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Abstract. We study the evolution of cooperation in spatial public goods games
where, besides the classical strategies of cooperation (C) and defection (D), we
consider punishing cooperators (PC) or punishing defectors (PD) as an additional
strategy. Using a minimalist modeling approach, our goal is to separately
clarify and identify the consequences of the two punishing strategies. Since
punishment is costly, punishing strategies lose the evolutionary competition
in case of well-mixed interactions. When spatial interactions are taken into
account, however, the outcome can be strikingly different, and cooperation may
spread. The underlying mechanism depends on the character of the punishment
strategy. In the case of cooperating punishers, increasing the fine results in
a rising cooperation level. In contrast, in the presence of the PD strategy,
the phase diagram exhibits a reentrant transition as the fine is increased.
Accordingly, the level of cooperation shows a non-monotonous dependence on
the fine. Remarkably, punishing strategies can spread in both cases, but based on
largely different mechanisms, which depend on the cooperativeness (or not) of
punishers.
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1. Introduction

A social dilemma is a situation where actions that ensure or enhance individual prosperity
harm the well-being on the collective level [1]. Public goods such as social benefit systems
or the environment are particularly prone to exploitation by individuals who want to profit at
the expense of others. While collective cooperation would be favorable [2], individual free-
riding (‘defection’) is tempting, which may end in a collapse of solidarity known as ‘tragedy of
the commons’ [3]. While several mechanisms that prevent defection from taking over have
been discovered so far [4], the identification of conditions for the survival and spread of
cooperation among selfish individuals still remains a grand challenge [5], which is addressed
by scientists from various fields of research, including physics [6]–[14]. The puzzle is most
frequently tackled within the framework of evolutionary game theory [15]. In contrast to
the famous prisoner’s dilemma, which studies cooperation (C) and defection (D) in pairwise
interactions, the public goods game addresses cooperation and defection within groups. In the
latter, cooperators contribute to the public good, while defectors do not. Irrespective of the
strategy, all contributions are summed up, multiplied by a factor and then equally divided among
all members of the group. Thus, defectors bear no cooperation costs, while enjoying the same
benefits as contributors, which makes it profitable to defect and tends to cause a spread of
free-riders. Remarkably enough, however, individuals cooperate much more in public goods
situations than expected [16]. This requires the identification of mechanisms that can sustain
cooperation in public goods games. Punishment has been identified as one possible route to
cooperation [17, 18], but its effectiveness depends on whether the participation in the public
goods game is optional or not [19]. Social diversity [20] and volunteering [21] may also promote
cooperation in public goods games, as a random exploration of strategies does [22].

In this paper, we investigate the impact of punishment on the evolution of cooperation in
structured populations, focusing on the case of a minimal number of pure strategies. Punishment
is considered by adding the strategy of punishing cooperators (PC) or, alternatively, of punishing
defectors (PD). Both punishing strategies sanction other defectors with a fine at a personal
cost. Our main interest is to clarify how the so-called ‘institution of punishment’ influences
the general cooperation level, if it is executed by players who either cooperate or defect.
We investigate the possible similarities and differences in the mechanisms leading to the
final system states and the underlying dynamics. It turns out that, in the two variants of the
model (the one with the additional PC strategy and the one with the PD strategy), punishment
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promotes cooperation through completely different mechanisms. As a consequence, the impact
of punishment in structured populations can be significantly different. While we describe the
details of our model in section 2, we discuss the results of computer simulations in section 3
and summarize our findings in section 4.

2. Public goods game with punishment

The public goods game is played on a periodic square lattice. Each site on the lattice is occupied
by one player, represented by the index x . Initially, all three strategies s (C, D and PC or PD) are
assumed to have the same frequency, and they are randomly and uniformly distributed over the
grid. For the sake of simplicity, every player participates in G = 5 groups (consisting of the focal
individual and the 4 nearest neighbors each). We should also note that our results basically re-
main valid when varying the group size or the interaction network within reasonable limits. The
only crucial feature is the limited number of interacting neighbors in the structured population.

