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Restricted connections among distinguished players support cooperation
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We study the evolution of cooperation within the spatial prisoner’s dilemma game on a square lattice where
a fraction of players u can spread their strategy more easily than the rest due to a predetermined larger teaching
capability. In addition, players characterized by the larger teaching capability are allowed to temporarily link
with distant opponents of the same kind with probability p, thus introducing shortcut connections among the
distinguished players. We show that these additional temporary connections are able to sustain cooperation
throughout the whole range of the temptation to defect. Remarkably, we observe that, as the temptation to

defect increases the optimal u decreases, and moreover only minute values of p warrant the best promotion of
cooperation. Our study thus indicates that influential individuals must be few and sparsely connected in order
for cooperation to thrive in a defection-prone environment.
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I. INTRODUCTION

Sustenance of cooperation within groups of selfish indi-
viduals is a challenge faced by scientists across fields of
research as different as sociology, economics, and biology
[1]. The essence of the problem lies in the fact that coopera-
tion implies working for mutual interests or the common
good of society at the expense of individual prosperity. The
additional costs of cooperation can be avoided by choosing
defection and, accordingly, the cheating behavior of defec-
tors spreads if the evolutionary process is governed by the
imitation of more successful strategies. However, as the de-
fectors become dominant the whole society suffers because
nobody remains that would contribute to the overall welfare;
hence the dilemma. A commonly adopted framework for ad-
dressing the issue is the evolutionary game theory [2-5], and
the prisoner’s dilemma game in particular, which in its well-
mixed version reflects exactly the described plundering of
defectors and the consequent extinction of cooperators.

Although mechanisms such as kin selection, direct and
indirect reciprocity, or voluntary participation are largely
successful in preventing the defectors from winning [6], the
seminal observation promoting the survival of the coopera-
tive trait arguably came in the form of spatial games [7,8],
where the participating players no longer abide by the prin-
ciples of well-mixed dynamics. Instead, cooperators are able
to survive via clustering that protects them mutually against
exploitation by invading defectors (for a recent review, see
[9]). Another important development that facilitated the un-
derstanding of the evolution of cooperation came in the form
of replacing the initially proposed regular interaction scheme
with more complex topologies [10-21], whereby in particu-
lar the scale-free network has been identified as an excellent
host for cooperative individuals [22,23], warranting the best
protection against the defectors. Since the strong heterogene-
ity of the degree distribution on scale-free networks was
identified as the main driving force behind the flourishing
cooperative state [24-28], some alternative sources of inho-
mogeneity have already been investigated as potential pro-
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moters of cooperation, with noticeable success. Recent ex-
amples of such approaches include the introduction of
preferential selection [29], asymmetry of connections [30],
different teaching capabilities [31], heterogeneous influences
[32], or social diversity [33]. Arguably, the differences be-
tween participating players, in terms of either their degree,
teaching capability, or social rank, are easily justified from
the viewpoint of real life societies, as the latter are in general
made up of members of different status having unlike oppor-
tunities to become influential in the future. This may be es-
pecially obvious for humans, but is by no means difficult to
observe in animal societies as well.

At present, our goal is to extend the scope of beneficial
influences of heterogeneities on the evolution of cooperation
by considering a spatial prisoner’s dilemma game where
players not only differ in their teaching capabilities, but, in
addition, the distinguished players possess, the ability to
temporarily connect with distant individuals of the same
rank, and try to overtake them. We show that this fairly
simple additional extension may provide an unprecedented
boost for cooperators, which can be compared only to the
facilitative effect obtained by the scale-free topology if ab-
solute payoffs are used. Indeed, for an optimal fraction of
distinguished teachers w and the probability to temporarily
link them during the evolutionary process p, the defectors
remain outnumbered throughout the whole span of the temp-
tation of defect b. Although intuitively one might expect that
larger b would require increasing numbers of strongly con-
nected leaders to sustain cooperation, we reveal that in fact
the optimal u decreases continuously as b increases, and also
the interconnectedness of the distinguished players deter-
mined via p has to remain very weak in order for cooperation
to thrive best. We study the mechanism underlying the re-
ported promotion of cooperation by calculating temporal
courses of cooperator densities separately for the distin-
guished players and for their interacting nearest neighbors. In
addition, we discuss our findings in view of recent results
obtained on scale-free networks under assortative and disas-
sortative mixing [34], and emphasize that special complex
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topologies may not be a necessary ingredient of a flourishing
cooperative society.

