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Abstract. Two-person games are used in many multi-agent mathematical models to describe pair interac-
tions. The type (pure or mixed) and the number of Nash equilibria affect fundamentally the macroscopic
behavior of these systems. In this paper, the general features of Nash equilibria are investigated system-
atically within the framework of matrix decomposition for n strategies. This approach distinguishes four
types of elementary interactions that each possess fundamentally different characteristics. The possible
Nash equilibria are discussed separately for different types of interactions and also for their combina-
tions. A relation is established between the existence of infinitely many mixed Nash equilibria and the
zero-eigenvalue eigenvectors of the payoff matrix.

1 Introduction

The traditional concepts of game theory [1] have been
extensively used for a long time in quantitative investi-
gations of phenomena that occur in biological and social
systems [2–6]. Pair interactions between the players are
generally described using the formalism of two-player
symmetric games, in which pure strategies can repre-
sent different physical states, forms of human behav-
ior, or biological species. The applicability of meth-
ods developed in statistical physics to the mathemati-
cal consideration of the macroscopic behavior of these
systems aroused the interest of physicists [7–13]. Most
of the recent efforts are focused on the suppression
of social dilemmas and the exploration of the conse-
quences of cyclic dominance.

In game theory, selfish and intelligent players wish
to maximize their own income [1]. In so-called non-
cooperative games players must choose their strategy
without communicating with each other. In these sys-
tems, Nash equilibria [14,15], collective strategy pro-
files from which unilateral deviation is not beneficial,
are considered as solutions. Nash proved the existence
of at least one Nash equilibrium when the players are
allowed to use mixed strategies, which randomly select
an available strategy according to some probabilities.
One of the main problems in game theory is related to
the number of Nash equilibria because the existence of
two or more solutions causes difficulties for the players
in the absence of communication. These features are
inherited by evolutionary games whose interactions are
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generally built up from two-person symmetric games
[8–12,16].

Some properties of evolutionary games can be pre-
dicted just based on their Nash equilibria. Small vari-
ations in the payoff parameters usually do not cause
relevant changes in the behavior of a game, so the clas-
sification of possible interaction types and their general
features has been the subject of a wide range of system-
atic scientific investigations. For example, the average
number of Nash equilibria was studied by Berg [17,18]
in n-strategy games with payoff elements determined
by random numbers, and the introduction of potential
games [19–21] has initiated the analysis of the decom-
position of games [22–28].

In the simplest non-cooperative game there are two
equivalent players with two available strategies and
their strategy-dependent income is defined by a pay-
off matrix of four possible payoff elements. In these
games, the search for the Nash equilibria can be sim-
plified by exploiting two features, namely that the
rank of incomes is not affected if the matrix elements
are multiplied by a positive number and shifted by
a constant. Consequently, this type of game can be
defined by two independent parameters. The corre-
sponding two-dimensional map of the possible Nash
equilibria distinguishes four characteristic types of
behavior illustrated generally by the traditional “pris-
oner’s dilemma”, “chicken” or “snow-drift”, “stag-
hunt”, and “harmony” or “trivial” games. These games
are well discussed in the above-mentioned textbooks
and reviews. This simple method, however, cannot be
easily applied to three or more strategies because of
the large number of payoff parameters [29]. Instead of
it, analyses are generally restricted to n-strategy games
defined by just a few parameters.
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The above-mentioned reduction of the number of rel-
evant parameters can be interpreted as a type of equiv-
alence between games. This concept can be extended
by recognizing that two games can be transformed
into each other by relabelling the strategies [30,31].
This type of isomorphism shrinks the range of possi-
ble behavior.

Here we discuss Nash equilibria within the framework
of matrix decomposition [28,32]. In this approach, the
n-strategy payoff matrix is built up from four types of
elementary matrices that represent fundamentally dif-
ferent interactions in evolutionary games. The existence
of pure and mixed Nash equilibria are discussed for
these elementary interactions and also for some charac-
teristic combinations. Isomorphic games can be easily
identified within the classes of elementary interactions.
Additionally, we briefly describe some methods that can
be used to determine Nash equilibria.

