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We study the evolution of cooperation in spatial public goods games with four competing strategies: coop-
erators, defectors, punishing cooperators, and punishing defectors. To explore the robustness of the
cooperation-promoting effect of costly punishment, besides the usual strategy adoption dynamics we also apply
strategy mutations. As expected, frequent mutations create kind of well-mixed conditions, which support the
spreading of defectors. However, when the mutation rate is small, the final stationary state does not signifi-
cantly differ from the state of the mutation-free model, independently of the values of the punishment fine and
cost. Nevertheless, the mutation rate affects the relaxation dynamics. Rare mutations can largely accelerate the
spreading of costly punishment. This is due to the fact that the presence of defectors breaks the balance of
power between both cooperative strategies, which leads to a different kind of dynamics.
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Evolutionary game theory formalizes the dynamics of
populations of interacting individuals, considering the suc-
cess �payoff� of their interactions. While this approach has
applications in biology �1–5�, economics �6�, and the social
sciences �7�, it has attracted a great deal of interest among
physicists as well due to the relevance of methods from non-
linear dynamics �8�, statistical physics �9�, cellular automata
�10�, and many-particle simulations �11�.

One of the grand scientific challenges in this field con-
cerns the question, how the outcome of interactions in social
dilemma situations can be improved. In social dilemmas
such as the public goods game, the collective well-being de-
pends on the cooperation of individuals, which however is
unlikely, as selfish behavior can generate higher personal
profits. It has been proposed that reputation and costly pun-
ishment can fight free riding �defection� and promote coop-
eration in public goods situations �12�. It is puzzling, how-
ever, why people would make punishment efforts, as this
reduces their payoffs compared to others who do not punish
�“second-order free riders”�. In fact, punishing strategies dis-
appear in public goods games, when the interactions between
individuals are well mixed, creating again a tragedy of the
commons. However, when individuals have spatial neighbor-
hood interactions, free riders may be eliminated �both, con-
ventional and second-order ones� �13,14�. This is due to the
fact that the different cooperative strategies form clusters and
segregate from each other. In this way, punishing cooperators
avoid to be exploited by second-order free riders �nonpun-
ishing cooperators� and can efficiently fight against defec-
tors. Adding strategy mutations, however, endangers homo-
geneous clusters of individuals pursuing the same strategy, as
they support the intrusion of competing strategies �“en-
emies”�. For example, if defectors manage to enter a coop-
erative cluster, it can quickly erode. As a consequence, one
would expect that mutations undermine the spreading of
punishing strategies, thereby restoring the second-order free-
rider problem and the “tragedy of the commons.”

Therefore, this Brief Report investigates the impact of

strategy mutations on the evolution of cooperation in the
spatial public goods game with punishing strategies. As in-
teraction graph, we assume a square lattice. Punishment is
introduced by means of two additional strategies besides co-
operators �Cs� and defectors �Ds�. These two strategies are
punishing cooperators �PCs� and punishing defectors �PDs�,
both of which impose a fine on defectors at a personal cost.
The public goods game is iteratively played on a fully occu-
pied square lattice of size L�L with periodic boundary con-
ditions, where each player x holds a strategy sx
� �C,D,PC,PD�. Initially, the four strategies are equally and
uniformly distributed over the L2 lattice sites. Each player x
is a member of G=5 groups consisting of 5 individuals each.
Each of these groups corresponds to a Neumann neighbor-
hood of the focal individual or one of the direct neighbors.

In each iteration, an individual x plays a public goods
game in all groups it belongs to. Cooperative individuals
�playing C or PC� make a contribution of 1, while noncoop-
erative individuals �D or PD� contribute nothing. Afterwards,
the sum of all contributions in each group is multiplied with
the “synergy factor” r, and the resulting amount is equally
shared between all of its members, irrespective of their con-
tribution.