The remainder of this paper is organized as follows. In the
next section we describe the employed spatial prisoner’s di-
lemma game and other details of the evolutionary process.
Section III is devoted to the presentation of results, whereas
in the last section we summarize and discuss their implica-
tions.

II. GAME DEFINITION AND SETUP

As noted, we use the spatial prisoner’s dilemma game for
the purpose of this study, which in accordance with the pa-
rametrization suggested by Nowak and May [7] is character-
ized by the temptation T=b, reward R=1, and punishment P
as well as the sucker’s payoff S equaling 0, whereby 1<<b
=<2 ensures a proper payoff ranking. The game is staged on
aregular L X L square grid with nearest neighbor interactions
and periodic boundary conditions, whereon initially each
player on site x is designated as either a cooperator (s,=C) or
defector (D) with equal probability. Forward iteration is per-
formed in accordance with Monte Carlo simulation proce-
dure comprising the following elementary steps. First, a ran-
domly selected player x acquires its payoff P, by playing the
game with its four nearest neighbors. Next, one randomly
chosen neighbor, denoted by y, also acquires its payoff P, by
playing the game with its nearest neighbors. Last, player x
tries to enforce its strategy s, on player y in accordance with
the probability

1
1 +exp[(P,— P)/K]’

W(Sy_)sx)zwx (l)
where K denotes the amplitude of noise and w, characterizes
the teaching capability of player x. The parameter w, is as-
signed to each player at the beginning of the game and re-
mains fixed during the evolutionary process. In particular,
among all L? players, and irrespective of their initial strate-
gies, a fraction u is chosen randomly and designated as hav-
ing w,=1 whereas the remaining 1-u are assigned w,
=0.01. Players within the former group are the so-called dis-
tinguished players (or teachers) that are characterized with
the larger teaching capability, and, according to Eq. (1), are
much more likely to reproduce than individuals pertaining to
the less influential (or blocked) group. Noteworthy, a similar
setup has been considered in [31] where the parameter v
determined the fraction of blocked players. Thus, a direct
link to the present study can be established by acknowledg-
ing that u=1-v. Moreover, the phase diagram of the pris-
oner’s dilemma game on a square lattice for a given v pre-
sented in [31] reveals that the cooperation facilitative effect
of distinguished players becomes better pronounced at high
K. We will therefore use K=2 throughout this work, except
in Fig. 4 where absorbing cooperative states would prohibit
useful comparisons of results obtained at different b, in
which case K=0.4 will be used. It is also worthy of notice
that the two limiting cases u=0 and 1 result in homogeneous
teaching capability assigned to all involved and are thus
equal, only that in the former case the evolutionary process is
slower.
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Further upgrading the model, we introduce the possibility
of direct information transfer between distinguished players
that are characterized by w,=1. In particular, a teacher from
within the group of distinguished players may choose with
probability p, instead of a nearest neighbor with probability
1-p, a distant randomly selected other teacher to be the
target for strategy transfer. It is important to note that thereby
only the strategy transfer is allowed between the two distant
teachers, yet both still collect their payoffs by playing the
prisoner’s dilemma game with their four nearest neighbors,
as described above. Thus, p is simply the probability of tem-
porarily interconnecting two distant distinguished players
during an elementary part of the Monte Carlo step, whereas
the remaining steps of the evolutionary process are left the
same. This directly implies that our findings are independent
of payoff normalization, as the latter simply scales K but
does not introduce qualitatively different results. It is also
worth noting that permanent connections between members
of the group having w,=1 result in similar behavior as will
be reported below, yet presently we wanted to avoid effects
that might be caused by differences in the degree of perma-
nently linked distant players.

