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Abstract

The theoretical modeling in complex physical systems may be aimed at an improved precision of empirical description
or a deeper physical understanding of the phenomena. The Preisach-type empirical product model of hysteresis as well as
a zero temperature Monte Carlo simulation of the magnetization process of an Ising-like dipolar system are discussed as
an illustration of modeling examples. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Relatively well-known principles and laws govern the
basic physical properties in a system of magnetic units,
thus magnetic phenomena may be modeled and
simulated using rather clari"ed concepts. On the other
hand, magnetic systems are complex enough to provide
models for the description of conceptually less clari"ed
collective systems. The success of the Ising-model as
applied for non-magnetic systems is an obvious example.

As another example, the magnetization curve of a
ferromagnet re#ects many characteristic features of
a whole class of more general non-reversible transition
processes (e.g. "rst-order phase transition, piezoelectric
deformation, ferro-electric polarization, gas adsorption
and desorption on solid surface, etc.). The irreversible
character of the hysteretic phenomena is related to the
lag of the hindered response to external actions due to
the memory e!ects of metastable states separated
by energy barriers. The scienti"c knowledge about hys-
teresis has been developing similar to other physical
theories from empirical "ndings and experimental data
collections through phenomenological descriptions of
di!erent macroscopic (`top-downa) and microscopic
(`bottom-upa) levels hopefully towards an e$cient
concise summarizing theory.

Lord Rayleigh's century old parabolic law [1] may be
considered as an attempt of &curve "tting' to known
experimental hysteresis curves. Based upon the idea
of Rayleigh's law a phenomenological model has been
constructed in 1935 by Ferenc Preisach [2] for the
calculation of the details of magnetic hysteresis loops in
ferromagnetic materials. The Preisach model proved to
be surprisingly e$cient in describing the most important
apparent features of magnetization curves, and has been
widely discussed, applied, modi"ed and improved in the
literature as seen in a number of useful monographs
published on hysteresis modeling during the last decade
[3}6]. The Jiles}Atherton model [7] is another example
of alternative phenomenological models still at the mac-
roscopic level.

Micromagnetic and ab initio microscopic models con-
centrate on the intellectual understanding and the phys-
ical interpretation of general properties instead of a
direct relation to experiments. The classical micromag-
netic model of Stoner and Wohlfarth [8] for anisotropic
single domain particles or the micromagnetic treatment
of reversible bowings and irreversible jumps of domain
walls, between pinning centers (e.g. Ref. [9]) are such
modeling examples. A new generation of ab initio micro-
scopic models of hysteresis appeared in this decade
[10}14] applying zero temperature Monte Carlo simula-
tion of the ferromagnetic Ising model. In such computer
experiments the de"nite jump at the transition "eld is
smeared over by imposed randomness to give realistic
looking magnetization transition intervals.
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In this paper, a macroscopic `top-downa and a micro-
scopic `bottom-upa example of hysteresis modeling are
to be discussed. The &product model' [15}18] is derived
on the basis of the traditional Preisach model and o!ers
straightforward explanation for non-congruency, satura-
tion and the interconnection of reversible and irreversible
magnetization. The magnetic hysteresis was also studied
on the microscopic scale with zero temperature Monte
Carlo simulation of a three-dimensional Ising system of
dipolar particles arranged on a cubic lattice in a spherical
volume [14].

2. The product Preisach model

In the Preisach model the magnetic history of a system
is determined by a series of consecutive "eld reversal
points H
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The normalized magnetization may change in the (!1,
#1) interval and the Preisach function p(h, h@) represents
the statistical distribution of abstract elementary mag-
netic particles, called hysterons of given up-switching (h)
and down-switching (h@(h) "elds.

Any complex magnetization history can be followed by
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The solution of the inverse problem that is the calcu-
lation of the Preisach function from the measured data
usually involves the mapping of the entire H}m plane
[3}6].

The Everett-integrals calculated between the same re-
versal point limits always give congruent magnetization
branches with zero starting slope irrespective of the pre-
vious history of "eld changes and the actual value of m.
The congruency property has been considered as an
intrinsic feature of the traditional Preisach model [3}6],
and it is an obvious consequence of the "eld-only depen-
dent form: dm (h)/dh":h

h0
dh@ p(h, h@), of the di!erential

susceptibility derived from Eq. (1).
Some experimental data, however, do not support the

validity of the congruency property, and this fact proved
to be a weakness of the traditional Preisach model. Of the
several attempts for the explanation of non-congruency
the `product modela [15}18] is discussed here.