2 Fundamental concepts and a brief survey
of previous results

The relevant concepts of game theory [1] can be sur-
veyed briefly if we restrict ourselves to non-cooperative
two-person symmetric games. In this family of games,
there are two intelligent and selfish players (X and Y )
who do not communicate with each other. They both
have n options (called strategies) to choose from, and
they both wish to make a choice that maximizes their
own utility. This utility or payoff for a given strategy
pair is defined by an n × n payoff matrix A. The entry
Ajk (1 ≤ j, k ≤ n) defines the payoff of player X if
she chooses the j-th strategy while her co-player Y
chooses the k-th strategy. In symmetric games the play-
ers are equivalent, they receive the same payoff when
they choose the same strategy, and their payoffs are
exchanged when their strategies are exchanged.

The players may be allowed to use mixed strategies,
which can be represented by n-dimensional vectors as

sx =

⎛
⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎠ and sy =

⎛
⎜⎜⎝

y1
y2
...

yn

⎞
⎟⎟⎠ , (1)

where the vector components quantify the probability
of choosing the corresponding strategy, thus

xj , yj ≥ 0 ∀j and
∑

j

xj =
∑

j

yj = 1 . (2)

In this notation, pure strategies are represented by
Cartesian basis vectors, which also denote the vertices
of the simplex defined by the previous conditions. Using
this notation, the (expected) payoffs (Ux and Uy) of the
players are given by

Ux = sx · Asy and Uy = sy · Asx . (3)

In these games, a Nash equilibrium is a strategy pair
(s�

x, s�
y,) whose payoffs cannot be improved by unilateral

strategy changes, that is,

s�
x · As�

y ≥ s′
x · As�

y and s�
y · As�

x ≥ s′
y · As�

x , (4)

where s′
x �= s�

x and s′
y �= s�

y.
John Nash proved the existence of such equilibrium

points [14,15]. However, we have to emphasize that dif-
ficulties can still arise if a non-cooperative game has
more than one Nash equilibrium. In these cases, the
absence of communication and trust can prevent the
players from finding the optimal solution. Furthermore,
even single Nash equilibria are not always optimal.
They can create social dilemmas when selfishness dic-
tates strategy choices that lead to lower payoffs than
what cooperation could provide. (This happens in, for
example, prisoner’s dilemma, donation, and snowdrift
games.)

Game theory textbooks [1,33–38] describe a vari-
ety of methods for finding Nash equilibria. Here, we
recall the flow graph method for finding pure Nash
equilibria. This method constructs a directed network
whose nodes correspond to the possible strategy pair-
ings similar to the elements of the payoff matrix. The
nodes are connected according to unilateral strategy
changes on the analogy of the dynamical graph intro-
duced by Schnakenberg [39], and the edges point toward
the strategy pairing preferred by the active player. In
this flow graph, pure Nash equilibria have only incom-
ing edges. This approach is equivalent to the traditional
method of checking the conditions (4) row by row and
column by column. At the same time, the flow graph
visualizes directed loops, which prevent the game from
having a potential, a quantity whose properties we will
detail later. This approach can be applied to those pay-
off matrices that have different values in each row and
column.

The topological features of the flow graph remain
unchanged if the payoff matrix is multiplied by a pos-
itive number or weakly perturbed. However, multiply-
ing the payoff matrix by a negative number reverses the
direction of all edges of the flow graph.

Figure 1 shows the flow graph of a three-strategy
symmetric game that has three pure Nash equilibria.
This game illustrates a situation in which intelligent
players cannot decide which strategy to choose because
all of the game’s Nash equilibria are Pareto optimal,
that is, neither player’s income can be increased with-
out decreasing the other player’s payoff [8,40,41]. This
example specifically and the flow graph method in gen-
eral highlight that only one pure Nash equilibrium can
exist in each row and column of the payoff matrix, which
caps the number of pure Nash equilibria at n in an n-
strategy game. Unlike the game in Fig. 1, not all games
have a full complement of pure Nash equilibria, and
some have none at all. The best known example of a
game without pure Nash equilibria is the three-strategy
rock-paper-scissors game.
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(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (9,7) (4,3)

(7,9) (2,2) (5,6)

(3,4) (6,5) (8,8)

Fig. 1 The flow graph of a three-strategy symmetric game.
The upper number pairs inside its nodes (the square boxes)
refer to the strategy choices of the players X and Y , while
the lower pairs define their corresponding payoffs. Gray
boxes indicate Nash equilibria