Let Px
� denote the sum of the shares that individual x

receives in all of the G groups it participates in. Then Px
�

corresponds to the overall payoff of individual x in the ab-
sence of punishment. This payoff is modified by punishment
fines and punishment costs as follows: if sx=D or PD, player
x is punished with a fine f in such a way that the remaining
payoff is Px�= Px

�−�f�p. Herein, the sum runs over all the
groups containing player x. �p is given by the number of
punishers �PC or PD� in each group �not considering player
x�, divided by G−1. Moreover, if sx=PC or PD, player x
invests a punishment cost c such that the finally remaining
payoff is Px= Px�−�c�d. Herein, the sum runs again over all
the groups containing player x. �d is given by the number of
defecting individuals around player x in each group �D or
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PD� divided by G−1. The division by G−1 serves to scale
for the group size G.

The strategies are updated according to the following
Monte Carlo procedure: in each elementary step, a player x
and one of its neighbors y is randomly chosen. For both
individuals, the payoffs Px and Py are determined as de-
scribed above. It is assumed that individual y imitates the
strategy sx of individual x with probability W= �1+exp��Py
− Px� /K��−1, where K denotes the uncertainty of strategy
adoptions �15�. Here, we use the value K=0.5. During one
full iteration �Monte Carlo step �MCS��, the strategy of each
player may be copied once on average.

Following the work of Traulsen et al. �16�, mutation is
introduced as a separate process. Accordingly, a player
changes his or her strategy randomly �independently of the
neighborhood� with a probability �, while the above de-
scribed strategy adoption process is executed with probabil-
ity 1−�. In other words, in the limit �→1, the game-
specific strategy adoption is completely ignored.

Initially, each player follows a strategy at random. For all
combinations of cost and fine parameters, the simulations
were performed for systems with L�400. Values greater
than 400 �up to 1600� were chosen in the vicinity of the
phase boundaries. This served to avoid that small strategy
clusters would disappear by accident �by chance�. The frac-
tions �s of individuals using the strategies s were determined
after the transient time �up to 106 iterations, depending on
the speed of convergence�.

In the absence of punishment and mutation, cooperators
die out at r=3.74, as can be concluded from Fig. 2 of Ref.
�17�. For lower synergy factors, defectors dominate, while
for higher values of r, cooperators can survive or even spread
all over the system �if r�5.45�. Taking these values as a
reference, Fig. 1 shows a representative phase diagram of the
spatial public goods game with punishment. As the punish-
ment fine f is increased, it can be observed that �for interme-
diate values of the punishment cost c� the system goes from
a pure D phase over a mixed D+PC phase to a pure PC

phase. If the cost of punishment is high �c�0.51�, the mixed
D+PC phase disappears completely, and the system directly
changes from a pure D to a pure PC phase via a discontinu-
ous phase transition. In the other extreme, if the cost of pun-
ishment is low �c�0.013�, we have an additional area char-
acterized by a coexistence of PC and PD �see inset of Fig. 1�.
Quite surprisingly, the second-order free-rider strategy C is
not sustainable for r=3.5. Only if r is increased, the pure D
phase becomes a mixed D+C phase, which is the only phase
where nonpunishing cooperators can survive �13�. For lower
values of r, the mixed D+PC phase vanishes altogether, thus
leaving the pure D and the pure PC phases as the only sus-
tainable solutions, with a discontinuous transition between
both phases when a critical c�f� line is crossed �13�.

The problem of second-order free riders results from the
fact that pure cooperators bear no punishment cost, while
receiving the same share of the public good as punishing
cooperators �given the spatial strategy configuration is the
same�. This is, why nonpunishing cooperators �second-order
free riders� crowd out punishing one under well-mixed con-
ditions. However, the resulting tragedy of the commons is
naturally resolved in structured populations �13,14�. There,
the victory of the punishing cooperators is not based on a
direct competition between the C and PC strategies but rather
on their different success in encounters with defectors. Due
to the fixed, finite neighborhood, both the PC and C strate-
gies form homogeneous clusters on the spatial grid and are
exploited by defectors. If the fine is sufficiently large, pun-
ishing cooperators can overcome defectors, while coopera-
tors cannot. �Remember that r�3.74 is needed for coopera-
tors to be sustainable in the presence of defectors.� Thus,
punishing cooperators can spread when competing with de-
fectors, while nonpunishing cooperators are crowded out by
them. As a consequence, second-order free riders �coopera-
tors� disappear, while punishing cooperators take over.

