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Phase-transition study of a one-dimensional probabilistic site-exchange
cellular automaton
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The effect of mixing on a one-dimensional probabilistic cellular automaton with totalistic rule has
been investigated by different methods. The evolution of the system depends on two parameters, the
probability p and the degree of mixing m. The two-dimensional phase space of parameters has been
explored by simulation. The results are compared to the multiple-point-correlation approximation.
By increasing the mixing, the order of the phase transition has been found to change from second
order to first order. The tricritical point has been located and estimates are given for the P exponent.
Short- and long-range mixing are compared.

PACS number(s): 64.60.—i, 05.40.+j

I. INTB.ODUCTION

The eKect of mixing between subsequent synchronous
cellular automata (CA) iterations has been studied in-
tensively recently [1—4]. The interest comes from the
fact that for strong mixing the correlations created by
the automata rule "are washed out" and one expects the
recovery of the mean-Beld result. Those models are es-
pecially interesting when the mixing causes changes of
the phase structure. Phenomenologically it corresponds
to infection models in theoretical epidemiology.

We have studied the model that was earlier investi-
gated by Bidaux et aL [5] in several dimensions. Their
conclusion was that for one dimension the phase transi-
tion is continuous contrary to the prediction of mean-field
approximation, however, one can observe the emergence
of a first-order transition for higher dimensions. This
Gnding is analogous to the phase-transition phenomena
of equilibrium statistical physics, .

Now we attack this correspondence theorem from two
directions: introducing sequential mixing between sub-
sequent CA updates and upgrading the mean-Geld cal-
culations by taking into account multiple-point correla-
tions. While the first method destroys correlations in
a simulation, pushing behavior towards the mean field,
the second method incorporates correlations, pushing the
behavior &om the mean field (one-point-correlation ap-
proximation) towards the real simulated behavior .

Locating the crossover from a second-order to a first-
order transition is a dificult task. We have attempted it
by calculating the order-parameter critical exponent.

Two diferent kinds of mixing mechanism were sim-
ulated. A short-range difFusionlike mechanism, which

allows nearest-neighbor hopping, and a long-range one,
which permits jumping of a live cell anywhere in the sys-
tem.

s(t+1, j) = g

j+4
X if 3() s(t j) (6

j 4

, 0 otherwise

where X 6 (0, 1) is a two-valued random variable such
that

Prob(X = 1) = p;
and (b) a sequential, site-exchange rule that m x N [mx
(number of living cells) (1)] are selected randomly and
jumped to empty (0) sites between subsequent sweeps of
the Grst subrule.

The destination place can be nearest-neighbor site
(short range) or any site of the lattice (long range).

The deterministic case (p = 1) exhibits class-3 CA
behavior [6], class-3 behavior being characterized by
chaotic evolution towards an attractor, which is most
often strange. For a large number of iterations of the
two subrules, the system evolves towards either an empty
state, where the concentration (c) of 1's is zero, or to-
wards some finite-concentration state. Regarding e as
the order parameter, the phase transition occurs at some
p, (m).

II. THE MODEL
The one-dimensional (1D), two-state ((0, 1}) proba-

bilistic cellular automaton is defined by two subrules: (a)
a totalistic, synchronous, range-4 rule,
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The m = 0 and m = oo cases were investigated by
[5]. For m, = 0 they found the phase transition to be of
second order, however the universality class differs from
that of directed percolation.

The mean-field approximation corresponds to m = oo,
which exhibits first-order phase transition. This implies
that there must be a crossover point for some finite value
of m.

The purpose of our work is to explore the p(m) phase
space and locate the tricritical point for short- and long-
range mixing.
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III. SIMULATIONS

The simulations were done on an L = 40000 lattice,
after checking with L = 100000 lattice simulations that
the finite-size effect does not affect the results within sta-
tistical error. The numerical procedure is similar to that
of [1], [2], and [3].

For fixed values of m the steady-state concentrations
c(m, p, oo) were determined within the neighborhood of
the p (m) phase-transition point. The critical scaling
behavior of the order parameter can be characterized by
the P(m) exponent:

ln c(m, p, oo)
p~p. (~)+o ln[p —p, (m)]

'

The exponent P and p, are calculated simultaneously
by least-squares-error fitting to the above formula. The
least-squares error was minimized for 1000 trial p, (m)'s.

