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Evolutionary game theory is designed to capture the essentials of the characteristic interactions
among individuals. Its most prominent application is the quest for the origins and evolution of
cooperation. The effects of population structures on the performance of behavioral strategies
became apparent only in recent years and marks the advent of an intriguing link between apparently
unrelated disciplines. Evolutionary game theory in structured populations reveals critical phase
transitions that fall into the universality class of directed percolation on square lattices and
mean-field-type transitions on regular small world networks and random regular graphs. We employ
the prisoner’s dilemma to discuss new insights gained in behavioral ecology using methods from
physics. © 2005 American Association of Physics Teachers.
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I. INTRODUCTION

The evolution of cooperation is a fundamental problem
biology because unselfish, altruistic actions apparently c
tradict Darwinian selection. Nevertheless, cooperation
abundant in nature ranging from microbial interactions1 to
human behavior.2 In particular, cooperation has given rise
major transitions in the history of life.3 Game theory4 to-
gether with its extensions to an evolutionary context5 has
become an invaluable tool to address the evolution of co
eration. The most prominent mechanisms of cooperation
direct6,7 and indirect8–10 reciprocity, voluntary
interactions,11–13 and spatial structure.14–19All these mecha-
nisms have one thing in common: they hinge on differ
forms of assortative~that is, nonrandom or conditional! in-
teractions. Such assortment can be actively implemen
through discriminating strategic behavior of the interact
individuals or passively by imposing environmental co
straints such as local interactions in spatially extended
tems. The dynamics that results from constraining inter
tions to nearest neighbors suggests new and interesting
intriguing links to physics and, in particular, to statistic
mechanics.

Investigations of spatially extended systems have a l
tradition in condensed matter physics. Among the most
portant features of spatially extended systems are the e
gence of phase transitions. Their analysis can be traced
to the Ising model.20 The application of methods develope
in statistical mechanics to interactions in spatially structu
populations has turned out to be very fruitful.18 Interesting
parallels between nonequilibrium phase transitions and
tial evolutionary game theory have added another dimen
to the concept of universality classes.

In game theory, the prisoner’s dilemma7 is a paradigm for
cooperation. The prisoner’s dilemma describes the pairw
interactions of individuals with two behavioral options: th
two players must simultaneously decide whether to coop
ate or to defect. Cooperation yields a benefitb to the co-
player at a costc (b.c). Thus, for mutual cooperation bot
405 Am. J. Phys.73 ~5!, May 2005 http://aapt.org/ajp
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players receive the rewardR5b2c, but only the punish-
ment P50 for mutual defection. If one player defects an
the other cooperates, the traitor receives the tempta
T5b, while the cooperator is left with the sucker’s payo
S52c. These payoffs satisfy the characteristic payoff ran
ing of the prisoner’s dilemma:T.R.P.S. ~In repeated
interactions it is additionally required that 2R.T1S such
that mutual cooperation has the highest return for the co
munity.! It is easy to see that defection is the better cho
irrespective of the opponent’s decision. Thus, ultimately
dividuals end up withP instead of the preferable rewar
R—hence the dilemma. This unfortunate outcome repres
the result of classical game theory and is called a Nash e
librium because none of the players can increase their pa
by unilaterally changing the strategy.21

In evolutionary game theory an infinite population is co
sidered with a fractionr cooperators and 12r defectors. In
the mean-field approximation, that is, in well-mixed popu
tions where individuals interact randomly, the payo
are given by PC5rR1(12r)S5rb2c and PD5rT
1(12r)P5rb for cooperators and defectors, respective
If we assume that cooperators and defectors are ‘‘spre
according to their relative performance, that is, as compa
to the average population payoffP̄5rPC1(12r)PD

5r(b2c), the dynamics is determined by the replicat
equation:22

ṙ5r~PC2 P̄!5r~12r!~PC2PD!. ~1!

As time passes,r obviously converges to zero becausePD

.PC , that is, cooperators vanish irrespective of their init
concentration. Thus, both classical and evolutionary ga
theory predict the undesired outcome of mutual defect
and economic stalemate, where no one receives any ben
for the sake of reducing costs.

To overcome this dilemma, we consider spatially stru
tured populations where individuals interact and comp
only within a limited neighborhood. Such limited local inte
405© 2005 American Association of Physics Teachers
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actions enable cooperators to form clusters and thus i
viduals along the boundary can outweigh their losses aga
defectors by gains from interactions within the cluster. R
sults for different population structures and for volunta
participation in the prisoner’s dilemma are discussed and
lated to condensed matter physics.

