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Cyclical interactions with alliance-specific heterogeneous invasion rates
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We study a six-species Lotka-Volterra-type system on different two-dimensional lattices when each species
has two superior and two inferior partners. The invasion rates from predator sites to a randomly chosen
neighboring prey site depend on the predator-prey pair, whereby cyclic symmetries within the two three-
species defensive alliances are conserved. Monte Carlo simulations reveal an unexpected nonmonotonous
dependence of alliance survival on the difference of alliance-specific invasion rates. This behavior is qualita-

tively reproduced by a four-point mean-field approximation. The study addresses fundamental problems of
stability for the competition of two defensive alliances and thus has important implications in natural and social

sciences.
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Cyclical interactions are simple yet fascinating and pow-
erful examples of evolutionary processes [1], able to provide
insights into the intriguing mechanisms of Darwinian selec-
tion [2] as well as structural complexity [3] and prebiotic
evolution [4]. The simplest nontrivial food web describing
such cyclical interactions is formed by three species that
have relationships analogous to the well-known rock-
scissors-paper (RSP) game, where strategies form a closed
loop of dominance. Real-life examples of such interactions
include the mating strategy of side-blotched lizards [5], over-
growths by marine sessile organisms [6], and competition
among different strains of bacteriocin-producing bacteria [7].
Cycles are also common in the context of evolutionary game
theory [8], where strategic complexity [9,10] often leads to
RSP type of dominance between different strategies [11].

Several theoretical aspects of multispecies cyclical domi-
nance have already been studied in detail. For example, it
has been established that three species in a cyclic dominance
exhibit self-organizing behavior on the spatial grid [12,13],
whereby similar observations can be made also for system
that incorporate more than three species, provided their total
number does not exceed fourteen [14]. Phase transitions and
selection have also been studied in the predator-prey models
allowing motion throughout inhabitable vacant sites [15,16].
In particular, reticulate six-species models with mutation
[17] and local mixing [18] have recently been studied rigor-
ously, reporting the spontaneous emergence of defensive al-
liances and numerous stable spatial distributions as well as
pertaining phase transitions in dependence on the topology
of underlying food webs. In these systems the number of
possible stationary states increases rapidly with the number
of species because the solutions of subsystems (some species
are missing) are also solutions of the whole system. The final
stationary state can be determined by the competition of sub-
system solutions (defensive alliances) that are characterized
by their composition and spatiotemporal distribution of spe-
cies. Consequently, the understanding of systems with many
species requires the systematic analysis of all their sub-
systems. In the present work we will study a predator-prey
model that can be considered as a six-species subsystem of
strains of bacteria using two types of toxins and antitoxins in
their warfare [7].
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In addition to increasing the number of species, the com-
plexity of models can be enhanced also by the introduction
of heterogeneous invasion rates between interacting indi-
viduals. Differences in invasion rates might affect the pro-
portions of participating species in the habitat [19] as well as
geometrical features of patterns on the spatial grid [20].
Moreover, it has recently been discovered that multispecies
models of cyclical interactions comprising an even number
of individuals are very sensitive to the independent variation
of invasion rates [21]. The introduction of heterogeneous in-
vasion rates also raises questions about the relevance of de-
fensive alliances.

Presently, we thus study a reticulate six-species predator-
prey model where each site i of the square lattice is occupied
by an individual belonging to one of the six species. Their
corresponding distribution is given by a set of site variables
5;=0,...,5. The predator-prey relations and the correspond-
ing invasion rates (0<a, 3, y, < 1) are defined by the food
web presented in Fig. 1. For this choice of parametrization
the two subsystems consisting of odd and even labeled spe-
cies are equivalent to the thoroughly studied RSP game and
the system remains unchanged under cyclic permutation (s
—s+2 modulo 6) of species.

