction takes into account
that the substitution of a random link for another random one does not increase the quenched
randomness.)

The above model has two parameters characteristic of the quenched (Q) and annealed (P)
randomness of the background. The present analysis is restricted to those cases when one of
them is chosen to be zero.

For small sizes (L < 10) this system evolves into one of the three absorbing states where
all the sites are occupied by the same species. For sufficiently large system sizes, however,
the three species can coexist and after some transient time the state can be well described by
the current concentration of the three species [c1(t) + c2(t) + c3(t) = 1]. In order to observe
these states we have to choose such a large L where the amplitude of fluctuations becomes
significantly less than the minimum value of concentrations. The above choices satisfy this
condition.

On the square lattice (Q = P = 0) this system develops into a stationary state where all
three species are present with the same average concentration, i.e., 〈c1〉 = 〈c2〉 = 〈c3〉 = 1/3
corresponding to the central point in the ternary phase diagram as plotted in figure 2. In this
case the three species alternate cyclically at each site and the short range interactions are not
able to synchronize these local oscillations.

The corresponding self-organizing spatiotemporal patterns are well investigated
previously by several authors [17, 31, 41]. In these patterns the rotating vortices (spirals)
and antivortices are not recognizable because of the interfacial roughening. The absence of
smooth interfaces (surface tension) is caused by the fact that the elementary invasions between
two neighbouring sites are not affected by their neighbourhood [18].

Global oscillation (synchronization) occurs when the frequency of random (long range)
links exceeds a threshold value depending on whether quenched or annealed randomness is
considered. To illustrate the time-dependence of the species distributions during a period of
this global oscillation six consecutive snapshots are plotted in figure 3.

The amplitude of oscillation increases with the measure of randomness in both cases. If
the annealed randomness exceeds a second threshold value then the trajectories approach the
edges of the triangle and sooner or later the evolution is terminated at one of the homogeneous
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Figure 3. The hexagonal snapshots represent consecutive species distributions on a small portion
of square lattice during the MC simulation of global oscillation for Q = 0 and P = 0.1. Arrows
along the periphery indicate the direction of time evolution. The cyclic food web is shown in the
centre where the three species are denoted by different grey scales as in the snapshots and the
arrows point to the direction of invasion between the species. Thus, the territory of the ‘black’
species will be occupied by the ‘light-grey’ species. Once the ‘light-grey’ species prevail, they
will be invaded by the ‘dark-grey’ species, and finally a ‘black’ invasion closes the cycle as shown
by the snapshots.

(absorbing) states (where the system stays forever). It is emphasized, however, that the
homogeneous states are not stable against the invasion of their predators. For example, the
offsprings of a single species 3 will occupy the whole territory of species 1 in the absence of
species 2.

In the ternary phase diagram the shape of the limit cycles reflects the cyclic symmetry
between the species and its extension is described by the area A compared to its maximum
value. The average value of this quantity can be easily determined by numerical integration
after a suitable relaxation time for either the MC simulations or the dynamical cluster
techniques. Evidently, A vanishes if the system tends towards the central fixed point, and
it goes to 1 when the trajectories approach the edges of the triangle (see figure 2).

Systematic MC simulations are carried out to determine the average value of A on the
regular small-world structure for different Q values. The results in figure 4 refer to a transition
from a fixed point to the limit cycle. For weak randomness (Q < Q1 = 0.067(1)) the system
always tends to the central fixed point. Conversely, oscillating behaviour occurs and the area
A (as well as the amplitude) of the limit cycle increases monotonically with Q and tends to
the value A(Q = 1) = 0.980(1). The limit Q → 1 is investigated on a random regular graph
created by using a different algorithm [36]. In the vicinity of the transition point A vanishes
linearly with Q − Q1 in agreement with the prediction of Hopf bifurcation describing the
emergence of a limit cycle in a mean-field type system if the model parameters are varied.
Further rigorous investigations are required to quantify the variations in the spatiotemporal
patterns when approaching the transition point.

