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h i g h l i g h t s

• Evolutionary potential games are perturbed by a cyclic component for logit rule.
• The cyclic component causes paradoxical effects and bursts in the spatial model.
• The bursts are related to two consecutive nucleation processes.
• The noise dependence of frequencies, payoffs and fluctuations are determined.
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a b s t r a c t

Evolutionary potential games provide an analogy for equilibrium statistical physics under
suitable conditions that is broken if cyclic components are added. Using Monte Carlo
simulations we study the effect of weak cyclic perturbations on the equilibrium in a
system of players located on a square lattice while the dynamics is controlled by a logit
rule. The pair interaction is composed of a symmetric three-strategy coordination game
of unit strength, a weak self-dependent term, and a cyclic (rock–paper–scissors) com-
ponent. The self-dependent component favors the first (rock) strategy which dominates
the system behavior at low noises if the strength of the cyclic component is below a
threshold value. In the opposite case the predator of the first strategy (paper) rules the
behavior at low noises while the first strategy can occasionally form growing domains
(bursts) diminished after the appearance of the third one. The variation of noise modifies
the invasion velocities as well as the rate of nucleation processes and yields drastic
changes in the strategy frequencies, fluctuations, average payoffs, and spatio-temporal
patterns.

© 2019 Published by Elsevier B.V.

1. Introduction

In evolutionary games equivalent players are located at the sites of a connectivity network or lattice [1,2] and the
pair interactions between the neighboring players are described by an n × n payoff matrix. In these systems each player
collects income via games with their neighbors. Additionally, the players are allowed to modify their strategy unilaterally
by following a prescribed evolutionary rule. These models are widely used to study the final stationary state of biological,
ecological, and economic systems.
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The early investigations of spatial evolutionary models [3] concentrated on two-strategy games where the interaction
is well defined by only two parameters due to the presence of an irrelevant constant and the possibility of choosing a
suitable payoff unit [4]. For these games different types of interactions and macroscopic behaviors are distinguished.
For example, the equivalence between some evolutionary games and the Ising model [5,6] was discussed by several
authors [7,8]. The existence of a potential matrix [8–11] guarantees that all these evolutionary games evolve into a Gibbs
distribution if the so-called logit rule [12–17] controls the dynamical processes. This general feature is preserved for
n-strategy potential games which do not contain the cyclic components [11,18,19]. For n = 3 there exists only one cyclic
component, represented by the rock–paper–scissors game, and this fact simplifies the analysis of the interplay between
the potential and cyclic components.

In ordinal potential games [9,11,20,21] the cyclic components are weak and not capable of modifying the preference
of strategy choices for the possible unilateral changes. Consequently, the pure Nash equilibria of the potential component
are inherited while the thermodynamical behavior (represented by the Gibbs distribution, detailed balance, ordered states
at low noises, and phase transitions) is destroyed by the presence of cyclic components that generate probability currents
in the dynamical graph [22].

Now we study a three-strategy evolutionary ordinal potential game on a square lattice in which the strategy update is
governed by the logit rule. The equivalent pair interactions between neighbors are composed of three types of elementary
games [19] (representing coordinations, external effects and cyclic dominance) as detailed in Section 2. The curious
behavior of this model and the appearance of bursts in a region of parameter space will be investigated by Monte Carlo
simulations (in Section 3) which show striking variations in the strategy frequencies, fluctuations, average payoffs, and
spatio-temporal patterns, when varying the noise level and payoff parameters. Finally we summarize the phenomena and
their general features which may occur in many other evolutionary games and systems.

2. The model and its general features

In the present model equivalent players are located on the sites (x) of a square lattice with a linear size of L. The
undesired finite-size and boundary effects are suppressed by applying periodic boundary conditions for sufficiently large
linear sizes. The traditional matrix notation is used for the quantitative description of the interaction between two neigh-
boring players. Accordingly, for symmetric three-strategy games the pure strategies are defined by three-dimensional unit
vectors as:

sx =

(1
0
0

)
,

(0
1
0

)
, or

(0
0
1

)
, (1)

and we assume that each player uses the same pure strategy against all of her/his nearest neighbors. Thus, the accumulated
income ux(sx) of player x is given by

ux(sx) =

∑
δ

sx · Asx+δ (2)

where the summation runs over the neighboring sites x + δ, and the payoff matrix A is composed of three elementary
components [19,23] as,