II. SPATIALLY STRUCTURED POPULATIONS

Spatially structured populations are modeled by confin
players to lattice sites or, more generally, to the nodes o
arbitrary graph. The performancePx of a player at sitex is
determined by the payoffs accumulated in its interactio
with its neighbors. Occasionally a player at sitex reassesse
its strategy by comparing its performance to a randomly
lected neighbor at sitey. There are different approaches f
defining the update rule of playerx. For example, we could
assume that playerx adopts the strategy ofy with a probabil-
ity proportional to the difference in performancePy2Px pro-
vided that it is positive. This approach recovers Eq.~1! in the
limit of random interactions~well-mixed populations! or
fully connected graphs. Unfortunately, the fact that wo
performing players are never imitated together with the n
differentiability whenPy2Px50 results in subtle difficul-
ties. Although the equilibrium frequencies of cooperators a
defectors are hardly affected, this approach affects the
formance and the nature of the fluctuations—the signatur
critical phase transitions.

To highlight the links between spatial game theory a
condensed matter physics, we assume a transition proba
given by

W~x←y!5 f ~Py2Px!5@11exp~2~Py2Px!/k!#21,
~2!

wherek denotes the amount of noise. This update rule sta
that the strategy of a better performing player is read
adopted, whereas it is unlikely~but not impossible! to adopt
the strategies of worse performing players. The parametk
incorporates the uncertainties in the strategy adoption~origi-
nating in either the variation of payoffs or in mistakes in t
decision making!. In the limit k→` all information is lost,
that is, playerx is unable to retrieve any information fromPy
and switches to the strategy ofy by tossing a coin.

At first glance, this update rule seems to be similar
Glauber dynamics23 for the kinetic Ising model where stra
egies translate to spin up and down,Py2Px relates to the
change of energy when flipping the spin atx, andk corre-
sponds to the temperature. In Glauber dynamics the prob
ity of a single spin flip is determined by the energy differen
between the initial and the flipped states. This transition r
drives the system toward the equilibrium state for the te
peraturek. However, the game theoretical approach involv
several important differences. Most importantly, in Glaub
dynamics the energy gain of the pair interaction is sha
between neighboring spins. Consequentially, spin flips
minimize the local energy also reduce the total energy. T
minimization contrasts with game theoretical agents that
tempt to maximize their individual payoff regardless of t
potential losses for the population as a whole. In additi
players are restrained to adopt the strategies of their ne
bors and are incapable of anticipating the resulting payoff
follows that, unlike in Glauber dynamics, strategy chang
~or spin flips! occur only along boundaries which separa
domains of different strategies. Thus, in the absence of sp
406 Am. J. Phys., Vol. 73, No. 5, May 2005
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taneous mutations, spatial games always have absor
states where all members follow the same strategy.

The spreading of strategies resembles the spreading o
fectious diseases as described by contact processes. T
models exhibit~universal! nonequilibrium phase transition
~into absorbing states!. Their general features are reviewed
Refs. 24 and 25.

A. Square lattices

A spatial arrangement can be approximated by conside
a square lattice with periodic boundary conditions, whe
each individual is confined to a lattice site and interacts a
competes only with its four nearest neighbors. Starting fr
a random initial configuration, the population is updated
an asynchronous fashion through sequential updates of
domly drawn players: first, two neighboring sitesx andy are
chosen at random and, second, the player at sitex adopts the
strategy of the player aty with the probabilityW(x←y) @see
Eq. ~2!#. After an equilibration time the system reaches
stationary state independent of the initial configuration d
to the stochastic update rules. The stationary state is cha
terized by the density of strategies obtained by averag
over a sampling time which was varied from 104 to 106

Monte Carlo steps per site~MCS!. In each MCS, every site is
updated once on the average. For simplicity~but without loss
of generality!, the payoffs are rescaled such thatR51, T
511r , S52r , andP50, wherer 5c/(b2c) denotes the
ratio of the costs of cooperation to the net benefits of co
eration.

In contrast to the results for well-mixed populations, c
operators persist at substantial levels in spatial settings ifr is
sufficiently small, that is, the benefits of cooperation are h
compared to the costs~see Fig. 1!. Cooperators survive by
forming compact clusters which minimize the exploitatio
by defectors. Along the boundary, cooperators can outwe
their losses against defectors by gains from interacti
within the cluster. A snapshot of a typical lattice configur
tion illustrates the clusters just below the extinction thresh

Fig. 1. Frequency of cooperators~L! and defectors~n! in the spatial pris-
oner’s dilemma as a function of the cost-to-benefit ratior . The simulations
were performed on square lattices with periodic boundary conditions
population sizes ranging fromN5400251.63105 to N5106. In the vicin-
ity of the extinction threshold of cooperators larger systems are use
suppress the undesired effects of diverging fluctuations.
406Christoph Hauert and Gyo¨rgy Szabo´
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r c ~see Fig. 2!. For r .r c cooperators vanish because t
benefits of spatial clustering are no longer sufficient to off
the losses along the boundary.