As is already mentioned the system size should be large enough to avoid the finite
size effects. The sharp transition to the global oscillation is wiped out by fluctuations on
smaller systems as discussed previously by Kuperman and Abramson [25] who considered a
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Figure 4. Relative area of limit cycle versus Q for a regular small-world system sketched in
figure 1.
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Figure 5. Relative area of the limit cycle as a function of P characteristic of the annealed
randomness. The symbols indicate the MC data, the solid and dashed lines illustrate the prediction
of four- and six-site dynamical cluster techniques. The inset shows the log–log plot of 1−A versus
P2 − P .

three-state (cyclic) epidemiological model on small-world networks suggested by Watts and
Strogatz [28]. The finite size effects are more dangerous when the value of area A approaches 1.
In this case the evolution may be easily trapped by one of the absorbing states. This difficulty
is avoided by choosing a sufficiently large system size. As a result, the plotted A(Q) function
may be considered as the infinite size limit.

The above analysis was repeated for the annealed randomness when varying P for Q = 0.
The results of MC simulations are summarized in figure 5. The oscillating behaviour can be
observed for P1 < P < P2 where P1 = 0.020(1) and P2 = 0.170(1). If P > P2 then the
increasing spiral trajectory terminates in one of the absorbing states as demonstrated in figure 2.
In the vicinity of the first threshold value A ∝ (P − P1) in agreement with the expectation.
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In contrast, A approaches 1 very smoothly when P goes to P2. Surprisingly, our MC data can
be well approximated by a power law behaviour (1 −A ∝ (P2 −P)γ ) as indicated in the inset
of figure 5. The numerical fit yields γ = 3.3(3).

It is worth mentioning that the emergence of global oscillation has already been observed in
the above-mentioned epidemiological model when varying the quenched randomness without
the constraints of regularity [25]. The similar behaviour refers to the robustness of this type
of transition.

4. Extended mean-field analysis

The predictions of the traditional mean-field analysis are well discussed in the textbook by
Hofbauer and Sigmund [42]. According to this approach four stationary states exist, namely,
the above-mentioned three absorbing states (e.g. c1 = 1 and c2 = c3 = 0) and the well-mixed
symmetric state where the three species are present with the same concentration (1/3). Besides
these stationary solutions the mean-field analysis shows the existence of a set of oscillating
states whose closed trajectories draw concentric orbits around the centrum in the ternary
phase diagram. Along these orbits the product c1c2c3 is conserved. In agreement with the
expectation the MC simulations reproduce this behaviour for P = 1 as shown in figure 2.

The application of the pair approximation is inspired by its success when investigating
an evolutionary game with three (cyclically dominated) strategies on a random regular graph
[24]. This model exhibits both transitions mentioned above when varying the parameter(s)
of the payoff matrix. It is underlined that here the adoption of the neighbouring strategies
depends on the neighbourhood.

In the pair approximations one determines the p2(s1, s2) probability of finding the (s1, s2)

configuration on two nearest-neighbour (or linked) sites. In this case equations of motion
are derived for these quantities taking into account the contribution of all the elementary
invasion processes (details are given in the textbook by Marro and Dickman [29]). The
numerical integration of the corresponding equations predicts growing spirals approaching the
boundaries (and resulting in the maximum value A = 1 in the limit t → ∞) as indicated in
figure 2. This prediction is in contrast to the results of MC simulations obtained on either the
square lattice (A = 0) or the random regular graphs (A = 0.98). We have to emphasize that
although the equations of motion involve explicitly the number of neighbours the simple pair
approximation cannot distinguish the structure of the Bethe and square lattices. In the light
of previous experiences [24] it is expected that the pair approximation can well describe the
behaviour observed by MC simulations on the random regular graph because in this structure
the average loop size increases with ln N [35]. Thus, for large N, the local structure is tree-
like and the short range correlations between two sites can be well approximated by a product
of the p2(s, s

′) configuration probabilities involved along the single path connecting the
two sites. The comparison of the above values of A does not confirm this expectation. More
precisely, the pair approximation cannot account for the effect preventing the unlimited growth
of the area of the limit cycle. Preliminary results suggest that the limit value of A depends on
the degree of the random regular graph. In the near future we wish to study this effect by a
suitable extension of the dynamical cluster techniques. Henceforth, however, our efforts will
be concentrated on the annealed randomness because its investigation can be easily built into
the dynamical cluster technique. At the level of pair approximation the corresponding results
predict that the ‘spiral pitch’ decreases when P is increased and vanishes in the mean-field
limit (P = 1) as expected.