A =

(1 + ε ε − λ ε + λ

λ 1 −λ

−λ λ 1

)
. (3)

For ε = λ = 0 this interaction is equivalent to those defined by the three-state Potts model with a unit coupling
constant [24,25]. In the terminology of matrix decomposition [11,19] this interaction includes equivalent coordinations
between all three strategy pairs. The parameter ε > 0 describes an external effect favoring the choice of the first strategy.
The value λ > 0 quantifies the strength of the cyclic component in such a way that the first, second and third strategies
correspond to the choice of rock (R), paper (P), and scissors (S) in the traditional game. Henceforth the strategy labels
i = 1, 2, and 3 refer to R, P , and S, respectively. Our analyses will be restricted to the small values of ε and λ when the
corresponding two-player game has three pure Nash equilibria, namely, the R-R, P-P , and S-S strategy pairs. Due to the
external support (ε > 0) the strategy pair R-R is the preferred Nash equilibrium.

In the evolutionary lattice model a randomly selected player (located at site x) is allowed to modify her/his strategy
unilaterally from sx to s′

x with a probability exponentially favoring higher individual incomes. More precisely, for this logit
rule the probability of choosing strategy s′

x is expressed by

w(s′

x) =
eux(s

′
x)/K∑

sx e
ux(sx)/K

(4)

where K quantifies the frequency of mistakes in the decision processes and plays the role of temperature in physical
systems.
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Fig. 1. Strategy frequencies versus noise for ε = λ = 0.1. Black bullets stand for strategy R, open boxes show the frequency of strategy P , and
crosses denote strategy S.

For ε = λ = 0 this model has three equivalent ordered (homogeneous) states in the limit K → 0. Consequently, if K
is increased, then this system undergoes an order–disorder phase transition (at K = Kc = 1/ln (1 +

√
3) = 0.995 [24])

representing a universality class in the theory of phase transitions [25–27]. The external effect (ε > 0, λ = 0) destroys
the equivalence of the three ordered states by preferring strategy R and the critical phase transition is smoothed out.

The cyclic component in itself has a mixed Nash equilibrium [28] and maintains the coexistence of the three
strategies [2,16,29–33]. In the absence of the external field (ε = 0) the cyclic component prevents the formation of a
long-range ordered (homogeneous) phase at low noise levels. Instead, the three strategies coexist with the same frequency
and form large domains which are separated by rotating spiral arm interfaces [34]. Here we have to emphasize that
similar self-organizing patterns are observed if stochastic imitations control the evolution of strategy distribution [35].
For imitation based rules the players can adopt (imitate) one of the neighboring strategies with a payoff dependent
probability [2]. In this case strategy changes can only occur if the neighboring players choose different strategies. In
other words, this evolutionary process supports the formation of homogeneous domains and prevents the appearance of
single (isolated) foreign strategies inside the homogeneous domains, therefore the analysis of the interfacial topology is
simplified [36]. Finally we mention that many versions of these systems were previously investigated using mean-field
approximations [16,30,37–39], lattice models [2,40] or the complex Ginzburg–Landau approach [41–43].

In contrast to imitation, the logit rule allows players to choose a strategy not present in their neighborhood and this
strategy can initiate the birth and expansion of a new domain as detailed in the next section.

3. Monte Carlo simulations

The interplay of the three types of interactions is investigated by Monte Carlo (MC) simulations when varying the
parameters. During the simulations on a large lattice (the linear size is varied from L = 600 to 2000) we have recorded
the strategy frequencies ρi(t) as a function of time t , and also the average payoffs, pi(t), received by players following the
ith strategy. In one time unit (MCS) each player had a chance to change her/his strategy once on average.

The average strategy frequencies ρ̄i = ⟨ρi(t)⟩ and their fluctuations χi = N⟨(ρi(t) − ρ̄i)2⟩ (with N = L2), as well as the
strategy specific average payoffs, p̄i = ⟨pi(t)⟩, are obtained by averaging over a sampling time ts after a relaxation time tr .
The average total payoff, p̄ =

∑
i ρ̄ip̄i, is also determined. The values of ts and tr are adjusted according to the behavior

of the system for each point in the parameter space (104 MCS < tr , ts < 5 · 107 MCS). In our MC data the statistical error
is comparable to the symbol size.