In biology, such thresholds are common in the evolution
cooperative behavior. Probably the first quantitative tre
ment goes back to W. D. Hamilton’s kin selection theory26

Cooperation among relatives evolves and is beneficial fro
genetic point of view27 wheneverr kin.c/b, that is, the de-
gree of relatednessr kin exceeds the cost-to-benefit ratio
cooperation. This idea is illustrated by an anecdote attribu
to J. B. S. Haldane28 who apparently claimed that he wou
give his life to save more than two drowning siblings
more than eight drowning cousins. The basis for this cal
lation is the fact that the degree of relatedness in hum
~that is, the fraction of genes shared by two individuals! gen-
erally does not exceed12. In the present context, the thresho
r c is considerably smaller thanr kin ~also note the slightly
different definitions ofr and r kin), that is, persistence o
cooperation requires much greater benefits from the coop
tive action. One major reason for this significant reduction
feasible cost-to-benefit ratiosr that are capable of maintain
ing cooperation is that we are considering unrelated and s
ish individuals.

According to our simulations, nearr c the average fraction
of cooperators vanishes as^r&'(r c2r )b ~see Fig. 3! where
r c50.021 12 (2) andb50.57 (3) ~the figures between pa
rentheses indicate the statistical uncertainties of the
digit!. In these simulations the linear size of the system
chosen to be significantly larger than the correlation len
and the average values are determined by averaging ov
sufficiently long sampling time in the stationary state. F
this purpose the linear size increased fromL5400 to 1000,
meanwhile the sampling time varied from 104 to 106 MCS
when approaching the thresholdr c . Under these conditions
the error bar of the MC data is less than the symbol size
Fig. 3. In physics, such thresholdsr c are usually associate

Fig. 2. Typical distribution of cooperators~black! in a sea of defectors
~white! on a square lattice forr 50.0211 andk50.1, just below the extinc-
tion thresholdr c50.021 12 (2) of cooperators. Note that the distribution
essentially independent of the initial lattice configuration. However, in fin
systems the frequency of cooperators should not be too low, so as to a
accidental extinctions while approaching the stationary state.
407 Am. J. Phys., Vol. 73, No. 5, May 2005
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with phase transitions—and indeed, the transition from p
sistent levels of cooperation (r ,r c) to homogenous states o
defection (r .r c) bears the hallmarks of a critical phase tra
sition.

On square lattices, cooperators are able to persist by fo
ing clusters~see Fig. 2!. Due to stochastic fluctuations thes
clusters move in a random fashion. Occasionally, a clu
splits into two or two clusters, collides, merges, or anni
lates and vanishes. Territories governed by defection are
slowly invaded by clusters of cooperators because of th
diffusivelike motion. Forr nearr c from below, these feature
result in a power law divergence in the correlation length a
the relaxation time, as well as in the fluctuations of the f
quency of vanishing cooperators. The exponents of the
ferent power laws characterize universal features of th
nonequilibrium transitions. The extinction of cooperato
falls into the directed percolation universality class.29 Similar
exponents are observed in the two-dimensional contact
cess that describes the spreading of epidemics or rumors30,31

and in branching-annihilating random walks.32,33

B. Random regular graphs and regular small world
networks

Regular graphs are a special set of network structu
where each individual has the same number of connecti
links to other individuals, that is, each individual has t
same connectivity. The square lattice is an example o
regular graph. In a random regular graph~RRG! the interac-
tion partners are not limited to the immediate neighborho
but are randomly drawn from the entire population. Rand
regular graphs are good approximations to structured po
lations where spatial distances weakly affect interactions

Small world networks have attracted considerable att
tion during the last few years. These networks provide
natural combination of high local connectedness and a
long-range connections that result in short average p
lengths between any two nodes,~‘‘six degrees of
separation’’!.34 This feature is common to a wide variety o
structures ranging from food webs in ecosystems and

oid

Fig. 3. Log-log plot of the average fraction of cooperatorsr as a function of
the distance to the extinction thresholdr c2r . The solid line shows that in
the vicinity of r c , the power law'(r c2r )b perfectly fits the data withr c

50.021 12 (2) andb50.57 (3). Thesystem size was increased asr ap-
proachesr c from N51.63105 to N5106.
407Christoph Hauert and Gyo¨rgy Szabo´
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quaintance networks in humans to the power grid in No
America and the physical and logical structure of the wo
wide web.35,36