In the following, we investigate how robust this mecha-
nism based on the clustering and segregation is with respect
to strategy mutations. We proceed similarly as in Ref. �16�
but for a spatial setting and considering punishing defectors
rather than loners. For each phase displayed in Fig. 1, we
find the following typical behavior: Small mutation rates do
not significantly change the strategy distribution as compared
to the mutationless case. However, for ��10−2 or higher,
the fraction of defectors increases quickly to values close to
1, as mutations generate kind of well-mixed conditions, then.
Finally, in the limit ��1, mutations dominate the dynamics,
leading to an equidistribution of strategies �i.e., the fraction
of defectors drops again�. Figure 2 shows a typical example
for the PC phase, where the dominance of punishing coop-
erators is sustained until approximately ��10−3.

Naturally, the value of the mutation rate, beyond which
defectors can efficiently spread, is highly dependent on the
f /c ratio. Increasing the fine f can reduce the impact of mu-
tations because this strengthens punishing cooperators com-
pared to defectors. Nevertheless, sufficiently high value of �
eventually promote the spreading of defectors through the
creation of a kind of well-mixed state. As emphasized before,
a successful spatial clustering and segregation of strategies is
a precondition for the spreading of cooperative behavior and
punishment in the public goods game.
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FIG. 1. �Color online� Phase diagram of the spatial public goods
game with C, D, and two punishing strategies, PC and PD, in the
absence of mutations ��=0� for a synergy factor of r=3.5 �after
�13��. The inset magnifies the part of the phase diagram for small
cost values, where the two punishing strategies PC and PD can
coexist. Dashed lines indicate a first-order, and solid lines indicate a
continuous phase transition.
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While the introduction of moderate mutations does not
significantly affect the final outcome of the competition be-
tween strategies, this does not necessarily apply to the dy-
namics, particularly when both cooperative strategies �PC
and C� become equivalent after the extinction of defecting
strategies �D and PD�. When nonpunishing compete with
punishing cooperators, a slow logarithmic coarsening �in the
absence of surface tension� takes place, which is equivalent
to the dynamics of the voter model. Despite the slow dynam-
ics, the fixation to the absorbing PC phase is relatively fast,
because, after the extinction of defectors, the fraction of pun-
ishing cooperators is high compared to the fraction of coop-
erators. This is a direct consequence of the greater success of
punishing cooperators in the competition with defectors dur-
ing the early stages of strategy competition, when the pun-
ishment cost is large enough. However, if the fractions of
punishing and nonpunishing cooperators were about the
same and no defecting strategies were present, it would re-
quire exceptionally long to reach any of the absorbing states
�C-only or PC-only�. Such a scenario is illustrated in Fig. 3
�solid green line�, where the initial fraction of punishing co-
operators is assumed to be 0.6 and the fraction of cooperators
is assumed to be 0.4.

Remarkably, even if a tiny mutation rate is introduced,
which occasionally creates defectors and punishing defec-
tors, this generates an enormous advantage of punishing co-
operators over cooperators in the battle with defecting strat-
egies. The presence of defecting strategies destroys the
equivalence of cooperators and punishing cooperators and
breaks the balance of power in favor of punishing coopera-
tors. This results in a striking acceleration of the spreading of
punishing cooperators, as depicted by the dashed green line
in Fig. 3. It is notable that a mutation rate as tiny as �
=0.000 001 evokes such an enormous change in the system
dynamics.

