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In evolutionary games, pair interactions are defined by payoff matrices that can

be decomposed into four types of orthogonal elementary games that represent

fundamentally different interaction situations. The four classes of elementary interactions

are formed by games with self- and cross-dependent payoffs, coordination games,

and cyclic games. At the level of two-person games, social traps (dilemmas) can not

occur for symmetric payoff matrices, which are combinations of coordination games

and symmetrically paired self- and cross-dependent components, because individual

and common interests coincide in them. In spatial evolutionary games that follow the

logit evolutionary dynamics, however, the total payoff is still not maximized at certain

noise levels in certain combinations of symmetric components. This phenomenon is

similar to the appearance of partially ordered phases in solid state physics, which are

stabilized by their higher entropy. In contrast, it is the antisymmetric part of their self- and

cross-dependent components that is responsible for the emergence of traditional social

dilemmas in games like the two-strategy donation game or the prisoner’s dilemma.

The general features of these social dilemmas are inherited by n-strategy games in the

absence of cyclic components, which would prevent the existence of a potential and thus

thermodynamic behavior. Using the mathematical framework of matrix decomposition,

we survey the ways in which the interplay of elementary games can lead to a loss of

total payoff for a society of selfish players. We describe the general features of different

illustrative combinations of elementary games, including a game in which the presence

of a cyclic component gives rise to the tragedy of the commons via a paradoxical effect.

Keywords: evolutionary games, potential games, elementary games, social dilemmas, lattice models

1. INTRODUCTION

In evolutionary games [1–9], the players can represent particles, biological species, human
individuals, or their communities. For realistic and simple systems, it is generally assumed that the
players are located at the sites of a lattice or network and they interact with their neighbors. These
pair interactions are described by payoff matrices adopted from traditional game theory [10–12],
and players are assumed to be intelligent and selfish, meaning that they aim to maximize their own
income irrespective of others. In evolutionary games, the players can change their own strategy in a
way prescribed by a dynamical rule that depends on payoff differences. The stationary macroscopic
behavior of these systems is determined by the pair interactions, the connectivity structure, and the
evolutionary rule.
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In this article, we deal with the possible behaviors of those
n-strategy evolutionary games in which equivalent players are
distributed on the sites of a square lattice and the evolution
is controlled by the logit rule [13–18], a rule that resembles
the dynamics used in kinetic Ising-type models in physics [19–
23]. When their payoff matrix is symmetric, these evolutionary
games can be mapped onto suitable physical systems, which
exhibit different types of order–disorder transitions as the
noise level of the logit rule is changed. More precisely, the
probability distribution of the microscopic states of these systems
is described by the Boltzmann distribution, with the negative
potential energy replaced by a potential derived from the pair
interactions. A symmetric payoff matrix provides equivalent
payoffs to both players for any given strategy pair. In this
case, individual and common interests coincide, therefore selfish
behavior (which is always assumed in traditional game theory)
does not reduce a player’s income. The increase of noise in the
decision process, however, decreases the average income and can
lead to a phase transition to a macroscopic state with lower
income. This transition can be interpreted as a social dilemma
caused by entropy.Wewill show examples of this type of behavior
in this article.

In the traditional analysis of two-player games, social
dilemmas are represented by prisoner’s dilemma [24] and
donation [12, 25] games. In these games, it is the antisymmetric
part of the 2 × 2 payoff matrix that is responsible for the
appearance of the social dilemma: Selfishness dictates that players
choose a strategy pair that is not optimal. Quantifying the
strength of social dilemmas in multiagent systems is complicated
by the fact that their appearance is influenced by a multitude of
features, including the specifics of the interactions, the structure
of the underlying connectivity network, the evolutionary rules,
the initial state of the system, etc. Recent efforts [26–29] have
focused on the payoff differences that incentivize unilateral
deviations from the optimum. In this article, we reinvestigate
these systems from a new viewpoint based on the decomposition
of payoff matrices into a linear combination of four types
of elementary interactions. In the next section, we briefly
describe the mathematical details of the models in question.
Subsequently, we review the decomposition approach and
discuss the general features of elementary interactions with
self- and cross-dependent payoffs, coordination between strategy
pairs, and cyclic dominance, which prevents the existence of a
potential and thus thermodynamic behavior. Due to the large
number of possible combinations of elementary games, we will
not attempt to give a complete overview, but instead discuss
just a handful of interesting special cases which demonstrate
some different versions of social dilemmas. Most of the present
analyses are restricted to systems with players distributed on
a square lattice whose strategy evolution is controlled by the
logit rule, which randomly selects a player in each round, who
then unilaterally changes her strategy according to a probability
distribution that exponentially favors choices that provide higher
individual incomes. It is known that the properties of the final
stationary states of these evolutionary processes are different
if the players are located at the sites of a network with
fundamentally different connections among the players or if

the evolutionary process is governed by (stochastic) imitation
of a better performing neighbor [5, 30, 31] or other more
complex dynamics that aim to model further aspects of human
behavior [32, 33] like the response to incentives in the form of
rewards and punishments [9, 34, 35], the heterogeneity of the
players or their roles in different interactions [36–38], voluntary
participation in the game [39, 40], the reputation of players [41,
42], or the mutability of interaction networks [43, 44], to name
just a few that were studied recently in a similar framework. We
will point out some of these differences.