Small world networks can be easily generated by star
with a square lattice and then randomly rewiring a cert
fraction Q of all connections by replacing local links wit
global ones37 ~see Fig. 4!. In the following we restrict our
discussion to regular small world networks~RSW!, that is, to
population structures where each individual keeps the s
number of connections. Keeping the connectivity const
simplifies comparisons and highlights the differences due
the different spatial arrangement. The parameterQ lets us
tune the structure of the network: forQ50 we have a square
lattice and in the limitQ→1 we obtain a random regula

Fig. 4. Different population structures where each player or node maint
the same number of connections:~a! regular ~square! lattice, ~b! regular
small world network~RSW!, ~c! Bethe lattice or tree, and~d! random regu-
lar graph~RRG!. Regular small world networks are generated from regu
lattices by randomly rewiring some fraction of connections constrained o
by the requirement that the connectivity must be preserved. If all con
tions are replaced, an RRG is obtained. In that sense,~a! and ~d! represent
the two extremes of regular small world networks. In the limitN→`. RRG
becomes locally similar to a tree~c!.38

Fig. 5. Fraction of cooperatorsr as a function ofr for different population
structures: square lattice~h!, random regular graph~1!, and regular small
world networks~s! for Q50.03, k50.1, andN51.63105– 106. For in-
creasingr , the spatial correlations result in a critical transition on the squ
lattice ~see Fig. 3!, whereas on random regular graph and small world n
works the lack of correlations lead to a linear decrease in cooperation,
is, a mean-field type transition. The data referring to homogeneousD states
~cooperators go extinct and defectors reach fixation! is omitted. The pair
approximation~solid line! correctly predicts the trend, but significantly ove
estimates the benefits of population structures~see the text and the Appendi
for details!.
408 Am. J. Phys., Vol. 73, No. 5, May 2005
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graph. For smallQ typical regular small world networks ar
generated, preserving many short loops of square lattices
substantially reducing the average minimal distance betw
any two nodes, that is, the number of links along the shor
path. The underlying population structure has significant
fects on the performance of cooperators as shown in Fig

Surprisingly, it turns out that cooperators perform sign
cantly better on random regular graphs than on square
tices. As expected, the performance of cooperators on reg
small world networks lies between these two extremes. Th
the substitution of long-range connections for local ones
tually benefits cooperation. This increase in cooperation i
contrast with the naive expectation that cooperators wo
suffer from weakening local structures and clustering ab
ties. On the contrary, random regular graphs lead to be
chances for cooperators as compared to regular lattices.

Another important but more subtle difference is the nat
of the extinction of cooperators. On the square lattice co
erators vanish according to a power law~see Fig. 3! with the
exponentb50.57 (3), which is characteristic of all two-
dimensional (d52) systems. However, for the directed pe
colation universality class, the value ofb depends on the
spatial dimensiond. Mean-field type transitions (b51) oc-
cur for d>4 ~for details see Refs. 24 and 25! as well as on
Bethe lattices and trees.39 In the limit of large populations
N→`, random regular graphs become locally similar to
Bethe lattice. On small world networks, the spatial corre
tions are essentially destroyed by the random long-ra
connections. As a consequence, mean-field-type transit
occur for both random regular graphs and small world n
works, that is, cooperators vanish linearly withr .

In the absence of spatial structure, that is, in well mix
populations ~mean-field approximation!, a discontinuous
transition occurs atr c50 with full cooperation (r51) for
r ,0 and all out defection (r50) for r .0. The more sophis-
ticated pair approximation provides an analytically acc
sible way to determine the corrections from spatial struct
in quenched arrangements. Instead of the equilibrium
quency of strategies, the pair approximation considers
frequency of strategy pairs~see the Appendix!. This im-
proved approach correctly predicts the trends, that is,
persistence of cooperation forr .0 and suggests a linea
decrease of the frequency of cooperators. However, it is
able to adequately describe the formation of small cluster
cooperators~see, for example, Fig. 2!, and therefore it sig-
nificantly overestimates the extinction threshold withr c

pair

50.290 (1) in contrast tor c,0.021 12 (2) obtained from
the simulations. In addition, the pair approximation is inc
pable of distinguishing the different population structures
cause of their identical connectivity.