On the square lattice, as mentioned above, the pair approximation is not capable of
describing the appearance of self-organizing patterns maintained by the interfacial motions
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Figure 6. The invasion of the central site from its neighbouring sites affects all the four four-site
configuration probabilities.

due to cyclic invasions. This striking shortage can be eliminated by choosing larger and
larger clusters on which we determine all the possible configuration probabilities [29]. For
example, at the level of four-site approximation we determine the configuration probabilities
p4(s1, s2, s3, s4) on a 2 × 2 cluster assumed to be translation invariant on the square lattice. A
recent summary of larger-cluster approximations can be found in [30].

This approach takes explicitly into account some topological features of the square lattice.
A nearest-neighbour invasion (e.g. s4 → s5 as demonstrated in figure 6) will simultaneously
affect all the four four-site configuration probabilities involved. The spatial effect is taken into
account more rigorously if the probability of such a nine-site constellation is approximated as

p9(s1, . . . , s9) = p4(s1, s2, s4, s5)p4(s2, s3, s5, s6)

p2(s2, s5)p2(s4, s5)

× p4(s4, s5, s7, s8)p4(s5, s6, s8, s9)

p2(s5, s6)p2(s5, s8)
p1(s5) (1)

where the configuration probabilities satisfy the following compatibility conditions:

p1(s1) =
∑
s2

p2(s1, s2) =
∑
s2

p2(s2, s1)

p2(s1, s2) =
∑
s3,s4

p4(s1, s2, s3, s4) =
∑
s3,s4

p4(s3, s4, s1, s2) (2)

=
∑
s3,s4

p4(s1, s3, s2, s4) =
∑
s3,s4

p4(s3, s1, s4, s2).

The time derivative of p4(s1, s2, s3, s4) can be described by a master equation that
summarizes the contribution of all the possible elementary invasions. Namely,
d

dt
p4(s1, s2, s3, s4)

= −P
∑
sx

p4(s1, s2, s3, s4)p1(sx)[�(sx, s1) + �(sx, s2) + �(sx, s3) + �(sx, s4)]

+ P
∑
sx

p4(sx, s2, s3, s4)p1(s1)�(s1, sx)

+ P
∑
sx

p4(s1, sx, s3, s4)p1(s2)�(s2, sx)

+ P
∑
sx

p4(s1, s2, sx, s4)p1(s3)�(s3, sx)
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+ P
∑
sx

p4(s1, s2, s3, sx)p1(s4)�(s4, sx)

− 1 − P

4

∑
s5,s6,s7,s8,s9

p9(s1, s2, s5, s3, s4, s6, s7, s8, s9)�(s2, s4)

− 1 − P

4

∑
s5,s6,s7,s8,s9

p9(s5, s1, s2, s6, s3, s4, s7, s8, s9)�(s1, s3)

− 1 − P

4

∑
s5,s6,s7,s8,s9

p9(s5, s6, s7, s1, s2, s8, s3, s4, s9)�(s6, s2)

− 1 − P

4

∑
s5,s6,s7,s8,s9

p9(s5, s6, s7, s8, s1, s2, s9, s3, s4)�(s6, s1)

+
1 − P

4

∑
sx ,s5,s6,s7,s8,s9

p9(s1, s2, s5, s3, sx, s6, s7, s8, s9)δ(s2, s4)�(s2, sx)

+
1 − P

4

∑
sx ,s5,s6,s7,s8,s9

p9(s5, s1, s2, s6, sx, s4, s7, s8, s9)δ(s1, s3)�(s1, sx)

+
1 − P

4

∑
sx ,s5,s6,s7,s8,s9

p9(s5, s6, s7, s1, sx, s8, s3, s4, s9)δ(s6, s2)�(s6, sx)

+
1 − P

4

∑
sx ,s5,s6,s7,s8,s9

p9(s5, s6, s7, s8, sx, s2, s9, s3, s4)δ(s6, s1)�(s6, sx) + · · ·

(3)

where δ(sx, sy) denotes the Kronecker delta and the constraint of invasion is expressed as

�(sx, sy) =
{

1 if sy − 1 = sx mod 3
0 otherwise.