In accordance with the standard definition of the public goods game, cooperators (C and
PC) contribute an asset a = 1 to the public good and defectors (D and PD) contribute nothing.
Subsequently, the sum of contributions in a group is multiplied by the ‘synergy factor’ r . The
resulting amount is then shared equally among all members of the group, irrespective of their
strategy. In this way the defector strategies (D and PD) try to exploit the cooperator strategies (C
and PC). Summing up the shares of all groups that a player x belongs to yields the value P∗

x . This
value corresponds to his or her overall payoff, Px , if no punishment is applied. Otherwise, the
overall payoff, Px , quantifying the ‘fitness’ of player x is obtained by subtracting punishment
costs and/or punishment fines. If the strategy, sx , of player x is D or PD, player x will be
punished with a fine, f , resulting in P ′

x = P∗

x −
∑

f πp, where the sum runs over all the groups
containing player x . πp is given by the number of punishing players (PC and PD) in each group
(not considering player x), divided by G − 1. Furthermore, if sx = PC or PD, player x will have
to bear the punishment cost, c, resulting in Px = P ′

x −
∑

cπd, where the sum runs again over
all the groups containing player x . πd is given by the number of defectors around player x in
each group, divided by G − 1. In other words, the punishing strategies (PC and PD) make an
extra contribution to keep the punishment and, as we will see, also cooperation alive. To update
the strategy of players, we employ the Monte Carlo simulation procedure. Each elementary step
involves the random selection of a focal player, x , and of one nearest neighbor, y. Following the
determination of payoffs Px and Py , as described above, player y takes over the strategy, sx , of
player x with probability

W =
1

1 + exp[(Py − Px)/K ]
, (1)

where K denotes the uncertainty of strategy adoption [23]. In the limiting case, K → 0, player
y copies the strategy of player x if and only if Px > Py . For K > 0, however, under-performing
strategies may also be adopted sometimes; for example, due to errors in the evaluation of
payoffs. During one full iteration, the strategy of all players may be copied once on average.
The computational results presented below have been obtained for lattices with L2 sites, where
L is chosen between 400 and 3000 (large enough to avoid the accidental disappearance of a
strategy). The final fractions, ρs , of all three strategies, s, were obtained after up to 106 iterations
(depending on how quickly the fractions stabilized). The presented data were averaged over a
sufficient number of runs to ensure a low variability of the results (5–30 runs, depending on the
system size).
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3. Computational results

For well-mixed interactions, when a random sample of G players engages in public goods
games with the two strategies, C and D, only, defectors spread and the tragedy of the commons
results for r < G. This undesirable outcome does not significantly change by adding punishing
strategies (PC and PD), because the latter have to bear additional punishment costs, which
reduce their competitiveness. Accordingly, the social dilemma persists in the presence of
punishing strategies, and for well-mixed interactions, defectors still spread in the system [24].
It is furthermore worth noting that conventional cooperators (C), who avoid extra costs by pun-
ishment efforts, can be considered as ‘second-order free-riders’, as they exploit the defection-
suppressing benefits created by punishers. This is actually the reason why punishing cooperators
tend to disappear, which finally weakens the cooperators in their battle against defectors. In
other words, the tragedy of the commons results because ‘lazy (non-punishing) cooperators’
crowd out their ‘friends’, the punishing cooperators, who are needed for their own survival.