2. MATHEMATICAL BACKGROUND

We consider evolutionary games in which equivalent players are
located at the sites of a square lattice (with periodic boundary
conditions). The players each use one of n pure strategies
represented by the n-dimensional Cartesian unit vectors and play
the same game against their z = 4 nearest neighbors. The strategy
of the player at site x is denoted by sx. The payoff Ux of player
x comes from multiple games with her neighbors and can be
expressed as

Ux(sx) =
∑

δx

sx · Asx+δx (1)

where the sum runs over the z neighbors located at the sites x+δx.
The Aij (i, j = 1, · · · , n) element of the payoff matrix A defines
the income of player x if she chooses the i-th strategy and her
coplayer uses the j-th strategy.

The time evolution of the models treated in this article is
governed by the logit rule [13–18]: All players play the same game
repeatedly using the same strategy against all of their neighboring
opponents. Between each round of play, a single player x is
chosen at random, who then changes her strategy from sx to
any one of the n available strategies drawn according to the
probability distribution

w(s′x) =
eUx(s

′
x)/K

∑

s′′x
eUx(s′′x )/K

, (2)

while the strategies of the other players remain unchanged. The
parameter K is called the noise parameter, because it quantifies
how well players react to their surroundings. In the low-noise,
K → 0 limit, the logit distribution concentrates on the best
responses of the player that provide the highest possible payoff
given the strategy profile of her set of coplayers. In the opposite,
high-noise, K → ∞ limit, the players can no longer make an
informed decision, and all n available strategies are chosen with
equal probability. In between these two extreme limits, strategy
choices promising higher payoffs are favored exponentially, and
K acts as an attenuation coefficient.

One of the important properties of the logit strategy update
rule is that under certain circumstances it drives systems toward
the Boltzmann distribution. More precisely, the game model
outlined above defines an irreducible Markov chain if K 6= 0,
which converges to a unique stationary equilibrium distribution
regardless of its initial state. For so-called potential games this
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steady state is given by a Boltzmann distribution. In potential
games, the payoff differences realized by unilateral strategy
changes can be described by a single function for all players, that
is, there exists a single function U of the strategy profile s = {sx}
of the whole system for which

Ux(sx)− Ux(s
′
x) = U(s)− U(s′) (3)

is always satisfied whenever s′y = sy for all y 6= x in the strategy

profiles s′ and s. U is called the potential of the game. The
Boltzmann distribution

p(s) =
eU(s)/K

∑

s′ e
U(s′)/K

(4)

is in detailed balance with the logit update rate of Equation (2),
that is, p(s)w(s′x) = p(s′)w(sx) for unilateral strategy changes in
opposing directions, which ensures the stationarity of p(s).

In our multiagent lattice game models, the whole game only
has a potential if its constituent pair interactions have a potential,
and the potential of the whole game is built up from contributions
from each player–player interaction as

U(s) =
1

2

∑

x

∑

δx

sx · Vsx+δx , (5)

where V is the potential matrix that defines the potential of the
pair interaction game defined by the payoff matrix A. The linear
decomposition approach, which we discuss in detail in the next
section, provides a simple set of rules for the evaluation of the
potential of any two-player matrix game.

3. ELEMENTARY GAMES AND THEIR
FEATURES

In the systems we consider, the uniform pair interaction is
defined by the matrix A. On the analogy of vectors, this matrix
can be built up as a linear combination

A = A11











1 0 . . . 0
0 0 . . . 0
...
...
. . .

...
0 0 . . . 0











+ A12











0 1 . . . 0
0 0 . . . 0
...
...
. . .

...
0 0 . . . 0











+ · · · , (6)

where the “Cartesian type” matrices (containing a single 1) can be
considered as a set of orthogonal basis matrices which indicate
the coordinate axes of the n2-dimensional parameter space. In
this notation the matrices A and B are orthogonal if

A · B =
∑

i,j

AijBij = 0. (7)

By rotating the coordinate axes, we can choose another
parametrization for the quantification of pair interactions.
Previous studies have justified the usefulness of basis matrices
that are defined by the dyadic products of n-dimensional basis

vectors which include the all-one vector [45]. The dyadic product
of the all-one vector with itself is the all-one matrix, which
represents an irrelevant (constant) term that provides the same
payoff to the players regardless of their strategy choices. The
elements of the component of A in this direction are given by

A
(av)
ij = µ =

1

n2

∑

i,j

Aij, (8)

the average of the possible payoffs.
Beside this irrelevant component, we distinguish four other

orthogonal elementary interaction types so that

A = A(av) + A(se) + A(cr) + A(co) + A(cyc). (9)

The self- (A(se)) and cross-dependent (A(cr)) components contain
uniform elements in their rows and columns, respectively, and
can be parameterized as

A(se) = ε1















1 1 1 . . . 1
0 0 0 . . . 0
0 0 0 . . . 0
...
...
...
. . .

...
0 0 0 . . . 0















+ ε2















0 0 0 . . . 0
1 1 1 . . . 1
0 0 0 . . . 0
...
...
...
. . .

...
0 0 0 . . . 0















+ · · · + εn















0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...
...
...
. . .

...
1 1 1 . . . 1















, (10)

and

A(cr) = γ1















1 0 0 . . . 0
1 0 0 . . . 0
1 0 0 . . . 0
...
...
...
. . .

...
1 0 0 . . . 0















+ γ2















0 1 0 . . . 0
0 1 0 . . . 0
0 1 0 . . . 0
...
...
...
. . .

...
0 1 0 . . . 0















+ · · · + γn















0 0 0 . . . 1
0 0 0 . . . 1
0 0 0 . . . 1
...
...
...
. . .