The standard method for finding mixed Nash equi-
libria assumes that both players wish to maximize their
payoff by suitably varying their probability parameters,
so that at the equilibrium point

∂Ux

∂xj
= 0 and

∂Uy

∂yj
= 0 ∀j (5)

subject to the conditions (2). Under the assumptions
that the payoff matrix is invertible and the solution
belongs to the interior of the simplex defined by Eq. (2),
a straightforward calculation yields a single, symmetric
possible mixed Nash equilibrium, namely,

s�
x = s�

y =
1
CA

−1u , (6)

where A−1 is the inverse matrix of A, u is the all-one
vector (uj = 1 ∀j), and C is a normalization factor. This
equilibrium strategy coincides with the second player’s
(also interior) optimal solution in the zero-sum game
defined by A [42–44]. Eq. (5) gives the same prediction
if A is replaced by αA.

For example, the payoff matrix and its inverse for the
game in Fig. 1 are:

A =

(1 9 4
7 2 5
3 6 8

)
and A−1 =

1
239

( 14 48 −37
41 4 −23

−36 −21 61

)
.

(7)
The resulting mixed Nash equilibrium is

s�
x = s�

y =
1
51

(25
22
4

)
, (8)

from which the players derive the same expected pay-
off (Ux = Uy = 239

51 ≈ 4.686), which is smaller than
those provided by the pure Nash equilibria. Intelligent
players should conclude that without communication,
fraternity, or trust they cannot select one of the three
pure Nash equilibria.

Additional, sometimes curious Nash equilibria can
also exist beside the one predicted by Eq. (6), as we will
show in the next section that details the framework of
matrix decomposition.

3 Nash equilibria of elementary interactions

On the analogy of vectors, the payoff matrix A can
also be built up as a linear combination of a set of
basis matrices. The simplest way to do this is to con-
struct A from n × n Cartesian type basis matrices
that each contain a single 1 while all of their other
entries equal 0. Instead of this, we could choose other
sets of basis matrices, for example, created by Fourier
transformation [27] or dyadic products [28]. Here, we
use a framework [32] that distinguishes four orthog-
onal types of elementary interaction, namely, games
with self- (A(se)) and cross-dependent (A(cr)) pay-
offs, coordination-type (A(co)) and cyclic-type (A(cyc))
interactions. Two matrices (A and B) are orthogonal if∑

j,k AjkBjk = 0.
In this notation, the payoff matrix is given as

A = A(av) + A(se) + A(cr) + A(co) + A(cyc) , (9)

where A(av) defines the irrelevant term of the decom-
position that is proportional to the all-one matrix A(u):

A(av) = aA(u) = a

⎛
⎜⎜⎜⎝

1 1 . . . 1
1 1 . . . 1
.
.
.
.
.
.
. . .

.

.

.
1 1 . . . 1

⎞
⎟⎟⎟⎠ , where a =

1

n2

∑
j,k

Ajk .

(10)
Notice that a is the average value of the entries of the
payoff matrix. If A = A(av), then the payoff is inde-
pendent of the strategy choices and any strategy pair
satisfies the conditions (4). In other words, this game
has infinitely many Nash equilibria.

3.1 The cross- and self-dependent components

The cross-dependent component (A(cr)) is defined by a
matrix with row-independent payoffs in each column,
that is,

A(cr) =

⎛
⎜⎜⎝

γ1 γ2 . . . γn

γ1 γ2 . . . γn

...
...

. . .
...

γ1 γ2 . . . γn

⎞
⎟⎟⎠ , where γk =

1
n

∑
j

Ajk −a .

(11)
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This type of interaction is characterized by (n−1) inde-
pendent parameters because

∑
k γk = 0. This condition

ensures orthogonality between A(av) and A(cr). These
two components do not affect the payoff variation of
player X (or Y ) if she modifies her strategy unilater-
ally. Thus, if A=A(av)+A(cr), then any strategy pair
is a non-strict Nash equilibrium.

The self-dependent component (A(se)) is defined by
a matrix of identical, column-independent elements in
its rows, that is,

A(se) =

⎛
⎜⎜⎝

ε1 ε1 . . . ε1
ε2 ε2 . . . ε2
...

...
. . .