For weak cyclic dominance the system behavior is ruled by the Potts component and the external field favoring strategy
R at low noise levels. In these cases Fig. 1 illustrates the typical variation of strategy frequencies as a function of K . This
plot shows a smooth transition from the homogeneous R state (ρ̄R = 1 and ρ̄P = ρ̄S = 0) towards the disordered strategy
distribution (ρ̄i = 1/3) occurring in the limit K → ∞. In order to help the readers the selected symbols in Fig. 1 resemble
the strategies rock, paper, and scissors.

As mentioned above the two-dimensional system exhibits a self-organizing pattern with rotating spiral interfaces
at low noises if ε = 0. In this state the three strategies are present with the same frequency and the typical domain
size increases with 1/λ. The quantitative features of this behavior remain unchanged for very low values of ε as it is
demonstrated in Fig. 2. The quantitative analysis of the average strategy frequencies illustrates the appearance of the
paradoxical effect first reported by Tainaka [44] when ε is increased. Fig. 3 shows that only ρ̄P increases monotonously
with the strength ε if ε < εth for fixed K and λ. In other words, the external preference of strategy R is suppressed by
the cyclic dominance component and strategy P (the predator of R) will dominate the system behavior at low noises if
ε < εth (here εth = 0.0765(5)). In the opposite case (ε > εth) the external preference of Rs overcomes the paradoxical
effect and strategy R will dominate the system behavior at low noises as it is clearly illustrated by Fig. 1.
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Fig. 2. Rotating spiral interfaces in a typical snapshot of strategy distributions for K = 0.5, ε = 0.01 and λ = 0.1. The strategies R, P , and S are
denoted by black, white, and blue pixels on a small part (with 200 × 200 sites) of the whole lattice.

Fig. 3. Strategy frequencies versus ε for λ = 0.1, K = 0.7, and L = 1000.

In order to demonstrate what happens if the cyclic component is increased for a fixed ε, in Fig. 4 we show ρ̄P as a
function of λ for three characteristic noise levels. At a low noise (K = 0.5) the Potts and cyclic components enforce the
formation of a self-organizing domain structure (see Fig. 2) for which the external support of strategy R will increase the
frequency of strategy P if λ > λth (λth = 0.117(1) for ε = 0.1). In the opposite case (λ < λth) the system evolves into
a state dominated by strategy R if the simulations are started from a random initial state. Here we have to emphasize
that in the vicinity of this threshold value (λ ≃ λth) states dominated by P (ρ̄P ≃ 1) or R (ρ̄R ≃ 1) can be observed for a
long time (e.g., t > 106 MCS if L = 2000) at such a low noise level. This phenomenon can cause hysteresis when these
variables are slowly tuned at low noises. For higher noises (e.g. at K = 0.8 < Kc) the sudden variations in the strategy
frequencies are decreased and smoothed out when decreasing the value of λ. Notice that here the effect of ε determines
the stationary state dominated by strategy R (i.e., ρ̄R ≃ 1) for sufficiently low values of λ. The third set of MC data in
Fig. 4 represents a typical behavior if the high noise level (K = 1.4 > Kc) prevents the formation of ordered phases.

The complex effects of noise K on the values of ρ̄i are demonstrated in Fig. 5 for fixed λ and ε when ε < εth.
As shown, increasing K results in drastic variations in the average strategy frequencies. Namely, the dominance of
strategy P is changed continuously to the dominance of Rs within a narrow range of K . If K is increased then the R
dominance is transformed slowly into the random strategy distribution (ρ̄i = 1/3). Here it is worth mentioning that
similar phenomena were observed in systems where the imitation type dynamics is extended by the introduction of
mutation or spatial dispersal [45]. Recently Nagatani et al. [46] have reported that the paradoxical effect of the cyclic
component can be suppressed by sufficiently high mutation rates in biological systems. The significant role of mutation,
however, was observed previously for many other three-strategy spatial evolutionary games where all three relevant
elementary components are present [47]. The mentioned phenomena are accompanied by variations in the evolution of
spatio-temporal patterns.
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Fig. 4. Frequencies of strategy P versus the strength λ of cyclic component for ε = 0.1, L = 1000, and three noise levels indicated (K = 0.5, 0.8,
and 1.4). The vertical arrow shows the value of λth for K = 0.5.