The remarkable differences in the results for different s
tial structures clearly indicate that cooperation is sensitive
the topological features of the underlying population stru
ture. The variation of the results can be further extended
allowing variations in the numbers of neighbors of each
dividual, that is, on diluted lattices with vacant sites40,41 or
on social networks with different types of underlyin
structures.42–44
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III. VOLUNTARY PARTICIPATION

So far we have implicitly assumed compulsory particip
tion in the prisoner’s dilemma. In many situations, howev
individuals often may drop out of unpromising and ris
social enterprises and instead rely on the perhaps smalle
at least secure earnings based on their individual efforts
the context of human societies, one of the pioneers to st
and discuss characteristics of social interactions in a mod
way was the French philosopher J. J. Rousseau.45 He de-
scribed a hunting party where each participant faced
choice of dropping out and collecting mushrooms alone
hunting hares with a partner. An individual might be bet
off collecting mushrooms than relying on the efforts of
undependable partner. However, by doing so individuals
feit their chances of catching the larger, more favorable ga
but also avoid the risk of facing an empty plate for dinn
Note that defectors also threaten the success of the com
enterprise but for different reasons: defectors portray opp
tunistic participants that attempt to free ride on the efforts
the community, that is, they are hoping for a free lunch.

In game theoretical terms the payoff of risk-averse lon
is constantPl5s with P50,s,R51, that is, loners are
better off than a pair of defectors, but fare less well than t
cooperators. If one of the two individuals chooses the lo
option, the other individual is forced to act as a loner. T
three strategies of cooperation, defection, and going it al
implements a rock-scissors-paper-type cyclic dominance
participants are likely to cooperate, it pays to defect; ho

Fig. 6. Sample trajectories of the evolution of the frequencies of coop
tors, defectors, and loners in the voluntary prisoner’s dilemma for diffe
population structures. The boundary of the simplexS3 consists of a hetero-
clinic cycle which reflects the cyclic dominance of the three strategies.~a! In
well-mixed populations the system relaxes into homogenous states o
loners.~b! For RRG the trajectories spiral outward and eventually end in
of the three absorbing states, but usually they end in the loner corner
~a!. ~c! Regular small world networks networks (Q50.03) substantially
change this outcome and reveal an asymptotically stable limit cycle lea
to persistent global oscillations of the three strategies.~d! On square lattices
the system evolves toward a stable stationary state with all three strat
coexisting@rD50.229(1), rC50.269(1), andrL50.502 (1)]. All simu-
lations @~b!–~d!# were done for the forr 50.4, s50.3, k50.1, andN
5106. Note that for these parameters defectors invariably reach fixa
~cooperators go extinct! in the absence of the loners. The simulations
~b!–~d! have random initial configurations with identical concentrations
all three strategies~marked by1!.
409 Am. J. Phys., Vol. 73, No. 5, May 2005
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ever, if everybody defects, it is better to drop out, and on
the loners have conquered the defector’s threat, the ben
of cooperation become attractive again.

It turns out that in unstructured, well mixed population
cooperative behavior vanishes and invariably the absorb
homogenous state with all loners occurs@see Fig.~6a!#.46

Although loners provide an escape hatch out of states
mutual defection, this mechanism is capable of promot
persistent cooperative behavior only in larger groups of
teracting individuals.11 For pairwise interactions, the resul
ing advantage is insufficient and social interactions dis
pear. The cyclic dominance of the three strategies is refle
in the heteroclinic cycle~a closed trajectory that contain
fixed points! along the boundary of the simplexS3 ~ternary
phase diagram withrD1rC1rL51). This outcome change
completely when spatial structure and local clustering
introduced@see Figs. 6~b!–6~d!#. Although random regular
graphs produce only some transient fluctuations in the s
egy concentrations and~usually! continue to relax in a state
of all loners, regular small world networks may lead to p
sistent periodic oscillations of all three strategies.

A. Square lattices

In Sec. II we demonstrated that for compulsory intera
tions, cooperative behavior persists in spatially structu
populations provided that the benefits of cooperation are
ficiently high, that is,r ,r c . Relaxing the compulsory inter
actions and allowing for voluntary participation boosts coo
eration on square lattices. In fact, the loners option ena
cooperators to survive for allr ~see Fig. 7!, which is in
contrast to the compulsory prisoner’s dilemma where co
erators go extinct forr .r c ~see, for example, Fig. 1!.

Two different dynamical regimes can be identified depe
ing on r : For r ,r c1

(sq) , that is, large benefits and small cos
loners vanish because they no longer provide a viable a
native and the spatial clustering enables cooperators to
vive on their own~see Fig. 2!. Interestingly, the dynamics
eliminates the voluntary interactions and restores the c
pulsory interactions characterizing the traditional prisone

a-
t

all
e
in

g

ies

n

f

Fig. 7. The average fraction of cooperators~dotted line!, defectors~solid
line!, and loners~dashed line! as a function of the cost-to-benefit ratior on
square lattices fors50.3, k50.1, and N51.63105– 106. For r ,r c1

(sq)

50.016 (1) loners go extinct because cooperators thrive on their own,
for all otherr the three strategies coexist in dynamical equilibrium@see Fig.
6~d!.
409Christoph Hauert and Gyo¨rgy Szabo´
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dilemma. For more hostile settings for cooperation, that
for r .r c1

(sq) , loners are of vital importance and manage
ensure the persistence of cooperation even under harsh
ditions whenr→1. In this case all three strategies coexist
dynamical equilibrium.