...
εn εn . . . εn

⎞
⎟⎟⎠ , where εj =

1
n

∑
k

Ajk − a .

(12)
Since

∑
j εj = 0, A(se) is also defined by (n − 1)

independent parameters. In these games, the income
of the players is not affected by their opponent’s
choice, so they are both motivated to choose the strat-
egy with the highest εj . If the maximum is l-fold
degenerate, then the game has a continuously infinite
number of mixed Nash equilibria, which combine the
highest-paying strategies with arbitrary probabilities.
For instance, if a three-strategy self-dependent game is
given by ε1 = ε2 = 1 and ε3 = −2, then the players
receive the highest income (Ux = Uy = 1) in mixed
Nash equilibria of the form s+x = (x1, 1 − x1, 0) and
s+y = (y1, 1 − y1, 0) (0 ≤ x1, y1 ≤ 1).

Social dilemmas can occur in combinations of self-
and cross-dependent components. The pure Nash equi-
libria of these games are solely determined by A(se)

while the payoff values are affected by A(cr) too. The
two-strategy donation game has this structure as well,
and thus, the general A(cr) + A(se) game can be con-
sidered as the n-strategy version of the donation game
[32].

3.2 The coordination component

The coordination component is the symmetric part of
A − A(av) − A(cr) − A(se) and it can be built up from
elementary interactions Q(j,k) as

A(co) =
∑
j,k
j<k

νjkQ(j,k), (13)

where Q(j,k) has only four non-zero elements, namely,
Q

(j,k)
jj = Q

(j,k)
kk = −Q

(j,k)
jk = −Q

(j,k)
kj = 1. The whole

coordination component is given by n(n − 1)/2 param-
eters νjk that quantify the strength of coordination
(or Ising-type interaction) between all possible differ-
ent strategy pairs (j < k).

When the payoff matrix consists of just one ele-
mentary coordination component (i.e., A = νjkQ(j,k)),
then the game has two equivalent pure Nash equilib-
ria, namely, the strategy pairs (j, j) and (k, k) if νjk is
positive and (j, k) and (k, j) if νjk is negative.

If all νjk are positive, then A(co) has n pure Nash
equilibria because all of its offdiagonal elements are
negative, while A

(co)
jj > 0∀j. In this case, the play-

ers do best if they choose the symmetric strategy pair
(l, l) with the highest corresponding matrix element,
All = max(A(co)

jj ).
In potential games [19,23,45], that is, games without

a cyclic component (i.e., A(cyc) = 0), a more general
version of this rule applies: The highest-paying Nash
equilibrium is determined by the highest entry in the
game’s symmetric potential matrix V, which is given
by

V = A(se) + A(se)T + A(co) + A(av). (14)

It is emphasized that the symmetric two-strategy games
are potential games that simplifies their analyses. Fur-
thermore, if max(Vjk) = Vll is a diagonal entry, then
the best choice for the players is the corresponding
symmetric strategy pair (l, l), whereas if the interac-
tion is dominated by an anti-coordination component
(max(Vjk) = Vlm = Vml) than the game has two equiv-
alent pure Nash equilibria, namely, the strategy pairs
(l,m) and (m, l).

If the game is of the form A = A(av) +A(cr) +A(co),
then the two players receive the same income in Nash
equilibria, which means that their individual and com-
mon interests coincide. Changing the cross-dependent
component modifies neither the potential V nor the
Nash equilibria. At the same time, it does change the
payoffs, which may lead to a social dilemma. Previ-
ous investigations show that different kinds of social
dilemmas can be observed in large domains of the n2-
dimension parameter space of two-player games [32].

Due to its orthogonality to A(av), A(cr), and A(se)

the sum of the entries of A(co) is zero in each of its
rows and columns. This feature guarantees that if player
Y chooses her strategy at random, then player X’s
expected income is zero regardless of his strategy choice.
Thus, the strategy pair s�

x = s�
y = 1

nu is a mixed Nash
equilibrium for coordination-type A = A(co) games.
Notice that this argument hinges on A(co)u = 0, that
is, u being the eigenvector of A(co) with zero eigenvalue.
This means that any other eigenvectors of A(co) with
zero eigenvalue also constitute mixed Nash equilibria.
For example, a four-strategy coordination game com-
posed of two non-overlapping elementary coordination
games has the payoff matrix