As Nowak and May pointed out for the prisoner’s dilemma [25], a fixed interaction network
in structured populations facilitates network reciprocity, which is beneficial for cooperators.
The same mechanism can be found for the two-strategy spatial public goods game as well.
Using the parametrization of our model, cooperators manage to survive if r > 3.74, and crowd
out the other strategies if r > 5.49 [26]. The impact of additional punishing strategies (PC
and PD) on structured populations was also studied by several research groups [27]–[29].
It turns out that the condition of a fixed and finite interaction neighborhood can resolve the
problem of second-order free-riding by allowing punishing cooperators to separate themselves
from pure cooperators, thereby escaping direct competition and exploitation. In this paper, we
study two minimalist models, where only one type of punishing strategy is considered besides
conventional cooperators and defectors. In other words, we explore the possible impact of
punishing cooperators and punishing defectors separately. The corresponding models will be
called the ‘PC model’ and the ‘PD model’, respectively.

3.1. Phase diagrams of the minimalist models with spatial neighborhood interactions

Representative phase diagrams for the two minimalist models are presented in figure 1, using
the same value of the synergy factor, r . In both diagrams, each region (‘phase’) is named after
the strategies, which survive over time and contribute to the final strategy distribution. A small
value of the punishment fine does not significantly change the behavior of the system, given a
finite punishment cost. Generally, however, the system behavior depends in a sensitive way on
the actual values of punishment cost and fine. In the case of the PC model, punishing cooperators
always prevail for a sufficiently large fine, independently of the cost value. If the cost is lower
than a critical value (c ≈ 0.65 for r = 3.8), the application of a sufficiently large fine will drive
the system into a state where the punishing strategy replaces its non-punishing counterpart.
(As we will see, a similar behavior can be observed for the PD model, but the explanation is
completely different.) The critical cost value that limits the existence of a mixed D + PC phase
decreases by reducing the synergy factor, r , and the phase disappears completely for sufficiently
low values of r . Accordingly, the system turns from D-only to a PC-only phase, similar to
what is found in the public goods game with all four strategies (C, D, PC and PD) [29]. The
system always leaves the punishment-free state via a discontinuous first-order phase transition,
while the transition between the mixed D + PC phase and the PC-only phase is continuous.
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Figure 1. Comparative plots of phase diagrams of the spatial public goods game
with punishing cooperators (left) and punishing defectors (right) as a function
of the punishment fine, f , and punishment cost, c, for the same synergy factor
of r = 3.8 and K = 0.5. The parameter areas (‘phases’) are represented by the
symbols of the strategies that survive in the final resulting strategy distribution.
Dashed blue lines indicate discontinuous first-order phase transitions, while solid
red lines represent continuous, second-order phase transitions. Insets show the
cooperation level as a function of the fine at different fixed cost values. These
are c = 0.1, 0.3 and 0.65 (from left to right in the left panel), and c = 0.01, 0.05
and 0.65 (from left to right in the right panel). Similar types of phase diagrams
can be obtained for smaller r values, where only the D strategy survives at small
values of the punishment fine.

(The critical behavior of this transition will be discussed in the next subsection.) The global
cooperation level, i.e. the sum of fractions of cooperators, ρC, and punishing cooperators, ρPC,
increases monotonously with the fine, as the inset shows.

In the case of the PD model (right panel of figure 1), the impact of punishment is limited
to a finite region of the punishment cost (c < 0.095 for r = 3.8). Below this cost value, the
impact of punishment starts similarly to the PC model: when the fine value is increased, a first-
order phase transition occurs, which goes along with a considerable increase in the fraction
of cooperators (ρC). Beyond a certain value, however, a further increase in the fine decreases
the level of cooperation, and the system eventually returns to a phase that is characteristic of a
system without punishment. As a consequence of the observed reentrant phase transition, there
exists an optimal level of the punishment fine, f , for which the fraction of cooperators (ρC)
becomes maximal. This can be understood based on a pattern formation mechanism described
in subsection 3.3. The mentioned critical c-value that limits the emergence of the punishing
strategy decreases as we increase the value of the synergy factor, and it disappears around
r ≈ 4.7. As we will see, this is closely related to the fact that too large fines do not influence the
system behavior.