Fig. 5. Strategy frequencies versus K if ε = 0.05, λ = 0.1, and L = 2000.

If the simulation is started from a random initial state for ε > εth at low noises, then at first the visualization of the
evolutionary process indicates the formation of small domains of the three strategies. The subsequent domain growing
process is governed by the expansion of the domains of strategy R at the expense of others. Due to the randomness in the
strategy choices the number of isolated foreign strategies and also the sizes of the emerging small foreign domains increase
with K . In fact, in the sea of Rs the domains of Ps can occur with higher probability and expand slowly. On the other hand,
S domains can also appear in the islands of Ps and expand faster. Consequently, these consecutive processes maintain the
dominance of strategy R. A typical spatial strategy distribution is shown in the right snapshot of Fig. 6. The left snapshot of
Fig. 6 illustrates the spatial pattern when ρ̄P ≃ 1. In these cases (ε < εth at low noises) the evolution of the random initial
strategy distribution differs from those mentioned above because here the territories of strategy S are quickly occupied
by players of strategy R. In the absence of strategy S the territory of strategy P is not invaded. Consequently, it expands
slowly at the expense of strategy R, and finally the system evolves into a state dominated by strategy P at low noises.
The corresponding paradoxical effects are also reported in many models of three-strategy evolutionary games [2] based
on imitation.

The homogeneous distribution of strategy P (or R) is unstable against the extension of S (or P) islands emerging via a
nucleation process. For both cases the domain growths are stopped and reversed after the emergence of the third type of
domains. This evolutionary process is demonstrated in Fig. 7 where the simulation is started from a prepared initial state
in which a circular domain of S is inserted into the sea of Ps. In this example the radius (10 lattice units) of the circular
domain of S was sufficiently large to ensure its expansion.

According to the theory of nucleation a sufficiently large domain of the preferred phase can emerge via a long series
of stochastic events [48–50] and this nucleus initiates the evolution towards the thermodynamically preferred phase. In
the present system, however, the emergence of R domains (via a similar nucleation process) suppresses the growth of
S domains and finally the system evolves into a phase dominated by P as illustrated by the time-dependent strategy
frequencies in Fig. 8. Here short-time fluctuations are suppressed by averaging over windows of 20 MCS.

In short, the birth and death of these bursts are initiated by two (or more) consecutive nucleation processes and the
average size of the ‘‘avalanches’’ is affected by the K -dependence of invasion velocities and nucleation rates. Previous
theoretical analyses indicate that the probabilities of the formations of these nuclei decrease drastically if the noise level
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Fig. 6. Typical strategy distributions obtained for K = 0.7 (left) and 0.9 (right) if ε = 0.05 and λ = 0.1. These snapshots show small parts (with
100 × 100 sites) of the whole lattice.

Fig. 7. Series of snapshots illustrating a typical burst process for ε = 0.05, λ = 0.1, and K = 0.6 if initially (t = 0 MCS) a small circular island of S
is substituted into the homogeneous P phase.

Fig. 8. Quantification of bursts in the time dependence of strategy frequencies for ε = 0.05, λ = 0.1, K = 0.42, and L = 1000. The dotted, dashed
and solid lines refer to strategies R, P and S.
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Fig. 9. Noise dependence of the fluctuations of strategy frequencies for ε = 0.05 and λ = 0.1 (L = 2000).

Fig. 10. Strategy-dependent average payoffs p̄i as a function of noise for ε = 0.05 and λ = 0.1 (L = 2000). The solid line shows the average value
over the whole society while the thin dashed line serves as a reference indicating the average payoff in the homogeneous P state.

is decreased. In these cases the bursts occur more and more sparsely while their extent (both in time and space) may
become larger and larger. This phenomenon is accompanied by a relevant increase of fluctuations (χi) in the strategy
frequencies (see Fig. 9) when decreasing K .

Notice the simultaneous peaks in χR and χP at the K value where the dominating strategies are exchanged. These
peaks are related to the sharp variations in ρ̄R and ρ̄P .

Here it is worth mentioning the technical difficulties reducing the accuracy of the MC data at low noises. Despite the
large system size and long sampling time for the lowest noise levels we could observe only a small number of bursts
during the simulations. For example, at K = 0.36 the MC data are extracted from an evolutionary process in which only
51 individual bursts could be identified for L = 2000 and ts ≃ 7 · 107 MCS.