The extinction of loners again belongs to the directed p
colation universality class.47 At first glance this affiliation
might seem surprising because in the previous examples
absorbing state was a static configuration with all defect
but here coexisting cooperators and defectors form a flu
ating background. Theory supports the idea that~on large
length scales! the characteristic features of directed perco
tion transitions remain unaffected by temporal fluctuations
the background.25

Loners survive by relentlessly invading adjacent territor
occupied by defectors while being diminished by succeed
cooperators. Consequently, loners die out once the defec
density becomes too low for sufficiently smallr . For higher
r , loners thrive on defectors, but are kept in check by co
erators as dictated by the cyclic dominance of the three s
egies. The cyclic dominance results in fascinating s
organizing, spatio-temporal patterns~see Fig. 8!.48

The cyclic invasions stabilize the coexistence of all th
strategies. In particular, they maintain substantial levels
cooperation for essentially the entire range ofr . This surpris-
ing robustness is a direct consequence of the system’s
usual response to external effects: if a strategy is extern
supported~for example, by adjusting the parameters!, then
not the strategy but its ‘‘predator,’’ that is, the superior str
egy benefits from the change. For this reason the freque
of loners increases withr ~largerr favors defection becaus
cooperation is less beneficial!. Similar mechanisms hav
been reported for several systems including the maintena
of biodiversity in bacterial colonies.49–51

Fig. 8. Snapshot of a typical lattice configuration where cooperators~black!,
defectors~white!, and loners~gray! coexist in dynamical equilibrium (r
50.4, s50.3, andk50.1). The cyclic dominance of the three strateg
promotes and maintains coexistence and leads to self-organizing pat
each domain invades other domains of the inferior strategy while b
invaded by domains of the superior strategy. Note that this distributio
independent of the initial lattice configuration, but note that in finite syste
all initial frequencies should be sufficiently high to prevent accidental
tinctions while approaching the stationary state.
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B. Regular random graphs and small worlds

For a small fraction of long-range connectionsQ, regular
small world networks essentially preserve the local struct
of the square lattice and add only a few long-range conn
tions. Therefore, it is not surprising that the average frequ
cies of the strategies is barely affected~compare Fig. 9 with
the square lattice results in Fig. 7!.

As before, forr ,r c1
(RSW)50.015 (1) (Q50.03) loners be-

come extinct and clusters of cooperators survive in a se
defectors. In contrast, forr .r c1

(RSW) all three strategies coex
ist. However, on close inspection, it turns out that f

ns:
g
is
s
-

Fig. 9. The average fraction of cooperators~dotted line!, defectors~solid
line!, and loners~dashed line! as a function of the cost-to-benefit ratior on
regular small world networks (Q50.03, s50.3, k50.1, N51.6
3105– 106). There are three dynamical regimes: Loners go extinct for
,r c1

(RSW)50.015 (1) because cooperators thrive on their own through c
ter formation. Forr c1

(RSW),r ,r c2
(RSW)50.24 (2) all three strategies coexis

in a stationary state. Finally, forr .r c2
(RSW) global synchronization occurs a

indicated by the maximum and minimum frequency of defectors~n! along
the limit cycle @see Fig. 6~c!#.

Fig. 10. The evolution of the frequencies of cooperators~dotted line!, de-
fectors~solid line!, and loners~dashed line! on regular small world networks
(Q50.03, r 50.4, s50.3, k50.1, N5106). The few long-range connec
tions are sufficient to achieve global synchronization. The successio
maxima~minima! again reflects the cyclic dominance of the three strateg
@see Fig. 6~c!#.
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y of
r .r c2
(RSW)50.24 (2) (Q50.03) persistent global periodi

oscillations occur. This behavior is illustrated in Fig. 10 a
indicated in Fig. 9 by the minimal and maximal defect
frequencies.

Thus, the structural disorder introduced by random lo
range connections can induce global synchronization. In c
trast, on square lattices each site typically alternates its s
egy in cycles, but the limited nearest neighbor interactio
are unable to synchronize these local oscillations on a glo
scale.

Naturally, the onset and amplitude of global oscillatio
depends onQ. For example, the amplitude increases withQ
until eventually a threshold is reached where the oscillati
become big enough such that one strategy goes extinct
inevitably a second strategy follows~because of the cyclic
dominance!, leaving the system in a homogenous absorb
state. In the limitQ→1, that is, on the random regular grap
the results are illustrated in Fig. 11.