The mutation-induced acceleration of the coarsening pro-
cess relies on the same effect that creates the dominance of
punishing cooperators over cooperators. It gives rise to a D
+PC phase and solves the second-order free-rider problem
due to the disappearance of nonpunishing cooperators. When

defectors occur in the vicinity of cooperators, they can
spread efficiently because of the low value of r. Defectors,
however, cannot succeed against punishing cooperators if the
fine is sufficiently high. Consequently, punishing cooperators
spread at the cost of defectors, while these crowd out coop-
erators. As a consequence, a quick victory of punishing co-
operators over cooperators requires an interaction between
three strategies: C, PC, and D. The snapshots of Fig. 4 dem-
onstrate the coarsening process impressively for the cases
with mutation �bottom row� and without �top row�. Starting
with identical spatial distributions of cooperators and punish-
ing cooperators, it can be observed that the fractions of the
two strategies remain almost the same when no mutations
take place. However, in the presence of a small rate of strat-
egy mutations ��=10−6�, defectors can temporarily spread in
the population at the expense of cooperators. This, in turn,
provides conditions for a fast spreading of punishing coop-
erators at the expense of defectors. This dynamics replaces
the slow logarithmic coarsening in the absence of defectors.
Notably, once punishing cooperators take over the majority
of the spatial grid, a significant fraction of defectors can no
longer exist. This can be seen on the bottom of Fig. 4 as well
as in panel �b� of Fig. 3, which demonstrates the temporary
uprise of defectors just before punishing cooperators prevail
in the system.

In summary, we have studied the evolution of cooperation
in public goods games with mutation and punishment, where
punishing cooperators and punishing defectors were taken
into account besides conventional cooperators and defectors.
Considering structured populations naturally solves the
second-order free-rider problem by spatially separating the
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FIG. 2. �Color online� Fractions of all four strategies in depen-
dence of the mutation rate � for c=0.6 and f =0.6, which for �
=0 lies in the PC phase. Filled green circles represent PC, open blue
circles represent C, filled yellow squares PD, and open red squares
represent D.
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FIG. 3. �Color online� Time evolution of the fraction �PC of
punishing cooperators for a small mutation rate of �=10−6 �dashed
green line in panel �a��, and in the absence of defecting strategies
and mutations �solid green line�. In both cases, the initial state was
assumed to consist of 60% punishing cooperators and 40% coop-
erators. Panel �b� shows the time evolution of the fraction �D of
defectors in the presence of small strategy mutations ��=10−6�.
Curves are averages over 100 independent runs for a grid of size
1600�1600.
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interaction of cooperators with defectors and of defectors
with punishing cooperators. Since punishing cooperators are
able to outperform defectors at sufficiently large punishment
fines and defectors are superior to cooperators, punishing
cooperators are the winners of the strategy competition in
space. This mechanism is robust to modest mutation rates,
while large mutation rates create kind of well-mixed interac-
tions, which promote a spreading of defectors and, thereby, a

tragedy of the commons. Naturally, in the limit �→1 muta-
tions become so strong that they create a game-independent
random strategy distribution.

Despite the robustness of the final outcome to moderate
mutation rates, we could demonstrate that even tiny mutation
rates can have an enormous impact on the evolutionary dy-
namics, particularly when punishing cooperators would oth-
erwise compete with cooperators only. When no other strat-
egies are present, punishing and nonpunishing cooperators
receive the same payoffs, which leads to a slow logarithmic
coarsening as in the voter model. The occurrence of defec-
tors through strategy mutations breaks the balance of power
between the two cooperative strategies. This can dramati-
cally accelerate the spreading of punishing cooperators. Note
that, in many systems, mutations lead to a different outcome.
In the model studied here, however, mutations have an effect
like a catalyst: they speed up a process while the outcome of
the system is not affected.
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FIG. 4. �Color online� Typical snapshots of the simulation grid
after 0, 900, 1200, and 10 000 iterations during the coarsening pro-
cess with strategy mutations �bottom� and without �top�. The initial
configurations are identical, and the parameter values agree with
those of Fig. 3. All panels show a 100�100 part of the 1600
�1600 grid. Red �gray� sites correspond to defectors, green �light�
ones to punishing cooperators, and blue �dark� ones to cooperators.
Punishing defectors cannot survive. It can be clearly seen that the
presence of defectors due to strategy mutations largely accelerates
the spreading of punishing cooperators.
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