Similar bursts were observed in many social and biological models [51,52]. The systematic analysis of the general
features of these bursts [53–56], however, goes beyond the scope of the present work. We emphasize, however, that
similar phenomena may occur in many other three-state lattice systems where the mean-field approximation predicts
asymptotic evolution towards a fixed point which is unstable [2,4].

The quantification of the average payoffs p̄i has indicated another curious feature (see Fig. 10) related to the bursts. In
the limit K → 0 the average payoff in the whole system goes to 4 while the solitary R and S players receive significantly
lower payoffs. According to the MC data, however, the average payoff of the R players may be higher because most of these
players reside in sufficiently large domains providing the highest possible income for them. Fig. 10 shows two ranges of
the noise parameter K in which p̄R > 4. At low noises the bursts ensure the highest average strategy specific income
for the players of strategy R. At the same time the average payoff p̄ remains below 4 because the players receive low
payoffs along the interfaces. This phenomenon represents a type of social dilemmas that forces selfish players to choose
a strategy which is not optimal for them.

For the logit rule (4) the frequency of wrong decisions increases with K . Thus, one can naively expect that the average
payoff p̄ decreases if K is increased. By contrast, Fig. 10 shows that p̄ has a local maximum when the dominance of R
becomes sufficiently high. The further increase of K , however, drives the system towards the random strategy distribution
when the high contributions of the Potts component are suppressed.
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4. Summary

We have studied a three-strategy (denoted as R, P , and S) spatial evolutionary ordinal potential game with three
parameters characterizing the strength of external effect, cyclic dominance, and noise level. The dominant part of pair
interaction is described by a Potts component ensuring the existence of three pure Nash equilibria (for the two-player
games) and the stability of the corresponding three homogeneous strategy distributions on a square lattice at low noises.
We have focused our efforts on the phenomena caused by the interplay between the external support (favoring strategy
R) and cyclic dominance represented by traditional rock–paper–scissors game.

At low noise levels the Monte Carlo simulations have indicated the dominance of strategy R if the strength of cyclic
component is smaller than a threshold value. In these cases the strategy frequencies exhibit a noise dependence similar to
one described by the Potts model in the presence of an external field although the main characteristics of thermodynamical
behavior (Gibbs distribution, detailed balance, etc.) are broken.

For stronger cyclic component the strategy P (which is the predator of the externally supported R) will dominate the
system behavior at low noises in agreement with the prediction of the paradoxical effect reported by Tainaka [44]. The
homogeneous distribution of strategy P , however, is unstable because strategy S can occasionally form growing domains
(bursts) via the traditional nucleation process. In parallel with this process strategy R can also occur via a similar nucleation
process in the domains of S. The territories of Rs are invaded by P players and finally these bursts are eliminated. In this
system the evolution of bursts (avalanches) is controlled by the corresponding nucleation rates and invasion velocities,
and it causes huge fluctuations in the strategy frequencies. Our MC data indicate rarer, larger, and longer bursts with
wider probability distributions if the noise level is decreased. Due to the formation of large domains these bursts provide
an enhanced average payoff for the R players and their elimination by P players can be interpreted as a ‘‘tragedy of the
commons’’.

The numerical analysis of the noise-dependence has shown that the dominance of strategy P (ρ̄P > 0.8) develops
sharply into the dominance of R players (ρ̄R > 0.8) in a narrow range of K where the average payoff of the whole
community reaches a local maximum. In this R-dominated phase the visualization of the spatial distribution of strategies
shows growing and invaded domains of Ps. In agreement with expectations the further increase of noise drives the system
towards the random strategy distribution.

In this system all three homogeneous phases can be unstable against the invasions of the islands of a suitable (predator)
strategy which are created by nucleation processes. Due to the cyclic component and the logit rule, the predator of the
growing domain will also occur sooner or later and the final compositions of the self-organizing patterns are determined
by the interplay among these processes which can result in fundamentally different behaviors and spatiotemporal patterns
as illustrated by our result.

The exhaustive analysis of the transitions between these phases and the exploration of the general features of the
spatio-temporal patterns and mechanisms go beyond the scope of the present work. The above results clearly indicate that
further systematic studies and the development of new approaches are necessary to fully explore how tuning the noise
and the ratio of the strengths of elementary interaction coefficients affect the general features of this simple evolutionary
game.
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