A(co) =

⎛
⎜⎝

ν12 −ν12 0 0
−ν12 ν12 0 0

0 0 ν34 −ν34
0 0 −ν34 ν34

⎞
⎟⎠ (15)

which has mixed Nash equilibria with zero eigenvalue
given by

sx =

⎛
⎜⎝

x
x

0.5 − x
0.5 − x

⎞
⎟⎠ and sy =

⎛
⎜⎝

y
y

0.5 − y
0.5 − y

⎞
⎟⎠ , (16)
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where 0 ≥ x, y ≥ 0.5. The four-state Ashkin-Teller
model is the linear combination of three similar coor-
dination components when ν12 = ν34, ν13 = ν24, and
ν14 = ν23 [46].

In light of the results above, we can deduce a general
rule for finding mixed Nash equilibria in coordination-
type games. The strategies are naturally divided into
disjunct groups along the lines of elementary interac-
tions in such a way that strategies within each group
are connected by a non-zero-strength elementary coor-
dination component to at least one other strategy in the
same group and the groups cannot be further divided
without breaking at least one such connection. Strate-
gies that are not connected to any other strategy (i.e.,
entries in their row and column of the payoff matrix
equal zero) form one-strategy groups on their own. In
mixed Nash equilibria with zero eigenvalue, strategies
that belong to the same group are chosen with the same
probability, and these probabilities may be different
for different groups. This set of mixed Nash equilibria
remains unchanged when varying the value of non-zero
elementary coordination coefficients, that is, νjk → ν′

jk

provided that νjk, ν′
jk �= 0.

Coordination games with more eigenvectors with zero
eigenvalue have further curious mixed Nash equilibria.
For example, the matrix

A(co) =

⎛
⎜⎝

−1 1 −1 1
1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

⎞
⎟⎠ (17)

is composed of four elementary anti-coordination and
two elementary coordination games. This matrix’s rank
is reduced by three eigenvectors with zero eigenvalue.
Notice that either the sum or the difference of any two
rows (or columns) is zero. For this four-strategy game
the set of mixed Nash equilibria can be given as

s�
x =

⎛
⎜⎝

0.25 + x1

0.25 + x2

0.25 − x1

0.25 − x2

⎞
⎟⎠ and s�

y =

⎛
⎜⎝

0.25 + y1
0.25 + y2
0.25 − y1
0.25 − y2

⎞
⎟⎠ , (18)

where 0 ≥ x1, x2, y1, y2 ≥ 0.25.
Equation (17) defines a game in which A(co) remains

unchanged under cyclic permutations of the strategy
labels. Games with a similar symmetry can be con-
structed for any n. This symmetry can be exploited
in the calculation of eigenvalues and eigenvectors.
We illustrate this method on a five-strategy game
defined by elementary coordination components of two
strengths (1 and ν) as

A(co5) =

⎛
⎜⎜⎜⎝

2 + 2ν −1 −ν −ν −1
−1 2 + 2ν −1 −ν −ν
−ν −1 2 + 2ν −1 −ν
−ν −ν −1 2 + 2ν −1
−1 −ν −ν −1 2 + 2ν

⎞
⎟⎟⎟⎠ .

(19)

The eigenvectors of this matrix are the real and imag-
inary parts of the complex Fourier components v(q)
defined by

v(q) =

⎛
⎜⎜⎜⎝

eiϕq

eiϕq2

eiϕq3

eiϕq4

1

⎞
⎟⎟⎟⎠ , or vj(q) = eiϕqj , (20)

where ϕ = 2π
5 and the possible values of the wave num-

ber are q = 0, ±1, ±2. A similar method is used in
solid state physics (see textbooks, e.g., [47,48]) when
determining the spectrum of lattice vibrations on a one-
dimensional lattice. The eigenvalue ω(q) is given by

ω(q)v(q) = A(co5)v(q) . (21)

A straightforward calculation yields

ω(q) = −4 sin2 ϕq

2
[1 + 4ν cos2

ϕq

2
]. (22)