(4)

The terms proportional to P describe the contributions coming from the invasions from an
arbitrary distance while the contributions from one of the four nearest-neighbour sites are
proportional to (1 − P)/4. Equation (3) involves explicitly only those terms coming from the
downward invasions. The derivation of the missing terms is straightforward.

At the level of six-site approximation the probability of a nine-site configuration (as shown
in figure 6) is expressed by the product of configuration probabilities on 3 × 2 clusters as

p9(s1, . . . , s9) = p6(s1, s2, s3, s4, s5, s6)p6(s4, s5, s6, s7, s8, s9)

p3(s4, s5, s6)
(5)

where the p3(s1, s2, s3) indicates the configuration probabilities on a 3 × 1 cluster. Evidently,
in this case the invasion of the central site will influence some other six-site configuration
probabilities that we can handle in a similar way.

In both cases the corresponding master equations are solved by numerical integration and
the results are summarized in figure 5. In agreement with the expectation, the dynamical
cluster techniques (at such a high level) reproduce qualitatively well the results obtained by
MC simulations. Namely, both descriptions confirm the stability of the central stationary state,
that is the area A tends to zero, if P < P

(4p)

1 = P
(6p)

1 = 0.011(1). Above this transition point
the present approaches predict the appearance of a limit cycle within the range P1 < P < P2.
The area A increases linearly with P − P

(4p)

1 in the close vicinity of the transition point.
Similarly, A approaches 1 linearly for both the four- and six-site approximations, although
these methods predict different transition points, i.e., P (4p)

2 = 0.097(3) and P
(6p)

2 = 0.109(3).
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These sophisticated techniques have significantly improved the description, and the deviations
from the MC results reflect the relevant role of topological features.

5. Conclusions

In summary, cyclic invasions such as the rock-scissors-paper in the three-state systems can
maintain a rich variety of spatiotemporal patterns that depend on the quenched and annealed
randomness of the background. According to the MC simulations a self-organizing pattern
occurs on the square lattice. The classical mean-field and pair approximations are not capable
of reproducing this behaviour. It is demonstrated, however, that the extended versions
of this approach, called the dynamical cluster technique at the level of four- and six-site
approximations, can describe the appearance of this self-organizing pattern.

The quenched randomness is generated by a modified rewiring technique that conserves
the degree at each site. For weak quenched randomness the above spatiotemporal pattern
remains stable. When the measure of quenched randomness exceeds a threshold value this
system undergoes a transition from the symmetric stationary state (central fixed point) to a
synchronized oscillation (limit cycle). For annealed randomness this model exhibits similar
behaviour with a higher sensitivity to the variation of annealed randomness and above a second
threshold value the increasing oscillation terminates at one of the homogeneous (absorbing)
states. These features are reproduced qualitatively well by the dynamical cluster technique
considering the configuration probabilities on four- and six-site clusters. We think that further
systematic analyses can clarify how the transitions are affected on those systems where
the quenched randomness and annealed randomness occur simultaneously. More significant
modifications of this technique are required if we wish to study the cyclic invasions on networks
with arbitrary degree distributions.
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[37] Amaral L A N, Scala A, Barthélémy M and Stanley H E 2000 Proc. Natl Acad. Sci. USA 97 11149
[38] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[39] Dorogovtsev S N and Mendes J F F 2003 Evolution of Networks (Oxford: Oxford University Press)
[40] Newman M E J 2003 SIAM Rev. 45 167
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