In the product model the congruency property is elimi-
nated by assuming that the susceptibility explicitly de-
pends on both the "eld and the magnetization. These
dependencies are separated into independent multiplying
factors:

dm (h)
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"R(m)Gb#P

h
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dh@ q(h, h@)H. (3)

Experimental data suggest that R(m) should be an even
function of m due to symmetry, have a maximum at
m"0 and goes to zero when approaching saturation.
The assumption, that R(m) is the same for the slope of all
branches of a complicated hysteresis curve, is strongly
supported by the data of Atherton and Schonbachler
[19] measured in a pipeline steel sample.

The two terms of the other factor are both assumed
to be independent of m. The term b is the initial sus-
ceptibility of the virgin state in the origin and its
magnetization contribution changes reversibly during the
history-dependent integration procedure. The integrand
inherits the main properties of the Preisach function and
contributes to the irreversible magnetization.

The product form of susceptibility suggests, that the
magnetization itself should be an indirect function of the
applied magnetic "eld

m(h)"GMk(h)N, k"G~1(m). (4)

Then, the expression of the di!erential susceptibility
will be given as
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and comparing with Eq. (3) we arrive at the result:
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Simple formal integration can provide the form of the
magnetization curve branches starting from the demag-
netized state (H

0
"0, m

0
"0) through n "eld reversals

up to a general m(H) point:
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where the F(H
k~1

, H
k
) terms are modi"ed Everett-like

integral.
The obtained expression describing the magnetization

history is a transformation of the Everett integral series
* Eq. (2) * for the irreversible part and the bH term
represents the reversible part. This combined expression
o!ers a theoretical ground and a practical method for the
separation and consequent treatment of the reversible
and irreversible magnetization contributions, which has
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been mostly an unsolved problem for experts working
with measured magnetization curves.

The form of the limiting function R(m) makes sure that
saturation is a natural intrinsic property of the transforma-
tion function G(k): the argument k(H)"(bH#&F) may
eventually grow to any large positive or negative values,
the magnetization m cannot reach, let alone exceed the
saturation value Dm

s
D"1.

In the special case of uni-axial magnets, one can easily
prove [17,18] that the transformation function is identi-
cal with the paramagnetic magnetization curve:
m(H)"tanh(bH)"G(k (H)), that is R(m)"1!m2. This
uni-axial example may suggest a generalization for
a more complicated symmetry: in any material the trans-
formation function G(bH) and the measured paramag-
netic curve would be identical, and in a real ferromagnet
the measurement of the anhysteretic curve may be
proposed as the best possible approximation of the para-
magnetic curve. Thus, the measured anhysteretic mag-
netization curve is identi"ed with the transformation
function G(k) of the product model and its derivative
R(m)"(dG/dH)

n
(normalized to give R(0)"1) can be

used for practical data processing of the measured hyster-
esis data.

In the product model, the major and minor hysteresis
loop branches are totally determined by the H

k
and

m
k

values measured in the kth reversal point, indicating
the Markovian character of the consecutive reversal
points and loop branches of the magnetization process,
not in#uenced by the details of earlier history.

The limiting function R(m), as deduced from the anhys-
teretic curve, can be applied then for the derivation of
b and q(h, h@) from the measured hysteresis data following
the traditional method [3}6]. The modi"ed Preisach
distribution function q(h, h@) of a real material
comprises the totality of the information contained in
the irreversible part of the hysteresis loops. Its ap-
proximation with analytical function forms can provide
distribution function parameters, which may be further
analyzed and correlated to the microscopic properties of
the material.

3. The dipolar Ising model

Using the techniques of statistical physics we have
studied an Ising system of point-like magnetic dipoles by
Monte Carlo simulation and it was shown that this
model exhibits magnetic hysteresis in periodically vary-
ing external magnetic "eld [14].

A three-dimensional Ising model is considered with
spins located on the points of a simple cubic lattice
(r"(x, y, z); x, y, and z are integers) within a sphere of
radius R and interacting by the nearest-neighbor ex-
change as well as the long-range dipole}dipole couplings.

