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We study the spreading of families in two-dimensional multispecies predator-prey systems, in which species
cyclically dominate each other. In each time step randomly chosen individuals invade one of the nearest sites
of the square lattice eliminating their prey. Initially all individuals get a family name which will be carried on
by their descendants. Monte Carlo simulations show that the systems with several speciessN=3,4,5d are
asymptotically approaching the behavior of the voter model, i.e., the survival probability of families, the mean
size of families, and the mean-square distance of descendants from their ancestor exhibits the same scaling
behavior. The scaling behavior of the survival probability of families has a logarithmic correction. In case of
the voter model this correction depends on the number of species, while cyclic predator-prey models behave
like the voter model with infinite species. It is found that changing the rates of invasions does not change this
asymptotic behavior. As an application a three-species system with a fourth-species intruder is also discussed.
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The original Lotka-Volterra model[1,2] describes the
struggle for existence among interacting(homogeneous)
populations, such as predator-prey systems. The cyclic vari-
ant of the model is attracting increasing theoretical interest.
The reason is that dynamically equivalent absorbing states
and spatial structure eventuate a rich variety of interesting
phenomena in the dynamics of the model[3–7]. Spreading
phenomena are frequently studied in models with absorbing
states. The best known examples are the contact process(for
review [8,9]), voter model[10], but exploration of models
with more absorbing states is far from being complete.

In the present model each site of a square lattice is occu-
pied by one of theN species dominating cyclically each
other. They mimic a cyclic food chain, that is each species
has one predator and one prey(e.g., A eats B eats C eats A
for N=3). The following sequential dynamics are imple-
mented:(i) we randomly choose a site and one of its nearest
neighbors;(ii ) if they are different species the predator eats
the prey, by that we mean the predator duplicates itself and
the prey is eliminatedsA+B→2Ad. Nothing happens if they
are neutral species that do not interact(this can be only if
N.3). The simulations are performed on a square lattice
with L3L sites under periodic boundary conditions. In a
time unit, called a Monte Carlo step(MCS), each site of the
lattice is chosen once on the average. In such a spatial system
the variation of species distribution can occur only along
boundaries separating a predator-prey pair. Consequently,
both the single species(homogeneous) states and the mix-
tures of neutral species are considered as absorbing states
(where the system stays forever once it is reached). Starting
from a random initial state this system evolves toward a self-
organizing pattern of species distribution that is maintained
by the cyclic invasions[5,6] if the system is sufficiently large
for 3øNø14. Frachebourg and Krapivsky[3] have shown
that fixation occurs on an arbitrary large square lattice if
N.14. Henceforth our analysis will be restricted to the cases
N=3, 4, and 5.

In this Brief Report we study the two-dimensional(2D)
spreading and extinction of families(or colonies) in multi-
species predator-prey systems. Spreading of epidemics is
usually studied by starting from a single active site initial
condition[8]. In such a situation all the active sites have the
same common ancestor or origin, so they are members of a
single family. The weakness of this procedure is that many
independent realizationss106–107d have to be made for good
statistics. Now our simulations are started with a random
initial state and after a suitable thermalization time(needed
to achieve the stationary state int=0) all the individuals on
the sites of the lattice get different “family names” that will
be inherited by the descendants(for example ifA with name
1 eatsB from family 2 the new-bornA inherits his parent’s
family name 1). Subsequently, sites with identical names
have a common ancestor and form a family. Thus we can
follow simultaneously the history ofL3L families and evi-
dently this way improves the statistics.

The growth of families is customarily described by the
average survival probability of the familiesPstd. A family
survives if at least one individual on the lattice carries that
name. As a consequence,Pstd is the number of surviving
families normalized byL3L. Further measured quantities
are the mean population size of the familiesnstd and the
mean-square distance of descendants from their original an-
cestorR2std characterizing the average spreading of the sur-
viving families [8].

In some cases the scaling of these quantities was found to
be Pstd~ t−d, nstd~ th, and R2std~ tz [8,9]. In the present
model, however, the mean population size remains un-
changed[nstd=1 corresponding toh=0] because the total
number of surviving individuals is conserved for each el-
ementary invasion. The classical voter models[10–12] pos-
sess the same feature. This similarity has inspired us to com-
pare the above predator-prey systems with the voter models
from the viewpoint of family growth.

PHYSICAL REVIEW E 70, 012901(2004)

1539-3755/2004/70(1)/012901(4)/$22.50 ©2004 The American Physical Society70 012901-1



In the voter model the individuals distributed on a lattice
represent one of theN opinions that are modified by random
sequential updates. More precisely, if two randomly chosen,
nearest-neighbor individuals have different opinions(say A
and B) then the invasions in both directions,A+B→2A or
A+B→2B, take place with the same probability. In case of
two opinionssN=2d we get back the classical voter model
[10–12]. First our numerical investigations were focused on
a particular case—when all the individuals have different
opinions sN=L2d at t=0. Notice that the family growth in
this model agrees with those studied by Dickman and Tretya-
kov [13] considering the spreading from a single 1 in the sea
of 0s. Due to the enhanced accuracy of the applied method
we can demonstrate the occurrence of the logarithmic correc-
tion to scaling of the survival probabilityPstd.