In the case of homogeneous rates (a=B=y=5=1) the

FIG. 1. Food web of the studied predator-prey model. Arrows
point from predators toward prey with heterogeneous invasion rates
specified along the edges.
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system has two equivalent three-species states [denoted by
(0+2+4) and (1+3+5)] exhibiting a self-organizing pattern
maintained by cyclic invasions. These states are called de-
fensive alliances because their members protect each other
cyclically against the external invaders [17,18]. Consider for
example the case when the species O invades allies (1+3
+5), in particular by attacking species 1. Its intention is im-
mediately disabled by the species 5 which is superior to both
0 and 1. Thus, the intruder O is quickly abolished from the
(14+3+5) domain by the very same species 5 which domi-
nates species 1 within the alliance. The same reasoning ap-
plies for all other possible attempts of nonallied species to
invade a defensive alliance. Importantly, in this mechanism
the proper spatiotemporal distribution of species plays a cru-
cial role (the mean-field approximation cannot reproduce this
feature).

By introducing alliance-specific heterogeneities in the in-
vasion rates, we are capable of analyzing the competition
between the defensive alliances. For example, we can study
what happens when one of the associations is more aggres-
sive toward the other (a@# ) or when the internal mecha-
nism fails to assure flawless protection against the invaders
(y# ). In order to address these two issues systematically, it
appears reasonable to introduce two parameters that, due to
symmetries in the food web, uniquely determine the station-
ary state of the system. Particularly, let G=8—a and H=vy
— &8 where H,G €[-1,1]. Note that the system behavior be-
comes trivial in two quadrants of the H-G parameter space
because the favored defensive alliance is supported by both
mentioned mechanisms, thus leading to its undisputed domi-
nance on the spatial grid. If G<0 (B8<a) and H>0 (y
> §) allies (0+2+4) receive a twofold advantage. First, be-
cause B<a, (0+2+4) invade nonmembers faster than indi-
viduals in the competing alliance. Second, because y> J, the
internal invasions within (0+2+4) are faster than those in
(1+3+5), whereby faster internal cyclic invasions uphold a
more effective protection shield against the external invaders
by assuring a prompt response to a potential attack. An in-
teresting competition emerges only if G>0 and H>0 (or
equivalently if G<0 and H<0), which we are going to ex-
plore next. Due to the symmetry of the problem our analysis
will be constrained to the parameter space spanning over
H,Ge[0,1].

We perform Monte Carlo (MC) simulations of the intro-
duced six-species cyclical interaction model on the LXL
spatial grid. Initially the six species are randomly distributed.
The elementary steps are the following. First, two nearest
neighbors are chosen at random, and, second, if the two
neighboring species form a predator-prey pair (species con-
nected by an arrow in Fig. 1) the prey is killed with the rate
specified along the arrow and an offspring of the predator
occupies the prey site. On the other hand, if the two ran-
domly chosen species form a neutral pair (species not con-
nected by an arrow in Fig. 1), or if both are identical, the
second step dictates no action (nothing happens) and the MC
simulation proceeds with executing step one. In accordance
with the random sequential update, each individual is se-
lected once on average during a particular Monte Carlo step
(MCS). In order to characterize the stationary state we define
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FIG. 2. Phase separation line dividing the two pure phases, char-

acterized by the exclusive dominance of either the alliance (0+2

+4) or (1+3+5), in dependence on H and G (B=7y=1). Linked

squares were obtained by MC simulations while the dashed line
results from the four-point cluster mean-field approximation.

the order parameter m=p,+p3+ps—po—pP>—pPs, Whereby p,
(s=0,...,5) denotes the fraction of species s on the spatial
grid. Here m=1 corresponds to the complete dominance of
the alliance (1+3+5). On the other hand, m=-1 indicates
the absolute authority of the association (0+2+4).

We start by setting G and H equal to zero, whereby both
alliances have an equal chance of eventually dominating the
spatial grid via a domain growing process. In accordance
with the above discussion of the studied model, it is reason-
able to expect that as soon as G rises above zero (keeping
H=0) allies (1+3+5) are favored as their members invade
nonallied species more successfully («<<f). Thus, m=1 in
the stationary state, meaning that the system evolves into the
three-species self-organizing phase (1+3+5) as soon as
members of (0+2+4) die out. However, the advantage of
(143+5) given by G>0 can be compensated by choosing
sufficiently large values of H, as shown in Fig. 2. As argued
above, if H rises above zero the internal invasions within
allies (1+3+5) slow down in comparison to (0+2+4), thus
decreasing the effectiveness of the protection of the odd al-
liance and in turn nullifying its advantage given by G>0.