Monte Carlo results presented below were obtained on
populations comprising 300X 300 to 800X 800 individuals,
whereby the fraction of cooperators p. was determined
within 2 X 10° to 2 X 10° full MC steps (MCS) after the tran-
sients were discarded. It is worth noting that the above intro-
duced dynamical rule can be interpreted as a Markov chain
with two absorbing states (C or D), where thus the observed
mixed states can be referred to as being stationary only for
infinitely large system sizes, whereas for finite systems it is
more appropriate to speak of quasistationary states or rather
fixation probabilities of the two strategies and average times
needed to reach the truly stationary absorbing states.
Throughout the next section the parameters p and p will be
given the most attention as they are crucial in determining
the density and interconnectedness of distinguished players
on the grid.

III. RESULTS

We start by comparing results obtained with the presently
introduced evolutionary model and its simplified versions to
stress the joint relevance of the two main parameters u and
p. Figure 1 features p in dependence on b for four different
cases. The fastest-decaying p. is obtained via the classical
spatial prisoner’s dilemma game where all players are char-
acterized by w,=1 (w=1) and temporary shortcut links
among distant players are disabled (p=0). Slightly better re-
sults in terms of cooperation sustainability are obtained if the
latter condition is relaxed by setting p=0.03, thus allowing
rare temporary deviation from the nearest neighbor structure
(here  is still 1). Strikingly better results, on the other hand,
are obtained if instead of p the parameter u is varied. Open
circles show results obtained for p=0 and w=0.12; the
model with p=0 has been studied extensively in [31] and the
interested reader may seek additional information on the ef-
fects of different w there. Clearly the best environment for
cooperators, however, is warranted when both x and p are
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FIG. 1. Fraction of cooperators p. in dependence on the temp-
tation to defect b obtained by setting w=1 and p=0 (open squares),
p=1 and p=0.03 (closed squares), and x=0.12 and p=0 (open
circles), ©=0.12 and p=0.03 (closed circles). Only the joint adjust-
ment of w and p warrants supreme promotion of cooperation. Lines
are just guides for the eye.

adjusted. Indeed, by setting ©=0.12 and p=0.03 we achieve
pc>>0.5 throughout the whole range of b, as depicted by the
closed circles in Fig. 1. Thus, the joint impact of appropriate
m and p strongly favors the sustainability of cooperation to
the extent comparable only to effects observed previously on
scale-free networks if using absolute payoffs [22].

In order to examine the impact of the newly introduced
parameter p more precisely, we present in Fig. 2(a) contour
line plot showing the dependence of p- on p and b at a fixed
value of u=0.3. It can be inferred at a glance that there
exists an optimal value of p warranting the best promotion of
cooperation, which by the selected value of u equals p
=~().05. Most importantly, however, it is crucial to note the
immense improvement in p. that is brought about by the
addition of rare temporary long-range connections among
distinguished players. In particular, while for p=0 coopera-
tors go extinct at b=1.3, they prevail up to b=2.0 if p is
fine-tuned. In addition, the span of complete dominance is
markedly enhanced as well. We argue that the role of distin-
guished players in the small w region is similar to the role of
players occupying the hubs of a scale-free network, whereby
the temporary long-range connections enable them to enforce
cooperative behavior not just to their permanently linked
nearest neighbors but to distant players as well, who then in

0 . 0..2 . 0..4 . 0.46 . (;.8 1
P
FIG. 2. Contour line plot of pc in dependence on p and b,
obtained for u=0.3. Lines mark p. equaling 1, 0.8, 0.6, 0.4, 0.2,

0.1, and O from bottom to top. There exists an optimal value of p
~().05 that promotes cooperation best.
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FIG. 3. Contour line plot of pc in dependence on p and u,
obtained for b=1.1. Lines mark p. equaling 1, 0.8, 0.6, 0.4, 0.2,
0.1, and O from left to right. Note the double resonance in coopera-
tion that peaks at small p and u.

turn spread the cooperative trait further to their nearest
neighbors, and so on, thus resulting in an optimal environ-
ment for the survival of cooperators even if temptations to
defect are large.