Several studies confirm that scaling of different quantities
have logarithmic corrections in the 2D voter model
[10,14,15]. The most common example is the density of in-
terfaces:r~1/ ln t [15]. The assumption of logarithmic cor-
rection is also beneficent for the scaling of the survival prob-
ability of families. Averaging over ten simulations on a
200032000 lattice(it means that quantities were averaged
on 43107 families) up to a maximum time of 105 MCS have
resulted in that the survival probability of the families can be
described by the expressionPstd.sa+b ln td / t [Fig. 1(b)]
more exactly, than by a simple power law used in the latest
studies[Fig. 1(a)]. The numerical fitting givesa=0.487s2d
andb=0.302s1d.

These simulations were repeated with choosing randomly
one of theN=2 or 3 opinion(species) labels for theL2 fami-
lies at t=0. In contrast to the caseN=L2 here we have more
families with the same opinion, but in the evolutionary pro-
cess only those family(and species) invasions are permitted
where the nearest neighbors belong to different species. This
constraint yields slower extinctions. In the asymptotic region
(t*100 MCS) the results of numerical simulations forPstd
are consistent with a similar behavior as above. In this case,
however, the fitted values of the parameters are changed and
as shown on Fig. 1(b) the slope depends on the number of
speciessNd. This dependence follows from the fact that in-
vasions are permitted only between different species, so an
individual can react only with thesN−1d /N fraction of the
whole population; this means the survival probability of
families declines more slowly ifN is small. Figure 1(c)
proves that the slopes can be approximated with the follow-
ing relationbsNd=bs`dpN/ sN−1d, wherebs`d=0.302s1d is
the slope calculated above(when all individuals had different
opinions int=0, which corresponds toN→`).

Comparing the numerical results we obtained for the cy-
clic predator-prey systems and the results for the voter model
(presented above) we have noticed that in cyclic predator-
prey systems after a transient time the quantitiesPstd ap-
proach asymptotically to a similar function given above. The
length of the transient period increases with the number of
speciesN, so the asymptotic behavior could be detected only
in case of systems withN=3, 4, and 5. The asymptotic
slopessbd seem to be the same as for the voter model with
infinite species(Fig. 2). In order to avoid the undesired size
effect [in the measurement ofR2std] for N=3, 4 the simula-

tions were performed on a 240032400 lattice(20 respec-
tively 10 realizations) up to 105 MCS, for N=5 the size of
lattice wasL=3000 (10 realizations) up to time 105. For
systems withN.5 the preliminary simulations suggest the
same behavior, but for conclusive results simulations up to
more time steps should be made. It is interesting that during
the transient time the quantitytPstd goes through a maximum

FIG. 1. MC results for the voter model.(a) Log-log plot of the
survival probability as a function of time. The asymptotict−1 func-
tion is denoted by a solid line.(b) Log-lin plot of the survival
probability of families multiplied by time as a function of time.(c)
The same log-lin plot, buttPstd is now multiplied bysN−1d /N. The
open diamonds indicate the voter model with infinite species, when
all individuals represent different families and species att=0 sN
→`d. Results for the voter model withN=2 and 3 species are
denoted by open circles and plus signs, respectively.

FIG. 2. Log-lin plot of the survival probability of families mul-
tiplied by time as a function of time. The closed diamonds indicate
the MC results for the voter model if theL2 individuals represent
different families and species att=0 sN→`d. For the cyclic
predator-prey systems the results are denoted by open trianglessN
=3d, open squares(4), and open circles(5).
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that is increasing withN. This observation is related to the
fact that the probability for an individual to be surrounded by
neutral partners grows withN, so the family extinction is
blocked. In the asymptotic period, however, the slope does
not depend on the number of species and these systems be-
have like the voter model with infinite number of species. In
this case the individuals typically meet their predator or prey
at the boundary of a domain of family and the invasion is not
blocked anymore, as well as in the voter model forN→`.

The exponent ofR2std was also found to be the same as in
the voter model independently of the value ofN. Figure 3
demonstrates clearly thatR2 grows linearly with time in the
asymptotic region. The numerically fitted exponents agree
with the theoretical predictionsz=1d within the statistical
error that is less than one percent. In the voter model this
behavior is explained by its relation to the random walk
[10,14].

This voter-like asymptotic behavior shows that after par-
ticles spread out far enough in time and space about their
origin in the fight of two individuals the winner turns out to
be chosen randomly(far from his ancestor the individual
already has the same chance to meet his predator as his
prey), like in the voter model, where the winner could be
anyone of the individuals with equal probability. This as-
sumes that correlations decrease rapidly. Indeed measuring
the correlation function in the case ofN=3 (sometimes
called rock-scissor-paper system, shortly RSP) on a 2000
32000 lattice we have observed it is decreasing exponen-
tially and the correlation length beingj=2.54s5d.