3.2. Characterization of phase transitions and universality class

To study the phase transitions in more detail, we have plotted the stationary fractions of all
strategies for both models in figure 2. In the case of the PC model (figure 2(a)), the fraction of
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Figure 2. Top: fractions of all three participating strategies (for both minimalist
models) as a function of the punishment fine, f . The punishment cost is c = 0.1
for the PC model (figure 2(a)) and c = 0.05 for the PD model (figure 2(b)). In the
case of the PC model, a discontinuous phase transition and, subsequently, a con-
tinuous phase transition occurs, as the value of the punishment fine is increased.
In the case of the PD model, despite the punishment cost, an additional, continu-
ous phase transition appears. In both models, the punishing strategy can replace
its non-punishing counterpart at a sufficiently large value of the punishment
fine. In the PD model, however, an interesting reentrant phase transition can be
observed, and for large punishment fines the system behaves as if the fine was
zero ( f = 0). Bottom: critical scaling behavior of the order parameter for both
models. Figure 2(c) shows the decay of ρD in the PC model for c = 0.1, as the
fine approaches the critical value, fc = 0.3260(1). The solid line indicates the
slope of 0.584, characterizing directed percolation. Figure 2(d) shows the decay
of ρD (boxes) and ρPD (circles) in the PD model, where the critical fine values are
fc = 2.167(1) and fc = 3.878(2), respectively, keeping c = 0.01 fixed. The best
power law fits for the critical exponents are β = 0.595(20) and β = 0.625(25),
respectively, which is very close to the directed percolation exponent.

punishing cooperators can increase at the cost of defectors, as soon as cooperators are eliminated
from the system. Interestingly, second-order free-riders disappear suddenly, as soon as the
punishment fine passes a critical threshold. At this threshold, ‘lazy’, non-punishing cooperators
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are essentially replaced by punishing ones. As the punishment fine is further increased, the
fraction of defectors (ρD) decreases gradually and becomes zero above a certain value of the fine.

The present nonequilibrium continuous phase transition from the fluctuating D + PC phase
to the absorbing PC phase agrees with the directed percolation universality class conjecture
[30, 31]. Namely, the interactions amongst players are short-ranged, and the order parameter,
which is the fraction of defectors (ρD), becomes zero at the critical value, fc, of the fine, where
the system arrives at the single absorbing all-PC state. Accordingly, the (static) exponents of
the phase transition are expected to belong to the universality class of directed percolation, for
which ρD ∝ ( fc − f )β with β = 0.584(4) in two spatial dimensions [32]. Figure 2(c) shows the
decay of the defector concentration at a fixed cost of c = 0.1 when f approaches the critical
value, fc = 0.3262(1), of the punishment fine. The numerically determined critical exponent
is very compatible with the mentioned exponent, 0.584, for directed percolation, which is
represented in figure 2(c) by the separate solid line.

In the PD model, the fraction of punishing defectors rises suddenly from zero to a finite
value at a critical threshold of the fine value, as in the other minimal model (see figure 2(b)).
However, as defectors disappear, punishing defectors only reach half of the fraction that
defectors had in the previous C + D phase. This difference signals already that another type
of mechanism must be responsible for the spreading of the punishing strategy in the PD model.
It turns out to be crucial that the fraction of punishing defectors decreases as the punishment
is increased. This is because punishing defectors (PD) punish not only pure defectors (D) but
also each other—a behavior that is called ‘hypocritical punishment’ [33, 34]. Consequently,
defectors can spread again above a certain value of the punishment fine. When this happens, the
fraction of cooperators starts to fall, while the fraction of punishing defectors decreases further
(until it reaches zero). Therefore, for high values of the fine, the system arrives in a state that is
identical to the one for negligible fines ( f = 0). In other words, the system behavior becomes
exactly the same as for the spatial public goods game without punishment.