Furthermore, it is instructive to examine how p varies in
dependence on p and u. Figure 3 reveals that a double reso-
nance in cooperation, induced by variations of p and u, char-
acterizes this dependence, thus suggesting that a fine-tuning
of both parameters is necessary for designing the optimal
environment for cooperative behavior. In order to examine
the resonantlike outlay of p. in dependence on p more pre-
cisely, Fig. 4 features results obtained for different values of
b and a fixed value of p. Notably, the optimal w decreases
continuously as b increases, yet its careful adjustment may
still propel cooperation away from extinction.

To understand the impact of different values of u, we
recall the feedback mechanism resulting in widely enhanced
cooperation within the model where players occupied a
scale-free network [22]. There hubs can dominate over their
neighborhoods because a larger degree directly results in a
larger payoff. Hence the subordinate neighbors will imitate
the hub’s strategy, eventually producing homogeneous
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FIG. 4. Fraction of cooperators pc in dependence on u obtained
by setting p=0.4 and K=0.4 (note that the lower value of K was
chosen solely to prohibit extensive absorbing cooperative states,
hence enabling more accurate comparisons). Results are depicted
for different temptations to defect: b=1.1 (closed circles), 1.2 (open
circles), 1.5 (closed squares), and 2 (open squares). The optimal
value of u decreases continuously as b increases. Lines are just
guides for the eye.
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clouds of a given strategy around each hub. During this pro-
cess the nature of the defecting (cooperating) strategy weak-
ens (strengthens) the governing hub, which in turn leads to
an easy victory of a cooperator hub when faced with a de-
fector hub and thus to the widespread dissemination of the
cooperative trait. In the present model a similar feedback
mechanism is at work, but only when the distinguished play-
ers are sparse enough not to have their neighborhoods af-
fected by other, potentially defecting, influential players, par-
ticularly when they are not directly linked with one another
and they do not share mutual neighbors. Therefore we argue
that a primary estimate for this condition to be satisfied is
©n<6,=0.1869(1), where 6, is the jamming coverage of par-
ticles during a random sequential adsorption [35,36] when
nearest and next nearest neighbor interactions are excluded
on a square lattice [37]. We find that for our model the more
accurate value of the jamming coverage for the case when
distinguished players do not share mutual neighbors is u.
=0.139 65(5), thus validating the initial estimate via 6. In
this low u<<u,. region the previously described feedback
mechanism can work because the distinguished players can
impose their strategies on the neighbors without being dis-
turbed. To illustrate this process we monitored how the den-
sity of cooperators evolves within different subgroups of the
whole population. In particular, in addition to the density of
cooperators among all L? players denoted by p., we also
measure the density of cooperators among all the nearest
neighbors of distinguished defectors (cooperators), which we
denote by pe; (pcn), and the density of cooperators among
the distinguished players, which we denote by pc3;. Obtained
results are presented in Fig. 5 for three different values of wu,
where ©=0.25 is higher than the critical u. value, u=0.1 is
the optimal, and ©=0.07 a below-optimal value at b=2. A
two-stage process can be inferred by following the time
courses of the four calculated cooperator densities, which
give insights into the mechanism underlying the promotion
of cooperation.

First, slightly prior to reaching 100 MCS, defecting (co-
operating) distinguished players spread their strategy suc-
cessfully among their neighbors, as evidenced by the local
minima in Fig. 5(a). As soon as the minimum in p¢; is
reached, the second part of the two-stage process begins,
which involves turning the defecting distinguished players
into distinguished cooperators. In particular, as defectors oc-
cupy virtually the whole neighborhood of a distinguished
defector, the latter becomes extremely weak because there is
no one left to exploit. Thus, as soon as an influential coop-
erator receives the opportunity to overtake the weakened de-
fector via a temporary long-range connection the latter is
defeated, and the newly seeded cooperator starts spreading.
Note that the described two-stage process, including the tem-
porary minimum of pc, cannot be observed at high values of
m exceeding .. There the distinguished cooperators cannot
be successful because their neighbors may be exploited by
other distinguished defectors. This feature is demonstrated in
Fig. 5(b), where the cooperator density among the distin-
guished po3; remains low if u=0.25, but rises markedly for
u<u,.. However, while very low values of u (below the
optimal) enable distinguished defectors to convert virtually
all their neighbors to defectors, and thus make the negative
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FIG. 5. Time evolution of pc, pcy [lower three curves in (a)],
pc> [upper three curves in (a)], and pe3 for ©=0.07 (solid line), 0.1
(dash-dotted line), and 0.25 (dashed line), obtained by setting p
=0.03 and b=2. See main text for definitions of pc, pco, and pes.