Another frequently measured quantity is the survival
probability of the individuals, or in the language of the voter
model, the fraction of persistent voters, those who did not
change their opinion until timet (in our model the number of
still living ancestors). Measuring this quantity on the same
system supports that it is also decreasing exponentially with
a relaxation time of 1.87(5) MCS.

In these cyclic predator-prey models all species play equal
roles and represent dynamically equivalent absorbing states.
One could ask how a minor braking of symmetry influences
the behavior of the system. We studied an RSP system in
which one of the rates of invasion was changed, the prob-
ability that this invasion happens being only 0.8 while the
probability of other invasions remained the same(1). Simu-
lations show that the equilibrium concentrations of species

change, meanwhile the behavior of the system(scaling of
Pstd , nstd , R2std) remains the same as presented above.

As another interesting application, we studied a three-
species model(RSP) with an intruder of typeD substituted
for a randomly chosen individual after the stationary state of
the RSP system is achieved. The intruder represents a fourth
race having one prey and one predator among the other three
species. Considering symmetries one can easily recognize
that there are only two different structures of the foodweb,
when the prey of the intruder is the predator of the neutral
partner of the intruder(A→B→C→A, A→D and D→B)
and the second case when the intruder has the same predator
and prey as his neutral partner(the race with whom it does
not interact), (B→D andD→A).

In the first case, family of the intruder rapidly dies out, the
survival probabilityPstd as well as the mean size of colonies
nstd decreasing exponentially. 53105 realizations on a 200
3200 lattice up to time 200 MCS starting with a single
intruder resulted in the relaxation time ofPstd being 35(1)
MCS and fornstd 36(1) MCS. For the scaling ofR2std we get
z=1.01s2d showing that motion of the few survivers can well
be described by simple random-walks. In this case we could
say the RSP system forms a “defensive alliance” against the
intruder [16].

In the second case the intruder has the same predator and
prey as his neutral partner, so his behavior is also the same,
sPstd~ sa+b lnstdd / t , R2std~ td, and only the mean size of
the intruder family changes, asymptotically approaching to
nstd<3 (results from 85 400 simulations on a 5203520 lat-
tice up to time 103). The fact that the mean size of intruder
families is higher than 1(mean size of families in simple
RSP systems) suggests that the succesors of the intruder
(who just randomly took the place of an individual while
eliminating him) enjoy a benefit during the evolution, i.e.,
the system would prefer this kind of migration.

In summary, our MC results point out that from the aspect
of spreading phenomena, cyclic predator-prey systems show
a voter-like asymptotic behavior. Following the survival
probability of families, the mean size of the families and the
mean-square distance of spreading from their ancestors we
observe that they asymptotically approach the same scaling
as in the voter model[Pstd.sa+b ln td / t, nstd=1, R2std~ t].
The survival probability has a logarithmic correction, but
while for the voter model the parameters of this correction
depend on the number of species, for the cyclic predator-prey
systems this dependence is missing, and they asymptotically
aproach the behavior of the voter model with infinite species.
The most common feature of these cyclic models and the
voter model is the absence of surface tension and the dynam-
ics driven only by interfacial noise between dynamically
equivalent absorbing states(invasions take place only at the
borders separating homogeneous domains of species). For
N=3 the cyclic symmetry does not seem to be so important
for this behavior as we saw, slightly changing the rates of
invasions, only the concentrations of species changed, while
the spreading of colonies remained the same. For a long time
the voter model was considered to be a marginal system
because of the exceptional character of its analytic proper-
ties, but studies have shown that in fact it represents a broad

FIG. 3. MC results for the mean-square spread of individuals
about their ancestors in function of time for the voter model with
infinite species and cyclic systems withN=3, 4, and 5 species.
Symbols as in Fig. 2.
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class of models that show the same type of coarsening phe-
nomena[14]. Now studying spreading processes we find
again that a whole class of models(whose evolution is gov-
erned by quite different local rules) show the same behavior
as the voter model, and common features on large scales are
again the same: absence of surface tension and interfacial
dynamics.

The last application about colonies of intruders(espe-
cially the second case) brings to light an interesting feature
of the system. Because of special initial conditions(the in-
truder is dropped into the RSP system, taking the place of
another individual) the intruder has a bigger chance to find
his prey than his neutral partners, who are grouped together
(most of them being surrounded by neutral individuals).

Therefore, the mean size of intruder colonies turns out to be
higher than the mean size of families in normal systems,
showing that in this cyclic system this kind of migration
guarantees an evolutionary vantage point. Although ecologi-
cal systems are not as simple as our models, it is interesting
to note that indeed different kinds of animal migration occur
very often in nature.
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