...
0 0 0 . . . 1















, (11)

where the expansion coefficients are

εi =
1

n

∑

j

Aij − µ and γj =
1

n

∑

i

Aij − µ. (12)

The sums of these coefficients satisfy the conditions

∑

i

εi =
∑

j

γj = 0, (13)
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which in turn ensure the orthogonality of the irrelevant, self-
dependent, cross-dependent components:

A(av) · A(se) = A(av) · A(cr) = A(se) · A(cr) = 0. (14)

The remaining components are separated according to their
symmetry. The coordination component is the symmetric,

A(co) = A(co)T
[

A
(co)
ij = A

(co)
ji

]

and the cyclic component is the

anti-symmetric, A(cyc) = −A(cyc)T part of the remainder of A.
These two terms are evidently orthogonal to each other. A(co) is
called the coordination component of the game, because it can be
built up from voluntary pair coordination games, that is,

A(co) = ν12















1 −1 0 . . . 0
−1 1 0 . . . 0
0 0 0 . . . 0
...

...
...
. . .

...
0 0 0 . . . 0















+ ν13















1 0 −1 . . . 0
0 0 0 . . . 0
−1 0 1 . . . 0
...
...

...
. . .

...
0 0 0 . . . 0















+ν23















0 0 0 . . . 0
0 1 −1 . . . 0
0 −1 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 0















+ · · · .(15)

These elementary components contain two +1s in their diagonal
and two -1s outside of their diagonal in such a way that
the sum of the matrix elements is zero in each row and
column. In other words,A(co) summarizes all possible elementary
coordinations between possible strategy pairs (i, j) (i < j) with
weight factors νij. When a coefficient is negative (νij < 0), its
contribution describes an anticoordination game between the
two corresponding strategies.

The cyclic component A(cyc) also gets its name from its
building blocks. It can be written as

A(cyc) = λ123



















0 1 −1 0 . . . 0
−1 0 1 0 . . . 0
1 −1 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...
...
. . .

...
0 0 0 0 . . . 0



















+ λ134



















0 0 1 −1 . . . 0
0 0 0 0 . . . 0
−1 0 0 1 . . . 0
1 0 −1 0 . . . 0
...
...

...
...
. . .

...
0 0 0 0 . . . 0



















+ · · · , (16)

where each term of the sum is a voluntary cyclic dominance
(rock–paper–scissors) game. The expansion coefficient λ1ij (1 <

i < j ≤ n) is the weight of the contribution of the elementary
cyclic game in which strategy 1 beats strategy i, strategy i beats
strategy j, and strategy j beats strategy 1 when the coefficient is
positive. The entries of an elementary cyclic matrix are three+1s

and three −1s distributed in such a way that none of them are
along the diagonal of the matrix, two-two of each type are in the
first row and the first column of the matrix, and the entries sum
up to 0 in each row and each column of the matrix.

One of the advantages of the matrix decomposition presented
here is that it readily identifies potential games. A matrix game
only admits a potential in the absence of the cyclic component,
that is, when A(cyc) = 0. Then, its potential matrix can be given
using the simple expression [23]

V = A(se) + A(se)T + A(co). (17)

4. INTERPLAY OF ELEMENTARY GAMES

Whether an evolutionary game manifests a tragedy of the
community depends on the payoff matrix, the connectivity
structure, and the stochastic dynamical rules. Due to the large
number of parameters, we restrict our current analysis to
discussing a handful of simple examples in which the concept
of matrix decomposition can extend our understanding of the
nature of social dilemmas.

4.1. Donation Game
The two-strategy donation game represents the simplest linear
combination of self- and cross-dependent elementary games.
Many versions of the game also include an irrelevant term A(av)

[12]. The players have two options: to pay (strategy 1) or not to
pay (strategy 2) the cost c > 0 of an investment which provides
a benefit b > c to the other player regardless of her choice of
strategy. The corresponding payoff matrix is

A =
(

b− c −c
b 0

)

= −c
(

1 1
0 0

)

+ b

(

1 0
1 0

)

, (18)

whose non-zero expansion coefficients are µ = (b − c)/2, ε1 =
−ε2 = −c/2, and γ1 = −γ2 = b/2. The game’s potential matrix
can be written as

V =
(

−c 0
0 c

)

. (19)

This game has a single pure Nash equilibrium, the strategy pair
(2, 2), selected by the maximal entry of the potential matrix
max(Vij) = V22, so traditional game theory tells players not to
invest. This poses a social dilemma, since both players would
realize a higher payoff if they both chose to invest. In the square-
lattice, logit-rule-driven setup described in section 2, however,
the average payoff of the players varies monotonously from 0 to
4µ = 2(b − c) =

∑

i,j Aij as the noise parameter K is increased

from 0 to∞. So the presence of noise increases the total payoff of
the community, thus alleviating, but not completely eliminating,
the social dilemma.

These results can be directly derived from the logit rule
Equation (2) by exploiting the structural properties of self-
and cross-dependent payoff matrices. Because the irrelevant
and cross-dependent parts of a player’s payoff only depend
on the strategy choices of her opponents, they have the same
contribution to the arguments of all exponentials in Equation (2),
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so the fraction can be simplified, and as a result the logit
rate is independent of irrelevant and cross-dependent payoffs.
This means that the donation game’s strategy update rates are
determined only by its self-dependent component. Since the
payoff a player receives in a self-dependent game depends only
on her own strategy choice and not on her opponent’s, the
probability of any player switching to strategy i is

w(i) =
ezεi/K

∑

j e
zεj/K

(20)

in every microstate of the whole system if this game is played
with z coplayers. It follows that this is also the equilibrium
probability of any randomly chosen player using strategy i.
The same reasoning can be applied to any general n-strategy
game made up of only irrelevant, cross-, and self-dependent
payoffs on any z-regular lattice. In other words, the frequency
of players following strategy i is ̺i = w(i). These games do
not describe proper player–player interactions, the players do not
meaningfully affect each other’s payoff, they each play their own
independent game against an external entity, which has a role in
the game that is similar to the role an external magnetic field has
in magnetic systems.