The cost-to-benefit ratior distinguishes four dynamica
regimes: Forr ,r c1

(RRG)50.020 (1) cooperators and defe
tors coexist while loners go extinct. Forr c1

(RRG),r ,r c2
(RRG)

50.180(5), thethree strategies reach a stationary state w
vanishing fluctuations~in the limit N→`). Note that when
approachingr c1

(RRG) from above, the frequency of loners va
ishes linearly,rL}(r 2r c1). Above r c2

(RRG), global synchro-
nization kicks in, which leads to global oscillations of th
strategy frequencies. Forr c2

(RRG),r ,r c3
(RRG)50.263(3), the

oscillations are bounded as indicated by the maxima
minima ofrD(t) in Fig. 11.~The thresholdr c3

(RRG) is obtained
by linear extrapolation of the maximal/minimal defector fr
quencies.! Note that these oscillations persist and do not
crease and converge to the corresponding average in the
N→`. The amplitude of the oscillations increases withr
such that forr .r c3

(RRG), one strategy eventually vanishes—
inevitably followed by the extinction of a second strategy
and the system reaches a homogenous absorbing state.52 The

Fig. 11. The average fraction of cooperators~dotted line!, defectors~solid
line!, and loners~dashed line! as a function ofr on RRG (s50.3, k
50.1, N553105). There are four dynamical regimes: Loners go extinct
r ,r c1

(RRG)50.020(1), for r c1
(RRG),r ,r c2

(RRG)50.180 (5) all three strategie
coexist in a stationary state. Forr c2

(RRG),r ,r c3
(RRG)50.263 (3) the strategy

frequencies oscillate periodically, and forr .r c3
(RRG) , the amplitude of the

oscillations increases until one strategy goes extinct and subsequentl
system reaches a homogenous absorbing state. Persistent oscillatio
indicated by the maximum and minimum values ofrD ~n!.
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three basins of attraction, that is, the probabilities to end
with only cooperators, defectors, or loners, depend on
parametersr , s, andk. A state of all loners is the most likely
outcome for larger and Q as found in well mixed popula-
tions.

Even though the predictive power of the pair approxim
tion turns out to be rather limited in the compulsory priso
er’s dilemma, the results for the voluntary prisoner’s d
lemma are in very good agreement with simulations
random regular graphs. Figure 12 illustrates that not only
frequency of defectors is well reproduced, but also the on
and the amplitude of global oscillations.

IV. SUMMARY AND CONCLUSIONS

The effects of population structure turn out to be essen
for the evolution of cooperation. The spatial extension
lattices or the rigid arrangement of individuals on regu
small world networks and random regular graphs enab
cooperators to thrive through cluster formation. In this w
cooperators offset losses against defectors with gains f
fellow cooperators. In contrast, in well mixed populatio
cooperators are doomed and defectors reign. However,
advantages arising through population structures are ra
limited, that is, in the compulsory prisoner’s dilemma inte
actions very favorable cost-to-benefit ratiosr are required
~the benefits must exceed costs by a factor of 20!. This situ-
ation changes drastically when voluntary participation
added by introducing the loner strategy, that is, the option
not participate in the social enterprise. In well mixed pop
lations the risk averse loners reign, but on square latti
cooperators persist for allr . On regular small world net-
works and random regular graphs, the range ofr viable for
cooperators is greatly enhanced. Only for very smallr do
loners become extinct, that is, the system’s dynamics rev
voluntary participation back into compulsory interaction
For larger r , the long-range connections in regular sm
world networks and random regular graphs promote glo
synchronization and lead to global periodic oscillations

the
are

Fig. 12. The average frequency of defectors~m! on RRG together with
predictions of the pair approximation~solid line! (s50.3, k50.1, N55
3105). In the regime of global oscillations, the maximum and minimu
frequencies of defectors along the limit cycle are indicated by simulati
~n! and the pair approximation~dashed line!. For r .0.298 (2) the pair
approximation predicts spiral trajectories converging toward the boundar
the simplexS3 .
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the strategy frequencies. The amplitude of this limit cy
increases withr as well as with the fraction of rewired con
nections on regular small world networks and eventua
may lead to the extinction of either strategy. The cyc
dominance of cooperators, defectors, and loners dictates
inevitably a second strategy is doomed, leaving a hom
enous absorbing state behind. The basin of attraction for
three absorbing states depends on the parameter value
usually loners survive as in the well mixed scenario.