This eigenvalue is zero for q = 0 and the cor-
responding eigenvector defines the uniformly random
mixed Nash equilibrium. If ν is such that the two-
fold degenerate eigenvalues equal 0 for some q, that is,
ω(q) = ω(−q) = 0, then an additional degree of freedom
opens up in the space of zero-eigenvalue Nash equilibria.
Specifically, ω(1) = ω(−1) = 0 if ν = −1/4 cos2 (ϕ/2)
and the corresponding Nash equilibria can be written
as

s�
x =

1
5

⎛
⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎠+ c1

⎛
⎜⎜⎜⎝

cos(ϕ)
cos(2ϕ)
cos(3ϕ)
cos(4ϕ)

1

⎞
⎟⎟⎟⎠+ c2

⎛
⎜⎜⎜⎝

sin(ϕ)
sin(2ϕ)
sin(3ϕ)
sin(4ϕ)

0

⎞
⎟⎟⎟⎠ , (23)

and

s�
y =

1
5

⎛
⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎠+ c′

1

⎛
⎜⎜⎜⎝

cos(ϕ)
cos(2ϕ)
cos(3ϕ)
cos(4ϕ)

1

⎞
⎟⎟⎟⎠+ c′

2

⎛
⎜⎜⎜⎝

sin(ϕ)
sin(2ϕ)
sin(3ϕ)
sin(4ϕ)

0

⎞
⎟⎟⎟⎠ , (24)

where the possible values of c1, c2, c′
1, and c′

2 are
limited by the constraints in Eq. (2). When ν =
−1/4 cos2 ϕ and ω(2) = ω(−2) = 0 instead, the set of
resulting mixed Nash equilibria is described by a very
similar formula, in which the uniformly random mixed
Nash equilibrium is perturbed by the Fourier compo-
nents belonging to q = ±2.

The same general method can be used to derive
zero-eigenvalue Nash equilibria as a linear combi-
nation of Fourier components whenever the payoff
matrix remains unchanged under the cyclic permuta-
tion of strategy labels. We have to emphasize, how-
ever, that cyclic permutation symmetry is not a nec-
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essary condition for the existence of additional zero-
eigenvalue eigenvectors, because they always emerge in
a coordination-type game if the rank of A(co) is less
than (n − 1).

Some curious coordination games that exhibit inter-
esting features have already been used as pair interac-
tions in evolutionary games [49]. Some variants of the
four-state Ashkin–Teller model [46] present a wide vari-
ety of different critical behavior [50–52].

3.3 The cyclic component

The cyclic component is the antisymmetric part of
A − A(av) − A(cr) − A(se) and it can be built up from
elementary cyclic interactions C(j,k,l)(j < k < l), which
are voluntary rock-paper-scissor games, that is, if one
of the players chooses strategy m �= j, k, l, then he
effectively declines to play the game and both play-
ers receive zero payoff. For example, this means that
the n-strategy C(1,2,3) game extends the three-strategy
rock-paper-scissors game (involving strategies 1, 2, and
3) by having additional zero-filled rows and columns in
its payoff matrix in the following way

C(1,2,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 −1 0 . . . 0
−1 0 1 0 . . . 0
1 −1 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (25)

The payoff matrix of the other elementary cyclic games
can be derived from this matrix by suitably exchanging
its rows and columns. Elementary cyclic components
are not all independent of each other [28,53,54]. There
are, however, many subsets of all C(j,k,l) whose elements
span the whole space of cyclic games. For example, if
one of the indices is fixed (e.g., j = 1), then the remain-
ing (n−1)(n−2)/2 voluntary rock-paper-scissors games
are suffcient to describe any cyclic component as

A(cyc) =
∑
j,k

1<k<l

λ1klC(1,k,l), (26)

where each coefficient λ1kl defines the strength of
the corresponding elementary cyclic component. This
choice of the set of basis matrices is convenient because
A

(cyc)
kl = λ1kl if 1 < k < l. The elements of A(cyc) in its

first row and column can be expressed in terms of λ1kl

through the orthogonality conditions
∑

m A
(cyc)
ml = 0 ∀l

and
∑

m A
(cyc)
km = 0 ∀k.

The linear combinations of the elementary cyclic
components are zero-sum games. Thus, the players
receive zero income if both choose the same strategy
and Ux = −Uy otherwise. In the latter case the loser
would want to choose another strategy to switch the
loser and winner roles between them or at least enforce
zero income for both players.