General n-strategy games composed only of self- and
cross-dependent components can be considered as generalized
donation games in which εi defines the investment choosing the
i-th strategy entails while γj is the benefit a player receives for
each of her coplayers who selected the j-th strategy. Because
of the zero-sum constraints on the self- and cross-dependent
parameters (Equation 13), some of the εi are positive and
represent divestments, and some of the γj are negative and
represent penalties. Adding an irrelevant term on top of these
self- and cross-dependent components does not change the
preferences of the players, it just shifts everyone’s payoff by the
same constant on a regular lattice, so we will assume µ = 0
without any loss of generality. The entries of the generalized
donation game’s potential matrix are Vij = εi + εj. If the game
has a unique maximum self-dependent coefficient εi = max εj—
which should almost always be the case when n − 1 of the
coefficients are independently chosen random numbers—, then
the maximum entry of the potential matrix is Vii and the game
has a unique, pure, and strict Nash equilibrium, the symmetric
strategy pair (i, i). This obviously poses no social dilemma, if the
payoff matrix itself happens to be symmetric, that is, if εj = γj for
∀j. The condition for the generalized donation game to be a social
dilemma is at least one of the other (j, j) (j 6= i) symmetric strategy
pairs providing a higher payoff than the Nash equilibrium. This
can be easily achieved by tuning the γj parameters. In fact, for a
fixed set of εj, one can always find a set of γj that makes the Nash
equilibrium have a lower payoff than that of all other symmetric
strategy pairs. The fact that whether a game presents a social
dilemma depends on the game’s cross-dependent components
may seem surprising, because the cross-dependent components
do not contribute to the payoff changes realized by unilateral
strategy changes, which can be used to measure the strength of
a dilemma [26–29]. Changing the cross-dependent components

can change the identity of the highest paying strategy profile, the
reference point of the dilemma, instead of its incentives.

The multiagent, evolutionary version of the game provides an
average payoff of

〈U〉 = z
∑

j

̺j(εj + γj) (21)

on a regular lattice when the players update their strategies
according to the logit rule, which is definitely lower than the
highest possible per capita payoff max z(εj + γj) for any finite K.
The introduction of noise always induces a social dilemma, since
it precludes the maintenance of specific strategy arrangements.
What is more interesting is that there are homogeneous states
(all players playing the same strategy) that have a lower payoff
z(εj + γj) than 〈U〉. If the Nash equilibrium is one of those states,
then the presence of noise actually alleviates the social dilemma
instead of causing it. Since the ρj equilibrium frequencies only
depend on the εj self-dependent components, the average payoff
〈U〉 is simply the sum of the average payoff of the γj = 0, fully
self-dependent game and the expectation value of the additional
cross-dependent payoffs.

The above feature of cross-dependent components can be
utilized when we wish to explore the average payoff as a function
of the payoff parameters in evolutionary games controlled by
the logit rule. Namely, if one modifies only the cross-dependent
components (γj → γ ′j ), then this change leaves the stationary

state unchanged, while the variation of the average payoff can be
given as,

1〈U〉 = z
∑

j

̺j(γ
′
j − γj). (22)

4.2. Evolutionary Potential Games
Adding additional cross-dependent components to a game has
no effect on the logit evolutionary process. Consequently,
the resulting game has the same steady states as the
original. In the donation game treated in section 4.1, this
property allows us to create or eliminate certain social
dilemmas simply by tuning cross-dependent components.
In this section, we examine the effects of adding cross-
dependent components to two-strategy potential games
with both self-dependent and coordination components.
The payoff matrix of a general two-strategy game can be
written as

A =
(

ν12 + ε1 + γ1 −ν12 + ε1 + γ2
−ν12 + ε2 + γ1 ν12 + ε2 + γ2

)

(23)

in terms of the decomposition coefficients described in section 2.
In the following, we consider logit-rule-driven games on
square lattices.

The two-strategy coordination game (ε1 = ε2 = γ1 =
γ2 = 0 and ν12 = 1 for the sake of simplicity) is equivalent
to the zero-field Ising model [46, 47], one of the simplest
models of ferromagnetic materials in statistical physics, when
the players update their strategies according to the logit rule.
The Ising model exhibits a continuous phase transition between
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FIGURE 1 | Strategy frequencies vs. K in two-strategy potential games played

on a square lattice for three different self-dependent components and ν12 = 1.

The solid lines show Onsager’s exact results [49] in the ε1 = ε2 = 0 case. The

upper (lower) dashed and dotted lines show the frequency of the favored

strategy 1 (suppressed strategy 2) for ε1 = −ε2 = 0.001 and ε1 = −ε2 = 0.03.

a disordered phase stable at high temperatures and an ordered
phase stable at low temperatures. The system’s behavior near
the transition point at Kc = 2ν12/ ln(1 +

√
2) is universal in

the sense that it describes numerous seemingly different two-
dimensional systems [48]. The transition is illustrated by the solid
lines in Figure 1, which show the temperature dependence of the
equilibrium frequencies of the two strategies. In the disordered
phase, strategy 1 and strategy 2 are present in equal proportions.
In the ordered phase, this balance is broken spontaneously, and
one of the strategies becomes more frequent than the other.
The difference between the frequencies keeps increasing as the
temperature is lowered, and the system becomes homogeneous
in theK → 0 limit. Because of the symmetry of the payoffmatrix,
either one of the strategies may become themajority strategy with
equal probability if the system’s initial state is randomly chosen.