The critical behavior of the PD model is more interesting than that of the PC model,
because two continuous phase transitions can be observed as the fine is increased (for a fixed
cost value). In both cases, the system leaves a three-strategy (C + D + PD) phase for a two-
strategy (C + PD or C + D) phase when the fine is decreased or increased. As we will see in
the next subsection, the mechanisms determining the stationary patterns in the last two phases
are significantly different. Despite this, as figure 2(d) illustrates, the exponents of the phase
transitions agree within the accuracy of numerical estimates. The value is ≈0.6, which is very
close to the previously mentioned directed percolation exponent.

3.3. Pattern formation mechanisms

To explore the differences between the punishment-promoting mechanisms in the PC model and
the PD model, we have plotted the fraction of each strategy as a function of time (see figure 3).
The punishment cost, c, and fine, f , were chosen such that the final strategy distribution
contained punishing players (D + PC or C + PD, respectively). For the PC model (left), the
randomly mixed initial state is particularly beneficial for the exploitation of cooperative
strategies by defectors. Accordingly, ρD rises rapidly, while both ρC and ρPC fall. Defectors
spread almost everywhere, but a number of islands made up of cooperative strategies can
survive, where cooperative behavior is effective, thanks to network reciprocity [4, 25].

It is important to note that, in the beginning, C and PC players may form mixed cooperative
islands together. However, when defectors are absent in the neighborhood, the C and PC
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Figure 3. Evolution of the distribution of strategies over time in the PC
model (left) and the PD model (right), starting with a random initial state.
Iteration values smaller than 1 indicate that the corresponding fraction of
random sequential updates belonging to one iteration has been performed. The
punishment parameters are c = 0.2 and f = 0.3 in the PC model, and c = 0.05
and f = 0.6 in the PD model. They guarantee a final state in which punishing
strategies exist. In the beginning, the mixed initial state is beneficial for the
spreading of defectors. Left: in the PC model, an arrow indicates the moment
when the surviving cooperative players aggregate in the sea of defectors and their
clusters start to grow, thanks to network reciprocity. Since punishing cooperators
can fight more efficiently against defectors than cooperators, the fraction of PC
players increases faster than the fraction of C players. Right: in the PD model,
both defecting strategies can exploit cooperators first, but pure D players (who
do not have to bear punishment costs) do it more efficiently. As a consequence,
the PD strategy is crowded out. Eventually, however, the C and PD strategies can
form an alliance (at the time indicated by the arrow). When eliminating defectors
together, their fractions, ρC and ρPD, are jointly growing with a typical ratio,
ρC/ρPD, among them (which is almost constant).

strategies result in identical payoffs, and the strategy update dynamics defined by equation (1)
result in a voter model kind of logarithmic coarsening within the cooperative islands [35]
(since the C and PC strategies are equivalent in the bulk of C + PC domains, where there are
no defectors and, accordingly, also no punishment). Although the coarsening dynamics are
logarithmically slow, the C and PC strategies in the cooperative islands segregate quickly,
as the sizes of these islands are small. After this time period, the end of which is indicated
in the left panel of figure 3 by an arrow, homogeneous clusters of cooperators (C) and
punishing cooperators (PC) fight separately against defectors (D). When the punishment fine
is high enough, punishing cooperators can outcompete defectors, but defectors are superior
to cooperators (thanks to the low synergy factor, r ). Consequently, the fraction of punishing
cooperators, ρPC, increases quickly, and cooperators are eventually crowded out. Finally,
cooperators disappear completely and, with them, second-order free-riders. As a conclusion, to
get rid of second-order free-riding, the spatial segregation of the C and PC strategies is crucial.

New Journal of Physics 12 (2010) 083005 (http://www.njp.org/)

http://www.njp.org/


9

The evolutionary dynamics are significantly different for the PD model (see the right panel
of figure 3). Initially, similarly to the PC model, both defecting strategies (D and PD) can
benefit from the well-mixed distribution at the beginning. As pure defectors are not burdened by
punishment costs, their fraction (ρD) further increases with time. After some iterations, however,
small cooperative clusters that have survived start growing, thanks to network reciprocity, while
the number of defectors is reduced, since they perform poorly in the defecting environments
they have created.