With dimensionless quantities the Hamiltonian is given
by
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where p(r)"1 and !1 for up and down spins. The
energy terms represent the exchange and the dipole}
dipole interaction between the spins having only z com-
ponent, and the energy of a spin in the external magnetic
"eld. The dipole}dipole coupling is ferromagnetic along
the z-axis and antiferromagnetic in the x}y plane.

The dipolar energy (h"0 and J"0) was determined
by Luttinger and Tisza [20,21] for ordered periodic spin
con"gurations in an in"nite cubic lattice. In the energeti-
cally favored states the up (or down) spins form vertical
columns as expected. The lowest energy structure is
a twofold degenerated chess-board-like antiferromag-
netic (CAF) arrangement of ferromagnetic columns. The
next lowest energy structure is a fourfold degenerated,
layered antiferromagnetic (LAF) spin con"guration of
ferromagnetic planes. The slow cooling Monte Carlo
technique has con"rmed the formation of a structure
equivalent to the chess-board-like twofold degenerated
ground state. For both (CAF and LAF) con"gurations
the "nite size corrections are found proportional to 1/R.

A series of zero temperature Monte Carlo simulations
has been performed to study the hysteresis phenomena
starting from a random spin con"guration. In an elemen-
tary process a randomly chosen spin is #ipped if the
direction of the sum of the calculated dipolar and ex-
ternal "elds is opposite to the spin direction. This process
is repeated until all the spins point to the direction of the
local magnetic "eld. Then the external magnetic "eld (h)
is increased (decreased) by *h and the relaxation process
is started again proceeding toward a new local energy
minimum. The external "eld is varied periodically with
an over-saturating amplitude of 10. During this proced-
ure the magnetization of the sphere exhibits irreversible
magnetic hysteresis.

By varying the magnetic "eld and, if applicable, revers-
ing a randomly chosen spin of the actual con"guration,
the local "eld will be modi"ed in all sites of the system.
Due to the dipole}dipole interaction the neighboring
spins inside the same column are favored to be reversed
too. This e!ect drives an avalanche of spin #ips in the
given column leading predominantly to such con"gura-
tions where complete spin columns have been reversed.
Avalanches were observed in experiments by Barkhausen
[22] and also in the random "eld Ising models [23].

The initially saturated state (h"10, m"1) remains
unchanged with decreasing magnetic "eld until h"2.253,
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Fig. 1. The con"guration of up (black) and down (white spheres) spins during a "eld change from 10 down to 2 (a); 1.7 (b); 0 (c); !1 (d);
!4 (e) and !6 (f).

a value depending slightly on R. Then some columns
switch to opposite, starting from typical symmetric posi-
tions along the equatorial line of the sphere. A typical
state with remnant magnetization is formed at h"0, and
the magnetization vanishes at about h+!1. Here, the
overall magnetic structure consists of domains with CAF
structure in the central region and those of LAF structure
near the equatorial line. These domains remain recogniz-
able in a wide range of the magnetization process even for
h"!2. Further decrease of h will destroy these ordered
regions leaving the spins unchanged only in a few col-
umns positioned randomly. Finally, all the spins point to
downward if the magnetic "eld becomes less than !6.2.
The process can be seen in the Fig. 1.

4. Conclusion

Two examples of hysteresis modeling have been pre-
sented.

The product model is an output-dependent modi"ca-
tion of the traditional Preisach model in which the con-
gruency property is removed, the saturation is an intrinsic
natural property of the magnetization curves due to the
applied mathematical transformation, and the reversible
and irreversible contributions of the magnetization are

composed and treated together in the argument of an
indirect function. The overall behavior of the hysteresis
curve is related to the anhysteretic magnetization, which
represents the theoretical paramagnetic process. The
model parameters characterizing the microscopic
properties of the material can be determined from
the experimental data by the well-known evaluation
procedure.

In the other example a zero temperature Monte Carlo
simulation of the magnetization process exhibits hyster-
esis and avalanches. The process of avalanche is con-
strained in a few columns. As a result, the number of
possible stationary metastable states is decreased drasti-
cally in comparison with the total number of con"gura-
tions, which is a characteristic feature of the hysteretic
behavior.

The presented models may be good candidates for
exploring the relationship between the phenomenologi-
cal approaches and the microscopic descriptions of
hysteresis.
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