The introduction of a cross-dependent component (γ1 =
−γ2 6= 0) changes only one thing about the system. The average
payoffs are no longer equal to each other in the two differently
ordered phases. The difference between the two average payoffs
is proportional to the order parameter |̺1−̺2| by Equation (22)
and γ1 = −γ2. More precisely, it is equal to z|γ1(̺1 − ̺2)|.
Each average payoff is shifted by an amount that goes to z times
the majority strategy’s γi coefficient in the K → 0 limit, as
demonstrated by the data shown in Figure 2. This constitutes
a kind of social dilemma. Sometimes, depending on the initial
conditions and how the stochastic evolution of the system turns
out, the average payoff of the system will be lower than it could
be in the other, just as stable state. This is a qualitatively different
social dilemma than the one in the donation game (section 4.1),
because the two states it compares are both feasible stationary
states of the system’s dynamics. We also find that the average
payoff remains unchanged in the disordered phase, because half
of the players provide γ1 and the other half provide γ2 = −γ1

FIGURE 2 | Average payoffs as a function of K in the evolutionary games

shown in Figure 1 with additional cross-dependent components

(γ1 = −γ2 = 0.5 and −0.5, the former leading to higher and the latter leading

to lower average payoffs). The solid, dashed, and dotted lines refer to the

same self-dependent parameter values as in Figure 1.

payoff to each of their neighbors. The appearance of the social
dilemma accompanies the phase transition.

Adding a self-dependent component to the elementary
coordination game (ν12 = 1 and ε1 = −ε2 6= 0) smooths
out the order–disorder transition, as demonstrated by the
Monte Carlo data plotted with dashed and dotted lines
in Figure 1. The self-dependent components break more
than just the payoff symmetry of the two strategies, they
affect their symmetry with respect to the dynamics as well.
The system no longer has two equivalent stable states at
low temperatures. The one in which the strategy favored
by the self-dependent components is in the minority loses
its stability, while the other remains stable. Of course,
the changes in the dynamics also modify the temperature-
dependence of the equilibrium strategy frequencies, increasing
the difference between the two strategy frequencies at
all temperatures.

Cross-dependent payoff components can again be used to
shift the average payoff without affecting the system’s steady
state. Figure 2 shows some examples. We again find that the
more polarized the strategy distribution is, the more effectively
its average payoff can be changed. The highest possible average
payoff in this system is max z(ν12 + εi + γi), but this is obviously
not realized when K > 0, which constitutes a social dilemma.
How changing the temperature affects this social dilemma
depends on the payoff parameters, just like in the case of the
generalized donation game. In the K → 0 limit, the stationary
state is dominated by the strategy for which the diagonal element
of the potential matrix ν12+ 2εj is maximal. Should this coincide
with the maximum payoff strategy pair, the social dilemma
becomes less and less severe as the noise level is decreased and
it disappears for K = 0. In the opposite case, increasing the
noise level actually shrinks the amount of total payoff the whole
community misses out on due to the dynamics.
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FIGURE 3 | Strategy frequencies vs. K in one of the three equivalent

stationary states of the three-strategy Potts model defined by Equation (24).

Remarkably, anticoordination games (games with ν12 < 0)
have almost exactly the same properties as their coordinated
counterparts when the network structure of the pair interactions
is bipartite. The sites of bipartite lattices can be divided into
two disjoint groups in such a way that no neighboring sites
end up in the same group. For example, the square lattice is a
bipartite lattice, whose two parts are arranged in a checkerboard
pattern. This property allows us to map anticoordination games
onto coordination games by simply exchanging the labels of
the strategies on one of the two sublattices, which formally
swaps the two columns of the payoff matrix. Under this
transformation, the coordination component’s sign is flipped,
the cross-dependent components are swapped, and the self-
dependent components remain unchanged, turning the ν12 <

0, ε1, ε2, γ1, γ2 anticoordination game into the ν′12 = −ν12 >

0, ε′1 = ε1, ε
′
2 = ε2, γ

′
1 = γ2, γ

′
2 = γ1 coordination game. We

are already familiar with this latter game’s properties, so we just
have to apply the (inverse) strategy swap transformation to those
results to learn about anticoordination games. In a nutshell, an
anticoordination game system is disordered at high temperatures
and sublattice-ordered at low temperatures, and it undergoes a
continuous phase transition when ε1 = ε2 = 0. The cross-
dependent components do not affect the system’s dynamics, but
they do change the payoffs, which may lead the community
into a social trap. When the game is composed of overlapping
coordination components that share one of their coordinated
strategies or when the lattice is not bipartite (or frustrated, in
the language of condensed matter physics), this label swapping
trick cannot be applied successfully, and finding the zero-noise
Nash equilibrium and predicting the properties of the system can
become a much harder task [50].