When the fraction of PD players (ρPD) reaches a certain value, the mixture of C and PD
strategies can form an alliance that is beneficial for both strategies. On the one hand, PD players
can collect the payoff in the vicinity of cooperators, which allows them to survive despite
their costs for punishing defectors. On the other hand, the payoff of cooperators is competitive,
because the punishment efforts of PD players keep the fraction of defectors in the neighborhood
of cooperators at a low level. Accordingly, both strategies benefit from the alliance, and they
can crowd out the D players together.

It is essential that the alliance can only work when the mixture of cooperators and
punishing defectors is just right. When crowding out defectors, neither C nor PD players
can occupy the gained territory alone. Instead, as soon as the C + PD alliance starts to work,
the fractions of both strategies rise simultaneously with an almost constant ratio (as we have
checked by complementary evaluations). The start of this phase is marked by an arrow in the
right panel of figure 3. It appears that the delicate balance between both members of the alliance
is self-organized and self-stabilizing.

For both models, the above-described pattern formation mechanisms can be nicely seen
in snapshots of the time evolution. Figure 4 illustrates how the strategy distribution evolves in
the cases of the PC model (top) and the PD model (bottom) when the same parameter values
are used as in figure 3. The first snapshot for the PC model shows the moment when C and PC
players form common islands together, but the segregation of both cooperative strategies is just
the beginning. In the second plot, both cooperative strategies have already largely segregated
from each other and now mainly struggle with defectors. The third plot shows the nearly final
state, where C and PC players still form independent clusters but punishing cooperators have
largely replaced cooperators, as they are more successful in the battle with defectors. The final
resulting strategy distribution containing only D and PC players is illustrated in the last plot.

For the PD model, the first plot in the bottom of figure 4 shows a state where the alliance of
C and PD players is not yet established, so that defectors can spread. However, when the optimal
mixture of cooperators and punishing defectors emerges (second plot in the bottom row), the two
allied strategies, C and PD, can continuously crowd out defectors (third plot in the bottom row).
It can be seen that the ratio of C and PD players stays essentially constant while both strategies
spread, which indicates a self-stabilizing mechanism. If only cooperators would conquer the
territory previously occupied by defectors, the fraction of punishing defectors would locally
decrease below a critical level, and cooperators would become vulnerable to exploitation by
defectors. On the other hand, if only punishing cooperators would spread, they would not find
enough cooperators to exploit, while they require this for their survival. As a consequence, the
ratio of C and PD strategies is maintained at a typical value, which supports the spreading of
the alliance best.

The concept of an optimal ratio of alliance members can explain why the phase of C + PD
disappears for large fine values or high values of the synergy factor. Too large synergy factors
keep defecting strategies at a low level, while too large fines prevent the required fraction
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a b c d
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Figure 4. Spatiotemporal evolution of the strategies for the same parameter
values as in figure 3. Here, 100 × 100 windows (‘cut-outs’) of computer
simulations on a 800 × 800 lattice are shown. Top: snapshots for the PC model
at t = 10, 40, 150 and 1000 iterations. Cooperators are represented by blue,
defectors by red and punishing cooperators by green. The snapshots clearly
demonstrate that the homogeneous domains of the C and PC strategies fight
separately against D, and the more successful PC strategy wins the territorial
battle. Bottom: snapshots for the PD model after t = 20, 200, 1000 and 10 000
iterations. The PD strategy is shown in yellow. In contrast to the PC model, the
punishing PD strategy would disappear without the presence of the C strategy in
its vicinity. As soon as the optimal mixture of the C and PD strategies occurs,
their alliance can efficiently spread in the whole system.

of PD players from occurring. This is why the alliance does not work, and D players can
spread again.