Strikingly though, results of MC simulations shown in
Fig. 2 reveal a nonmonotonous phase diagram in dependence
on H. In particular, the advantage of allies (1+3+5) again
increases if H approaches 1 [the internal invasion rate ()
vanishes]. As §— 0 allies (1+3+5) essentially stop to invade
each other within the alliance. In this case (6=0) an external
species (e.g., 2) can survive in the bulk of its neutral pair
(e.g., in the domain of species 5). As a result, the order
parameter m remains below 1, forming a frozen state after
achieving dominance. The mechanism behind this interesting
phenomenon is subtle and cannot be grasped at a glance. The
above analysis was made also for some other fixed values of
B and vy yielding essentially identical results.

Evidently, the mean-field analysis can be applied as an
analytical tool to study the behavior of the proposed
predator-prey model. Unfortunately, the resulting master
equations fail to confirm the above results; namely, the solu-
tion for the fractions of species predicts a total dominance of
allies (1+3+5) if G>0 irrespective of H. This shortage of
the classical mean-field approximation may be eliminated by

052102-2



BRIEF REPORTS

051

0 200 400
time (units of MCS)

1 10! 2

4

10 10° 10 10°

time (units of MCS)

FIG. 3. Temporal evolution of the order parameter for H=0.2
and different values of G. Solid line depicts the temporal evolution
obtained for G=0.116, while the dashed line corresponds to G
=0.114. Inset shows the evolution of the order parameter from pre-
pared initial states (see text for details). Lines in the inset corre-
spond to G=0.130, 0.117, 0.113, and 0.110 from top to bottom.

applying the extended versions of dynamical mean-field
theory that proved to be very appropriate for obtaining quali-
tatively correct phase diagrams for several nonequilibrium
systems. The improved approach involves finding a hierar-
chy of evolution equations for the configurational probabili-
ties on k-site clusters, where k characterizes the level of ap-
proximation (for details, see, e.g., [22,23]). Nonetheless, the
application of the method at the two-point level is still un-
able to account for the incursion of allies (0+2+4) into the
G >0 region if H>0. The first level that supports our above
conjectures is the four-point level, of which the solution is
displayed in Fig. 2. The fact that results of MC simulations
differ from the four-point cluster mean-field approximation
suggests that the unexpected nonmonotonous dependence is
heavily routed in the short-range correlation of spatial distri-
bution, which cannot be captured adequately by the ansatz of
a four-point level approximation.

To obtain a better understanding of the spatial dynamics
behind the phase diagram in Fig. 2 we examine the nature of
phase transitions between m=—1 and m=1. Although the two
competing effects of parameters G and H suggest that indeed
a fine-tuning toward a stable coexistence of both alliances
may be possible, thus assuring a rich diversity of species on
the spatial grid, the reality is quite different. In fact, results in
Fig. 2 suggest that phase transitions between the two pure
phases are extremely sharp, and thus a stable coexistence of
the two defensive alliances on the spatial grid is not feasible.
Although we have only numerical arguments, the extensive
calculations performed in order to come to this conclusion
leave extremely little room for alternatives.

Finally, it is instructive to examine the temporal evolution
of the order parameter in the close vicinity of the phase
boundary. Figure 3 illustrates that, at the beginning, the frac-
tion of even labeled species decreases on both sides of the
phase separation line. However, while above the phase
boundary members of the even alliance go extinct, below the
phase boundary allies (0+2+4) are able to fully recover al-
though only a minute portion (as little as 0.005) of the spatial
grid is occupied by its members, eventually yielding m=-1.
We argue that this remarkable and unusual behavior, which is
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intimately linked also with the nonmonotonous phase dia-
gram presented in Fig. 2, is related to the formation of a
suitable boundary layer that modifies the interaction between
both defensive alliances and ultimately tosses the dominance
in favor of either (1+3+5) or (0+2+4). It is remarkable that
a similar temporal evolution was reported in a group selec-
tion model [24] where the altruistic species almost reach ex-
tinction before taking over the population. However, as de-
scribed above, in our case the spatiality is a fundamental
ingredient since the recovery of the even alliance, occurring
due to its dynamical benefit, is an interface-driven domain
growing process.