The phenomena described in this section are not specific
to two-strategy games. The three-strategy Potts model [51,
52], a generalization of the Ising model, displays very similar
behavior. The payoff matrix that corresponds to the three-
strategy Potts model is the permutation symmetric combination

FIGURE 4 | Average payoffs as a function of K in the three possible low-noise

steady states of the Potts model defined by Equation (24) with additional

cross-dependent components (γ1 = −γ3 = 0.5, γ2 = 0). The labels above the

curves refer to the majority strategy.

of all three-strategy elementary coordination games. Normalizing
the highest payoff to 1, the expansion coefficients are ν12 = ν13 =
ν23 = 1/2 and the payoff matrix reads

A =





1 − 1
2 −

1
2

− 1
2 1 − 1

2
− 1

2 −
1
2 1



 . (24)

When this game is played by players who are located at the sites of
a square lattice and whose strategy updates follow the logit rule,
the resulting system exhibits a continuous order–disorder phase
transition at a critical noise level of Kc = 3/2 ln(1 +

√
3). This

is demonstrated by the Monte Carlo simulation data presented
in Figure 3. One of the differences between the models is that
the Potts model has three equivalent stationary states instead
of two, reflecting the permutation symmetry of the three Potts
strategies. The effects of adding cross-dependent components
to the Potts model are very similar to those observed in the
case of the Ising model, as illustrated by Figure 4. The cross-
dependent components again shift the average payoffs of the
otherwise equivalent steady states in the ordered phase, which
poses a social dilemma, this time with two possible social trap
situations that may be realized instead of the optimal outcome.

If we further perturb this model with self-dependent
components, the ordered stationary state whose majority state
has the highest self-dependent component (εi = max εj > 0)
will be selected by the logit dynamics at low noises independently
of the cross-dependent components. If the highest εi and the
highest εj + γj both belong to the same strategy, this selection
constitutes no social dilemma in the K → 0 limit. In any other
case, however, the system will evolve toward one of the two
tragedy of the commons situations, whose K-dependent average
payoff approaches one of the two lower curves in Figure 4 in the
εi → 0 limit. The most dangerous, lowest-paying social traps
have an interesting property: Increasing the noise level results in
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some increase in their average payoff in the vicinity of the critical
transition point, as illustrated by Figure 2 for the two-strategy
system and curve 3 in Figure 4 for the three-strategy system.

In light of the results above, we can predict that the n-strategy
game composed of n permutation symmetric coordination
components, which is equivalent to the n-state Potts model, has
similar features. We expect that in this game one can distinguish
(n−1) social traps in which the homogeneous state favored by the
self-dependent components does not provide the highest income
because of the game’s cross-dependent terms.

It is also worth briefly mentioning that for stochastic
imitation-type dynamical rules [1, 30] the evolution can avoid the
social traps in a certain region of the parameter space. According
to this sequential strategy update rule, a randomly selected player
(at site x) adopts its neighbor’s strategy (at site x + δ) with a
probability [31] that depends on the payoff differences as

W(sx ← sx+δ) =
1

1+ e(Ux−Ux+δ)/K
, (25)

which prefers the adoption of strategies with higher payoffs. Just
like in the case of the logit rule, the K parameter quantifies the
level of noise here too.

Imitation favors the formation of a homogeneous absorbing
state, while it also increases the frequency of symmetric strategy
pairs (neighboring players using the same strategy) that provide
higher payoffs, which takes into account the contribution of
cross-dependent components, which are ignored by the logit rule.
The systematic investigation [53] of two-strategy games revealed
an additional phenomenon caused by the interplay of elementary
components that can be observed along interfaces separating
homogeneous domains. The direction of invasion was found to
be dependent on the orientation of the interface at low noise
levels. Monte Carlo simulations have clearly demonstrated (for
details and snapshots see Szabó et al. [53]) that if the minority
strategy forms a circular domain in the initial state, its shape first
transforms into a square with horizontal and vertical or tilted
sides (with slopes of ±1), then this distorted domain shrinks
and, finally, vanishes. In Figure 5, solid lines show the time-
dependence of the average payoff at low noise levels as the system
evolves into two different absorbing (homogeneous) states. The
selected final homogeneous state depends on the initial strategy
distribution. For large linear sizes, L→∞, the abovemechanism
favors the homogeneous state that percolates first. The noise
causes irregularities along the interfaces and diminishes the
anisotropy of the invasion velocity for high values of K.
As a result, high-noise stochastic imitation drives the system
toward the homogeneous absorbing state with the higher cross-
dependent component, as demonstrated by the dashed lines in
Figure 5. We emphasize that this is again a process in which
increasing the noise level helps the system avoid the social trap.

4.3. Combination of Coordinations
Different combinations of elementary coordination games may
lead to even more kinds of social dilemmas. One such example
is the model treated in Király and Szabó [54], in which the
logit dynamics prefers a steady state characterized by a lower

FIGURE 5 | Evolution of average payoffs in a two-strategy game governed by

stochastic imitation when the MC simulations are started from an initial state

containing a circular island (as shown in the inserts on the left) of radius r = 90

on a square lattice of linear size L = 400. The final homogeneous states are

shown in the inserts on the right. (Parameters: ν12 = 1, ε1 = −ε2 = −0.03,
γ1 = −γ2 = 0.5). The solid (dashed) lines show MC data averaged over 100

runs for K = 0.3 (K = 3).

average payoff over another metastable state because of its higher
entropy. The model’s payoff matrix combines Ising- and Potts-
type combinations of elementary coordinations in an n = 5-
strategy game to read

A =













1 −1 0 0 0
−1 1 0 0 0

0 0 1 − 1
2 −

1
2

0 0 − 1
2 1 − 1

2
0 0 − 1

2 −
1
2 1













. (26)

The game contains the two-strategy Ising and the three-strategy
Potts coordinations as independent subgames of the first two and
last three strategies, respectively, and provides zero payoff to both
players when they choose strategies that do not belong to the
same subgame. It has five Nash equilibria, the five symmetric
strategy pairings, which all provide a payoff of 1 to both players.
In the following, we give a brief overview of the results presented
in Király and Szabó [54].