The quality of the p estimate is checked by an inde-
pendent "extinction method" fitting [1] for m = 0 and
m = 3 too. This method is based on measuring the time
(t) required to fall into the absorbing state from a ran-
domized initial state of c = 0.1 below the transition point
(p, (m)), and exploiting the scaling behavior of it:

t - [p —p.(m)] ".

The simulation is done for each m by determining 15—
30 (p(m), c(m, p)) points following 40000—150000 itera-
tions. The steady-state concentrations are averaged val-
ues of 10000 iterations. The final state of the system for
a given p is taken to be the initial state for the next run.
This permits faster convergence to the steady state. The
typical run time on SUN 4 workstations is about one day
per point, although it depends on m strongly.

We have obtained a similar shape of p, (m) curves for
long- and short-range mixing although the scales are dif-
ferent (Figs. 1 and 2). Introducing m to the mixing-&ee
model investigated by Bidaux et al. [5] the p, increases
&om p 0.721. It approaches a maximum value of
p 0.7341 at m = 0.05 for long-range and p 0.7594
at m 12 for short-range mixing. Then the curves turn
back and converge to the mean-field value, p 0.5347,
as m + oo. The effect of long-range mixing is much
stronger, as expected.

The numerical estimates for P are somewhat less ac-
curate, because of the great sensitivity to p, . We expect

FIG. 1. Phase space p (m) for long-range mixing. Empty
squares: simulation result. Crosses: four-point-correlation
result. The dashed line corresponds to the mean-field value

p, (m = oo) = 0.5347.

first-order phase-transition behavior by simulation data
when the p, (m) corresponding to lowest error fitting is
smaller than the highest zero concentration steady state
p(m). In other words the power-law behavior of second-
order transition breaks down, and hysteresis appears as
a natural sign of first-order transition.

For long-range mixing this occurs at m 0.015, when
the P exponent has fallen to Pg

——0.17 + 0.01 about two-
thirds of the critical transition universality value P, =
0.28 (Fig. 3). Note that we may expect roundings on the
order-parameter curve owing to finite size effects too.

We have checked the effect of the finite size near the
crossover point too. Simulations for m = 0.01 and m =
0.02 showed that the difference between the L = 40000
and L = 60 000 lattices results in p is below 0.05%, much
less than the statistical error. The P exponents differed
by 1% only, and while for m = 0.01 the transition is
second order it is first order for m = 0.02 already, in
agreement with the L = 40000 lattice results.

For short-range mixing the transition remains contin-
uous for m ( 40 with P 0.28 again (Fig. 4), which is
about the universality class value of the 2D directed per-
colation model. The exponent P falls &om P(0) = 0.41
to this constant value in the 0 ( P ( 0.0005 region. This
suggests the universality changes abruptly within this
region. The crossover to first-order transition is above
m =40.
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FIG. 2. Phase space p, (m) for short-range mixing. Simu-
lation result.
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FIG. 3. Critical exponent P, obtained by fitting from sim-

ulated data for the long-range-mixing case. The transition
is second order for m ( 0.015. Tricritical point occurs
at m = 0.015 (dashed line). Data points for m ) 0.015
(first-order transition region) do not correspond to the P ex-

ponent, but characterize a steep jumping transition behavior
only.

For m = 100 we could do simulations for L =10000
and 20 000—40 000 iterations only because of the excessive
CPU time. This shows that the transition is already first
order there. In conclusion the crossover must happen
between m = 40 and m = 100, but the huge CPU time
requirement on the computers at our disposal excluded
to locate the crossover point more precisely.

IV. MULTIPLE-POINT CORRELATIONS

The usual mean-Beld approximation assumes that field
variables are affected by an averaged effect of the sur-
roundings neglecting any existing correlations. In the
cellular automaton model this background field is the
concentration c of the "1" (live) cells. The mean-field
analysis of this CA model has been done by Bidaux et
al. [5] and first-order transition with p, 0.5347 was
found.

As it was pointed out by Gutowitz et al. [7] and applied
in practice for 1D driven lattice-gas model [8], the effect
of correlations can be taken into account by setting up

FIG. 5. Multiple-point correlation results for the phase
transition of m = 0 mixing-free CA model. The numbers
show the level of approximations. 1: mean field. Dotted lines
correspond to unstable solutions. The symbols correspond to
simulation result.

equations for two, three, or more neighboring-point con-
figuration probabilities. By determining numerically the
stable, steady-state solutions of these equations, one can
express the c(p) curves. The details of the method are
similar to that of Szabo et al. [8].