At first sight, the phase diagram of the PD model and the functional dependence of the
cooperation level in figure 2 appear to be paradoxical: when the punishment fine is increased
(while the punishment cost is fixed, something that can happen in case of escalation), the
cooperation level is reduced, although punishment intends quite the opposite. Based on the
above-described argument, however, this paradox can be resolved: too big fines prevent
the occurrence of the right mixture of the two strategies and, thereby, the emergence of a
functioning alliance.

To support our argument, we have plotted stationary strategy distributions in the PD model
for different fine values. As the top panel of figure 5 shows, we have used identical punishment
costs to study the effect of the fine. Figure 5(a) illustrates the case where the punishment is too
low to eliminate defectors, so that the resulting strategy distribution consists of cooperators and
defectors, as in the spatial public goods game without punishment for r = 3.8. When the fine is
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Figure 5. Typical spatial strategy distributions in the PD model after the
transient time for different values of the punishment cost, c, and fine, f . The
corresponding positions of parameter values in the (c, f ) space are marked in the
phase diagram. The color code is the same as in figure 4. When the fraction of
PD players decreases below a critical value for a large fine, the alliance of C and
PD strategies does not work anymore. As a consequence, the D strategy spreads
again. Upon increasing the value of the fine further towards high values, the
outcome becomes identical to the one for the spatial public goods game without
punishment.

increased, the alliance of cooperators and punishing defectors can crowd out non-punishing
defectors, which enhances the level of cooperation (see figure 5(b)). A new phase, which
additionally includes the D strategy, starts when the alliance between the C and PD strategies
does not work anymore, because the fine is too large and hence the fraction of PD players is too
small (see figure 5(c)). For higher fines, PD players cannot efficiently punish D players anymore,
and as the fraction of punishing defectors goes towards zero, the system returns to the state that
is typical for the spatial public goods game without punishment (cf figure 5(d) with figure 5(a)).
For the PD model, one could, therefore, conclude that the ‘institution of punishment’ fails when
values of the punishment fine are set too high.

4. Summary

In order to explore the impact of punishment in spatial public goods games, we have studied
two minimalist models by adding either punishing cooperators (PC) or punishing defectors (PD)
as an additional behavioral strategy. We have found that both punishing strategies can promote
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cooperation for synergy factors for which defectors would spread in the case of well-mixed
interactions.

As we have pointed out, punishing strategies can spread in different ways. Punishing
cooperators (PC) can crowd out ‘lazy’, non-punishing cooperators (C) above a certain value
of the punishment fine, f . This solves the ‘second-order free-rider problem’ [36]–[38],
i.e. the puzzle of why people perform punishment efforts despite their costs: the
cooperation- and punishment-promoting mechanism is based on spatially restricted interactions
between players, which supports the survival of non-defecting strategies via clustering and
segregation [20], [39]–[43]. Through segregation, punishing cooperators can avoid being
exploited by pure cooperators and fight against defectors more efficiently. Accordingly,
defectors (conventional free-riders) and non-punishing cooperators (second-order free-riders)
disappear eventually if the punishment fine exceeds a certain threshold. Larger punishment fines
do not have any positive effects.

In contrast to punishing cooperators (PC), punishing defectors (PD) cannot survive alone.
They need the presence of cooperators whom they can exploit, while the cooperators (C) need
punishing defectors to punish and contain defection. The functionality of this alliance needs an
optimal mixture of strategies to thrive. Once the optimal ratio between the C and PD strategies
comes into existence, it is maintained by self-stabilization when conquering the territory of the
rival D strategy. If external conditions prevent the establishment of this optimal ratio, the alliance
cannot work. This explains the paradoxical re-entrant behavior found in the phase diagram of
the PD model, according to which too high punishment fines generate the same results as no
punishment at all. While the occurrence of alliances is possible in spatial games with more
than two strategies, as is known from spatial population dynamics [44]–[46], here the resulting
outcomes and dynamics provide interesting new examples of this fascinating phenomenon.
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