When this game is played on a square lattice by players who
update their strategies according to the logit rule, the resulting
system’s equilibrium properties are qualitatively similar to those
of the Ising model. The system undergoes a continuous phase
transition at a critical temperature (Kc ≈ 1.067) between a
disordered state and an ordered state, in which the symmetry
of the two Ising-coordinated strategies is spontaneously broken.
The disordered phase respects the symmetry of both the first two
and the last three strategies, but the Ising-coordinated strategies
are slightly more frequent than the other three. In the ordered
phase one of the two Ising-coordinated strategies has the highest
frequency. Not too close to the critical point, the other Ising-
coordinated strategy is the least frequent in the system. The three

Frontiers in Physics | www.frontiersin.org 8 March 2020 | Volume 8 | Article 59

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Király and Szabó Interplay of Elementary Interactions

Potts-coordinated strategies are present in equal abundance at all
noise levels.

The game also has a metastable state, which is never
preferred by the system at finite noise levels, but can nonetheless
be observed at low enough noise levels when Monte Carlo
simulations are started from a pre-ordered initial state. This
metastable state breaks the symmetry of the Potts-coordinated
strategies instead of that of the Ising-coordinated strategies, one
of the last three strategies has the highest frequency in it, while
the other two are equally abundant and less frequent than the two
also equally abundant Ising-coordinated strategies.

The social dilemma in this game lies in the fact that the
Potts-majority metastable state provides a higher average payoff
to the community than the stable Ising-majority state preferred
by the dynamics. In potential games that are governed by the
logit strategy update rule, the stable equilibrium state maximizes
the system’s so called free energy. Metastable states maximize
this free energy only locally in the sense that only small enough
perturbations of the state lower the free energy. The free energy
F is the sum of two quantities, the system’s potential U and its
entropy S multiplied by the noise level K, that is, F = U +
TS. The two terms act in opposite directions, as the potential
favors ordered strategy arrangements, whereas the entropy term
prefers disordered states. Comparing the two terms for the Ising-
majority stable state and the Potts-majority metastable state, we
find that the average potential—which in games composed only
of coordination components equals the average payoff—is higher
in the metastable state, so the stable state is a social trap, and
conversely, the entropic term is higher in the stable state, so the
more disordered of the two competing states is stabilized by its
higher entropy, and it is this stabilization effect that maintains
the social dilemma.

4.4. Effects of Cyclic Components
The presence of cyclic components prevents the existence of
a potential and thus can significantly modify many related
features. The evolutionary three-strategy rock–paper–scissors
game has been investigated in many previous studies, because
this interaction plays a fundamental role in the maintenance
of biodiversity [5, 8, 11, 55–57]. If two players play this game
repeatedly with unilateral strategy changes, then the loser can
always become the winner, and this possibility drives a circular
flow in their strategy choices.

The original rock–paper–scissors game has a single mixed
Nash equilibrium, in which the three options are selected
with equal (1/3) probability. For imitation-based population
dynamics, the equation of motion has four fixed points including
the symmetric Nash equilibrium (̺i = 1/3) and the three
homogeneous states. Additionally, this system has a set of
oscillating solutions too. On d-dimensional lattices (d > 1)
these evolutionary games show local cyclic oscillations around
the symmetric solution, while global oscillations can also be
observed on networks with sufficiently large neighbor degrees
(for references, see the reviews mentioned above).

Combinations of several voluntary rock–paper–scissors
components exhibit more complex behaviors including the
formation and competition of strategy associations [58], parity

FIGURE 6 | Average payoffs as a function of K for a logit-rule controlled model

on a square lattice whose pair interaction is defined by Equation (27) when

ε = 0.05 and λ = 0.1. The dashed line corresponds to the highest possible

average payoff, which is achieved when all players choose strategy 1. The

vertical arrow shows the noise level at which the dominance of strategy 3 turns

sharply into the dominance of strategy 1.

effects caused by feedback along the interaction cycle [59],
and the enhancement of the role of fluctuations in spatial
systems [60, 61]. Even a brief survey of the wide scale of
possible behaviors goes beyond the scope of this work. Instead
of it, our attention will be focused on a lattice model in which
the community falls into a social trap due to the paradoxical
effect described by Tainaka [62]. This paradoxical effect can
be observed in three-state systems with non-uniform invasion
velocities. Contrary to the naive expectation, having the highest
invasion velocity actually benefits the predator of the most
aggressive state (species) in both the mean-field and the spatial
model [63–65].

This curious effect can also be recognized in many three-
strategy models, as illustrated by Figure 6, by considering a
model in which the invasion rate of strategy 1 is increased by the
introduction of a suitable self-dependent component.

In this model, the expansion coefficients of the three
elementary coordination components are identical, just as they
are in the Potts model. Additionally, the pair interaction includes
a self-dependent term that provides extra income to strategy 1,
and a cyclic (rock–paper–scissors) component so that

A =





1 0 0
0 1 0
0 0 1



+ ε





1 1 1
0 0 0
0 0 0



+ λ





0 −1 1
1 0 −1
−1 1 0



 . (27)

For weak perturbations (|ε|, |λ| ≪ 1), this game has three
homogeneous Nash equilibria, in which the players select the
same strategy. In lattice systems, combining the three-state
Potts model with the rock–paper–scissors game results in a
self-organizing pattern in which rotating spiral arm interfaces
separate homogeneous domains of the three strategies, whose
formation is supported by the coordination component. Along
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FIGURE 7 | The appearance, growth, and extinction of a burst is accompanied

by a macroscopically detectable variation in the frequency of strategy 2. These

MC data were obtained in a large system (L = 1, 000) at K = 0.44 for the

same interaction parameters that were given in the caption of Figure 6.

these moving interfaces, the domains of strategy 1 invade the
territory of strategy 2, which in turn invades domains of strategy
3, which invades domains of strategy 1. In the zero-noise limit
the average domain size (correlation length) is proportional to
1/|λ| [66].