These games have no strict pure Nash equilibria. In
the corresponding flow graphs (see Fig. 1) the nodes
have both outgoing and incoming edges. At the same
time, the random mixed strategy pair (s�

x = s�
y = 1

nu)
is always a Nash equilibrium. Additional sets of mixed
Nash equilibria can occur in cases similar to the ones
already discussed for coordination games. That is, if
the strategies can be split into disjunct groups with-
out cyclic interactions between the members of different
groups, then the game has an infinite set of mixed Nash
equilibria in which the strategies within a group are cho-
sen with the same probability. For example, if the game
is defined by the matrix in Eq. (25) (i.e., A = C(1,2,3)),
then the set of mixed Nash equilibria is given by

s�
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x1

x1

x4

...
xn

⎞
⎟⎟⎟⎟⎟⎟⎠

and s�
y =

⎛
⎜⎜⎜⎜⎜⎜⎝

y1
y1
y1
y4
...

yn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (27)

where

xj , yj ≥ 0 ∀j and 3x1 +
∑

j
j>3

xj = 3y1 +
∑

j
j>3

yj = 1.

(28)
The above-mentioned mixed Nash equilibria are triv-

ial eigenvectors of A(cyc) with zero eigenvalue. Fur-
ther curious Nash equilibria exist for those A(cyc) that
have additional eigenvectors with zero eigenvalue. To
illustrate the features of these games we recall the
modified version of the rock-paper-scissors-lizard-Spock
game analyzed by Kang et al. [55] on a square lattice. In
this five-strategy model the pair interaction is described
by the matrix

A(rpslS) =

⎛
⎜⎜⎜⎝

0 λ −1 1 −λ
−λ 0 λ −1 1
1 −λ 0 λ −1

−1 1 −λ 0 λ
λ −1 1 −λ 0

⎞
⎟⎟⎟⎠ , (29)

which remains unchanged when the strategy labels are
permutated cyclically. Thus, for the determination of
additional mixed Nash equilibria we can again apply
the method we used to A(co5) [see Eq. (19)] in the pre-
vious section. In this game the eigenvalue of the Fourier
components is an imaginary function of the wave num-
ber q (q = 0, ±1, ±2) [56], namely

ω(q) = 2i[sin 2ϕq − λ sin ϕq] . (30)

For q = 0 the eigenvalue is zero (ω(0) = 0) indepen-
dently of the value of λ and the corresponding mixed
Nash equilibrium dictates uniformly random strategy,
that is, s�

x = s�
y = 1

nu. Additional eigenvectors with
zero eigenvalue appear when the ratio of the two ele-
mentary cyclic component strengths is the golden ratio
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Φ = (
√

5 − 1)/2. Specifically, ω(1) = ω(−1) = 0 if
λ = 1/Φ and ω(2) = ω(−2) = 0 if λ = Φ. In the first
case, the corresponding set of mixed Nash equilibria
is equivalent to the one given by Eqs. (23) and (24).
We have to emphasize, however, that the λ = 1/Φ and
λ = Φ A(rpslS) games are actually isomorphic, because
a suitable relabelling of the strategies (1 → 1, 2 → 4,
3 → 2, 4 → 5, and 5 → 3) transforms their payoff
matrices into each other up to a multiplicative factor
Φ.

Monte Carlo simulations of the many-player evolu-
tionary version of these pair interactions on a square
lattice with imitation-type dynamics indicated the
appearance of huge fluctuations when λ 	 Φ, which
lead to the extinction of two of the strategies in small
systems [55,56]. Similar phenomena may also emerge in
other systems with infinitely many mixed Nash equilib-
ria.

3.4 Combinations of elementary interactions

Combinations of the coordination and cyclic compo-
nents (A = A(co) + A(cyc)) inherit the symmetric uni-
formly random Nash equilibrium (s�

x = s�
y = 1

nu),
because they both fulfill the conditions

∑
k Ajk =∑

k Akj = 0. As the cross-dependent component does
not affect individual preferences, the uniformly random
Nash equilibrium is even preserved in games of the form
A = A(co)+A(cyc)+A(cr)). Combinations of A(co) and
A(cyc) can also have infinitely many mixed Nash equi-
libria if they have more than one eigenvector with zero
eigenvalue. For example, if A = A(co5) + A(rsplS) with
ν = −1/4 cos2 (ϕ/2) and λ = Φ, then their shared Nash
equilibria [defined by Eqs. (23) and (24)] carry over to
the combination.