To confirm the importance of the boundary layer between
both defensive alliances, we perform a stability analysis of
the interface via MC simulations of the system with specially
prepared initial conditions. In particular, we start the simula-
tions with sharp boundaries that separate regions of initially
randomly distributed even and odd labeled species. Within a
3200X 3200 spatial grid we were able to set up 64 such
straight boundary layers (without them interfering with each
other) and monitored in which direction the interface moved
in dependence on G placing the system below or above the
phase boundary shown in Fig. 2. Additionally, results were
averaged over 10 consecutive runs to minimize unwanted
fluctuations. The inset in Fig. 3 shows the results for two
values of G below and two above the phase separation line.
Note that m measures the difference of areas on both sides of
the initially sharp boundary between even and odd labeled
species, thus uniquely determining also its spreading direc-
tion. Evidently, if G is set above the phase separation line in
Fig. 2 the boundary layer moves towards the area of (0+2
+4), thus foretelling an imminent dominance of (1+3+5).
Conversely, if G is set below the phase separation line the
boundary layer moves toward (1+3+5), marking the advent
of dominance of (0+2+4) although the total fraction of its
members on the spatial grid at that time might be minute.
Hence, if the evolution of the system is initialized from a
completely random initial distribution of species on the spa-
tial grid, members of (1+3+5) can utilize their advantage
given by G >0 and rapidly start their conquest. However, as
time goes by the seemingly defeated (0+2+4) may self-
organize into small clusters on the spatial grid, and if G and
H are set appropriately, start to win back lost ground via
growth along the interfaces, as explained above and pre-
sented in Fig. 3.

In order to check the robustness of the above-described
behavior the present predator-prey model was also studied on
the honeycomb and triangular lattices having different coor-
dination numbers. Figure 4 clearly shows that the honey-
comb lattice additionally pronounces the nonmonotonous
variation of the phase boundary. Conversely, the incursion of
allies (0+2+4) is less emphasized by the triangular lattice,
which may be related to the increased coordination number,
bringing the MC simulations closer to the mean-field behav-
ior. Results presented in Fig. 4 further stress the importance
of spatiality and with it related distribution of species and
resulting boundary layers among defensive alliances on the
spatial grid.

In sum, we have studied a six-species predator-prey
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FIG. 4. Phase boundaries between the stationary states (0+2
+4) and (1+3+5) for different lattice structures. Linked symbols

depict phase separation lines for the honeycomb (circles), square
(squares), and triangle (triangles) lattices.

model with special heterogeneous invasion rates that were
introduced in accordance with the two spontaneously emerg-
ing defensive alliances. We have shown that an increased
aggression toward nonallied species could be tamed by de-
creasing the willingness of members to attack individuals
within the alliance itself. Remarkably, though, if individuals
completely sized to invade their own allies, the benefit of
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increased aggression toward nonallied species again in-
creased. These two facts resulted in a nonmonotonous depen-
dence of alliance survival on the difference of alliance-
specific invasion rates, which we attributed to the underlying
spatial dynamics of the system. We also discovered that, de-
spite the ability to fine-tune two system parameters, a stable
state enabling the coexistence of both defensive alliances on
the spatial grid is not possible, thus resulting in sharp phase
transitions between the two absorbing states. However, the
newly introduced alliance-specific heterogeneous invasion
rates might yet prove valuable in discovering new ways of
assuring biodiversity, either within generalized Lotka-
Volterra models [25], or via the impact of stochasticity [26]
or oscillatory mechanisms [27]. We hope that the study will
prove vital for the understanding of the robustness of alliance
formation, their competition, and for the effect of spatial
structures on the evolution of food webs in real systems,
which appear to range from strains of bacteria to man-made
economic systems.
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