feedback effect destined to work, at the end only a few dis-
tinguished cooperators resulting from the two-stage process
cannot sustain an overall high level of cooperation. Hence,
an optimal w exists which still initializes the feedback
mechanism, but subsequently warrants also that the density
of distinguished cooperators is high enough to sustain the
highest level of cooperation within the whole population, as
evidenced in Fig. 5(c).

We emphasize that the mechanism described above can
work even for large b, where substantial portions of nondis-
tinguished players are controlled by the spatial evolutionary
rule strongly favoring defection. In this situation the coop-
erative behavior can nevertheless prevail due to small coop-
erative colonies that can form around isolated distinguished
players and then survive for very long times. Naturally, this
mechanism of maintaining small cooperative islands is
present also at lower values of b, but there the defecting
strategy is not so beneficial among nondistinguished players,
and hence the relative contribution of such small colonies to
the overall cooperation level is moderate. This is why the
impact on the evolution of cooperation is most evident at
high values of b.

To emphasize the necessity of a weak temporary intercon-
nectedness of distinguished players, Fig. 6 shows p. in de-
pendence on p for u=0.12. The existence of an optimal p
can be observed clearly, and indeed, as little as p=0.03
yields the maximum value of p.. For lower values of p the
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FIG. 6. Fraction of cooperators p¢ in dependence on p, obtained

by setting ©=0.12 and b=2. Remarkably, the optimal p is very
small (=0.03). The line is just a guide for the eye.

isolated influential cooperators can be eliminated by stochas-
tic events long before they are able to pass their strategy to
defecting distinguished players, while the increase of p
drives the system toward the mean-field-type behavior favor-
ing defection over cooperation.

The latter observation can be corroborated by some con-
ceptually similar findings presented recently by Rong et al.
[34] who studied the role of different degree mixing patterns
on scale-free networks. There the assortative mixing, tending
to interconnect the hubs, was also found to diminish the level
of cooperation, whereas the disassortative mixing, promoting
the isolation of hubs, further enhanced the cooperative trait
for very large b but decreased the density of cooperators in
noisy environments for moderate temptations to defect. Here,
we show that the special scale-free topology is not a neces-
sary ingredient for this type of cooperation facilitation, as in
our case the uncorrelated rare random links may also provide
the most favorable frequency of connections between distin-
guished players to optimally promote cooperative behavior.

IV. SUMMARY

In summary, we show that the additional introduction of
temporary long-range connections among distinguished play-
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ers in a heterogeneous population comprising two different
types of individuals guarantees a substantial promotion of
cooperation within the evolutionary prisoner’s dilemma
game on a regular lattice. The joint effect of heterogeneity
and temporary long-range connections is capable of main-
taining cooperation within the whole range of temptations to
defect (1<b=<2) that are usually considered for iterated
prisoner’s dilemma games. It is noteworthy that our ap-
proach bears some similarity with game theoretical models
entailing the coevolution of strategy and network structure
[38—41], albeit presently the evolution of the interaction net-
work in terms of temporary shortcuts among the distin-
guished players is completely random. Moreover, we reveal
that environments which are strongly prone to defection re-
quire modest densities of influential players, which, in addi-
tion, must not be strongly interrelated with one another. Im-
portantly, though, in the complete absence of
interconnectedness these potential sources of cooperative be-
havior are unable to enforce the strategy on more than just
their immediate neighbors, and hence a positive yet small
value of p provides just the missing virtue that enables the
influential players to fully exploit their potentials. Our study
thus indicates that, while in a modestly corrupted society
characterized by small b influential players may be many and
well connected, this proves fatal in strongly defection-prone
environments. The latter require isolated and weakly con-
nected sources of cooperative behavior, which, on one hand,
give defectors enough space to completely weaken their
neighborhoods, and, on the other, are frequent and intercon-
nected enough to overtake these sites after the negative feed-
back has kicked in.
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