The conditions
∑

k Ajk = 0 and
∑

k Akj = 0 pre-
clude the existence of the inverse of the payoff matrix
and thus the applicability of the formula in Eq. (6).
The determinant of A is zero for these games because
its rows (and columns) are not all linearly independent.
Nevertheless, if a game defined by A = A(co) + A(cyc)

is shifted by an irrelevant component, then the modi-
fied matrix may become invertible and the formula (6)
can be used to predict a single mixed Nash equilibrium.
The reader can easily check that if the payoff matrix of
the rock-paper-scissors game is modified by an addi-
tional uniform constant (A = A(rps) + aA(u)) then A
becomes invertible and plugging the inverse into Eq. (6)
reproduces the well-known mixed Nash equilibrium.

The uniformly random symmetric Nash equilibrium
may be distorted or eliminated in games of the form
A = A(co) +A(cyc) +A(se). For these games, the deter-
minant of A is zero, so its inverse does not exist, which
invalidates formula (6). However, this problem may be
circumvented by the previous trick of shifting the pay-
offs by a constant (A → A + aA(u)) if the rank of A
is (n − 1). Otherwise, the game has a set of infinitely
many mixed Nash equilibria just like the games dis-
cussed above.

4 Summary and conclusions

The concept of matrix (game) decomposition has
allowed us to extract some general features of the Nash
equilibria of two-player symmetric n-strategy games via
the systematic investigation of the four types of elemen-
tary interaction and their combinations. The essence of
games is missing if the payoff matrix consists only of a
cross-dependent component and an irrelevant constant.
In these interactions self-interest does not motivate the
players to prefer any one of the strategies, and accord-
ingly these games have a set of infinitely many Nash
equilibria, because any strategy pair satisfies the con-
ditions of (non-strict or weak) Nash equilibria in them.

Real interaction between the players is also missing if
the payoff matrix includes only a self-dependent compo-
nent. In this type of elementary “interaction” the play-
ers can choose the strategy that provides the highest
(and the same) payoff to them independently of each
other. This symmetric strategy pair is the only pure
Nash equilibrium. Mixed Nash equilibria can occur if
multiple strategies all award the same maximal payoff.

The Nash equilibria of combinations of self- and
cross-dependent components are determined just by the
self-dependent term, but the cross-dependent compo-
nent still affects the payoffs, which may cause the pay-
off in the Nash equilibrium to be not optimal for the
players, creating a social dilemma.[]

The coordination component summarizes the contri-
butions of elementary coordinations (rewarding play-
ers based on whether they choose the same or oppo-
site options) between all different strategy pairs. These
are friendship games when the players receive the same
income regardless of which strategy pair they choose.
If the elementary components encourage the choice of
the same strategy for all strategy pairs, then the coor-
dination game has n pure Nash equilibria. In spite of
the large number of these Nash equilibria, intelligent
players will evidently choose the symmetric strategy
pair that provides the highest income. The pure Nash
equuilibria of potential games, which combine coordina-
tion, cross-, and self-dependent components, are simi-
larly easy to identify. However, if a potential game is
dominated by a strong anticoordinated strategy pair,
then it has two equivalent pure Nash equilibria, which
poses another kind of dilemma for the players in the
absence of communication.

Further inferences can be drawn from fact that the
matrices of the four elementary interaction types are
orthogonal to each other. It guarantees that uniform
random choice is a mixed Nash equilibrium strategy
for both the coordination component and the cyclic
component (which does not have pure Nash equilib-
ria), because it is a zero-eigenvalue eigenvector of
coordination- and cyclic-type payoff matrices, and con-
sequently their linear combinations. If a payoff matrix
has multiple zero-eigenvalue eigenvectors, then the cor-
responding game has a set of infinitely many mixed
Nash equilibria spanned by the linear combinations of
these eigenvectors. We emphasize, however, that despite
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its seemingly general nature, matrices with this prop-
erty still only comprise a zero-measure subset of all pos-
sible payoff matrices.
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53. G. Szabó, I. Borsos, E. Szombati, Physica A 521, 416
(2019)
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