The calculations have been done for the level of two-,
three-, and four-point correlation. The calculated con-
centrations as a function of p are plotted in Fig. 5 for
vn = 0. This figure shows that p increases when taking
the two-point correlation into account. Furthermore, p
has a maximum for the three-point correlations. In this
case the transition becomes second order. The transition
point decreases toward the MC data and the transition
remains continuous at the level of four-point approxima-
tion.

This nonmonotonic convergence of p towards the sim-
ulated p is in agreement with the p, (m) phase diagram
(Figs. 1 or 2). The degree of correlation seems to be pro-
portional to 1jm, , consequently, the p, (m) curve tends to
p 0.721 by a similar nonmonotonic pattern if we start
from I/m = 0 and follow along the line.

Fitting to the results of the four-point approximation
gives P = 0.446 + 0.002, which is close to the simulated

P 0.41. Thus, the n-point correlations seem to be not
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FIG. 4. Critical exponent P, obtained by fitting from sixn-

ulated data for the short-range-mixing case. The transition
is second order for m & 40. Tricritical point is above m = 40.
The dashed line shows the percolation transition P exponent.

FIG. 6. Four-point correlation with long-range-mixing ef-
fect. a: m = 0 second order; b: m = 0.05 first order; c:
m = 0.1 first order. Dotted lines correspond to unstable so-
lutions.
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relevant for n ) 4.
The calculation mentioned above may be easily ex-

tended by taking the long-range-mixing effect into ac-
count at the level of four-point approximation. For this
purpose we determined the contribution of the single
hopping to the multiple-point conGguration probabilities,
which is valid for m (( 1. By this means we could evalu-
ate the average concentration as a function of p for differ-
ent m. In agreement with the expectation Fig. 6 demon-
strates that the continuous transition becomes first order
when m increases. This method allows us to determine
p, vs m. The results agree well with the Monte Carlo
data (see Fig. 1). The four-point approximation gives an
estimate for the tricritical point of m 0.025.

V. CONCLUSIONS

The critical behavior of the probabilistic cellular au-
tomata model has been studied by using Monte Carlo
simulations and adopting the dynamical mean-field the-
ory taking the multiple-point correlations into account.
The effect of correlations on the phase transition was in-
vestigated and has been confirmed by both methods to be
essential. The order of the transition changes from sec-
ond order to Grst order when eliminating the correlations.
More precisely, the dynamical mean-Geld theory predicts

first-order transition when the analysis is restricted to
the effect of one- and two-point correlations. This the-
ory suggests continuous transition if the three- and/or
four-point correlations are not neglected.

In Monte Carlo simulations the correlations are washed
out by introducing a mixing mechanism between two sub-
sequent CA sweeps. The short- and long-range mixing
mechanism has been compared and the crossover point
is located. The approximately three orders of magni-
tude difference in the transition point between the short-
and long-range mixing effects suggests that short-range
mixing is very ineffective in destroying the strong cor-
relations. By determining the critical exponent P the
change of universality could be observed for very weak
mixing. The two-parameter (p - m) phase structure has
been explored by simulation and found to be in agree-
ment with multiple-point-correlation calculation. While
the weak mixing effect causes an increase of the transition
p, stronger site exchange decreases it.

ACKNOWLEDGMENTS

Geza Odor thanks K. Cheong for the helpful discus-
sions and the Department of Computer Science of the
University of Chicago for computer access.

* On leave of absence from Research Institute for Materials
Science, P.O.Box 49, II-1525 Budapest, Hungary.

[1] N. Boccara, J. Nasser, and M. Roger (unpublished).
[2] N. Boccara and K. Cheong, J. Phys. A 25, 2447 (1992);

26, 3707 (1993).
[3] N. Boccara and M. Roger (unpublished).
[4] N. Boccara and M. Roger, J. Phys. A 25, L1009 (1992).

[5] R. Bidaux, N. Boccara, and H. Chate, Phys. Rev. A 39,
3094 (1989).

[6] S. Wolfram, Physica lOD, 1 (1984).
[7] H. Gutowitz, J. Victor, and B. Knight, Physica 28D, 18

(1987).
[8] G. Szabo, A. Szolnotd, and L. Bodocs, Phys. Rev. A 44,

63?5 (1991).