In this model, positive ε values enhance the invasion velocity
from domains of strategy 1 to domains of strategy 2. Monte
Carlo simulations [67] have indicated that the paradoxical effect
[62] governs the system’s behavior as long as ε remains below
a threshold value, which depends on K and λ. In this case,
strategy 3 (the predator of strategy 1) dominates the system at low
noises. At the same time, this state is unstable. More precisely,
if a sufficiently large domain of strategy 2 emerges due to the
stochasticity of the evolution, then this nucleus grows until the
appearance of a similar nucleus of its mortal enemy (strategy 1)
that stops and reverses the growth process and, finally, eliminates
the domain of strategy 2, as illustrated by Figure 7. In the
absence of food, strategy 1 becomes extinct. In short, after this
burst event, the system evolves back into the state dominated
by strategy 3. These bursts become rarer and larger when K is
decreased. Increasing K modifies the invasion velocities, which
causes relevant changes in the spatio-temporal patterns of the
system’s evolution, as well as in the average payoff shown in
Figure 6. Due to these changes, the increase of K leads to the
dominance of the preferred strategy 1 via a sharp transition at
a noise level of K ≃ 0.85. This process is accompanied by a sharp
increase in the average payoff that is reduced by mistakes whose
frequency increases with K.

The above model is again an example of a complex
phenomenon that develops a local maximum in the K-
dependence of the system’s average payoff. Evidently, this peak
in the average payoff can be increased by modifying the
payoff matrix with suitable cross-dependent components (see
Equation 22).

4.5. Summary
In the present work, we have surveyed several mechanisms
that drive evolutionary games into the trap (or traps) of
social dilemmas. We have demonstrated that the concept of
matrix decomposition allows us to study systematically and
separately the interactions and processes that are responsible
for the appearance of a wide scale of social dilemmas.
In this approach, we distinguish four types of elementary
n-strategy pair interactions: cross-dependent, self-dependent,
coordination-type, and cyclic dominance games. Out of these
four types, only cyclic dominance games do not admit a
potential. Potential games, combinations of the other three
elementary game types, are closely connected to statistical
physics. When a potential game’s evolution follows the logit
strategy update rule, it becomes equivalent to a classical
spin model. In this analogy, it is the negative of the game’s
potential, and not its payoff, that plays the role of the
spin system’s Hamiltonian. Due to this analogy, the ground
state corresponds to the preferred Nash equilibrium that
maximizes the system’s potential. The corresponding ordered
strategy distribution determines the system’s behavior at low
noise levels.

We have shown that the system’s behavior can be described
analytically if the pair interactions contain only self- and cross-
dependent components. This set of games can be considered
as a generalized version of the donation game, in which
players have n different investment options, each with its own
benefit to the coplayer. Since the cross-dependent component
does not contribute to the potential, the system’s dynamics
and equilibrium steady state are determined just by the self-
dependent component, which can lead to a social dilemma, which
is either exacerbated or alleviated by decreasing the noise level
depending on the payoff parameters.

Similar social traps that are also caused by a cross-dependent
mismatch between a game’s potential and payoff may arise
in general potential games too. However, when a game has
multiple equivalent steady states as a result of some non-trivial
symmetry in its potential matrix, the presence of cross-dependent
components can also cause a different kind of social dilemma.
In this case, there is a mismatch between the potential and the
payoff of equally feasible steady states of the (logit) dynamics,
so whether the community falls into a social trap is determined
by the initial state of the system and the actual outcome of its
stochastic evolution. Additionally, we have pointed out similar
phenomena in a system with an imitation-based evolutionary
rule, in which K-dependent interfacial invasion processes can
drive the system into a social trap.

The appearance of social dilemmas is intimately related to the
antisymmetric components of the payoff matrix that represent
individual but not common interests. In two-strategy games such
antisymmetric components can only arise from the self- and
cross-dependent terms. In n-strategy games (n > 2), however,
the presence of cyclic components can also lead the system
into a social trap, as we have demonstrated in the case of a
three-strategy model. Cyclic components do not directly affect
the average payoff, because they are zero-sum games. We have
discussed a model in which the emergence of social tragedy
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is related to a paradoxical effect observed in many models
characterized by sufficiently strong cyclic dominance. In these
systems, K-dependent interfacial phenomena play a relevant role
in the generation of burst events and also in the formation of
self-organizing patterns.

In some of the above-mentioned social dilemma types, one
can observe a local maximum in the noise-dependence of the
average payoff that defines an optimal noise level at which
the community’s losses are minimized. In some models, these
phenomena have a significant influence on the formation and
motion of interfaces.

Finally, we emphasize that the systematic analysis of the
combinations of coordination components is still not complete,
despite the fact that these interactions can occur in, and thus are
relevant to, many multi-particle systems to which the traditional
methods of statistical physics can be easily applied. This is also
true for the combinations of cyclic components that play a
fundamental role in the behavior of ecological systems. In the

light of the above results, we expect further curious phenomena
to emerge from the systematic investigation of the interplay
between the wide range of elementary interactions.
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