From an evolutionary perspective, not only is t
persistence/abundance of cooperation of immediate inte
but also the individuals’ performance, that is, their payo
In the compulsory game and in the absence of coopera
the payoff is clearly zero, but below the threshold whe
cooperators survive, the average population payoff increa
to 0.635~1! on the square lattice and 0.654~1! on random
regular graphs in the limitr→0 for s50.3 andk50.1.
These payoffs are still less than the maximum return
mutual cooperation withR51 for mutual cooperation, but a
least the population structure is capable of resolving par
the dilemma. In the voluntary prisoner’s dilemma in we
mixed populations everybody obviously earns the lone
payoff s. But in structured populations everybody is aga
better off—at least on average~see Fig. 13!. Interestingly, the
average payoff of cooperators is substantially higher t
that of defectors, but, nevertheless, the prospects and te
tation of short term profits limits the extent of cooperati
behavior. As in the compulsory prisoner’s dilemma, stru
tured populations, that is, fixed partnerships, partially reso
the dilemma and improve social welfare.

The insights into the evolution of cooperation would n
be possible without the fruitful applications of methods a
techniques developed in statistical and condensed m
physics, in particular, the concept of phase transitions
universality classes. Intriguing and fruitful interdisciplina
links between physics, biology, and the social sciences

Fig. 13. The average population payoff in the voluntary prisoner’s dilem
as a function ofr for different population structures: square lattice~h!,
RRG ~1!, and regular small world networks~d! with Q50.03, s50.3,
k50.1 andN51.63105– 106 together with predictions from the pair ap
proximation~solid line!. For comparison, the average performance of we
mixed populations~dashed line! is shown, which amounts to the loner
payoff s. In structured populations the payoff lies significantly aboves
@with the exception ofr .r c3

(RRG)50.263 (3), where increasing oscillation
again favor homogenous states with all loners#, but nevertheless quite a b
belowR51 for mutual cooperation. Thus, population structure is capabl
at least partly resolving the dilemma of cooperation.
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emerging,53 but the future prospects of such collaboratio
depend on behavioral scientists embracing mathema
concepts as well as physicists adjusting their theoret
framework to the conditions and requirements arising in
dynamics of living systems.

APPENDIX: PAIR APPROXIMATION IN GAME
THEORY

An analytical approximation of the spatial dynamics c
be obtained using the pair approximation. Instead of con
ering the frequency of strategies as in well mixed popu
tions, that is, in mean-field theory, the pair approximati
tracks the frequencies of strategy pairs. Such pair config
tions ps,s8 indicate the probability of finding an individua
playing strategys accompanied by a neighbor playings8. In
principle,s,s8 may refer to members of an arbitrary finite s
of strategies. However, to keep the formulas simple, we c
sider cooperatorsC and defectorsD only. It is straightfor-
ward but tedious to include a third strategy such
loners.47,54

The pair approximation is based on three conditions: co
patibility, symmetry, and closure. Consistency and comp
ibility in mean-field theory requires thatps5(s8ps,s8 , where
ps denotes the frequency ofs and the sum runs over the s
of all strategies under consideration. For two strategies
condition yields the symmetryps,s85ps8,s . In general, this
symmetry does not follow from the compatibilit
requirements,55 but can be assumed for stochastic upd
rules. Finally and most importantly, configuration probab
ties of larger clusters are approximated by pair configurat
probabilities—this approximation is known as closure. F
example, the configuration probability of a three site clus
s,s8,s9 is approximated byps,s8,s95ps,s8ps8,s9 /ps8 , where
the denominator corrects for the fact that bothps,s8 andps8,s9
include the probability fors8.

In spatially structured populations, the strategy of a ra
domly chosen siteA is updated by comparing its perfor
mance to a randomly chosen neighborB. Figure 14 illus-
trates this situation for a square lattice with four neighbo

The payoffsPA and PB of A and B are determined by
accumulating the payoffs in interactions with their neighbo
x, y, z, B and u, v, w, A, respectively. The pair approxi

a

f

Fig. 14. Small part of square lattice indicating the relevant configuration
the pair approximation with sitesA and B. This configuration is used to
determine changes in the pair configuration probabilitiespA,B→B,B . The fact
thatx, u andz, w are neighbors is neglected by the pair approximation, t
is, it does not take into account corrections arising from loops. For
reason, the pair approximation is unable to distinguish between square
tices, regular small world networks, and RRG with identical connectiviti
412Christoph Hauert and Gyo¨rgy Szabo´
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rwhere the transition probabilityf (PB2PA) @see Eq.~2!# is
multiplied by the configuration probability and summed ov
all possible configurations. IfB succeeds in populating sit
A, the pair configuration probabilities change: the probab
ties pB,B , pB,x , pB,y , andpB,z increase, while the probabili
ties pA,B , pA,x , pA,y , andpA,z decrease. These changes r
sult in a set of ordinary differential equations:
ṗc,c5 (
x,y,z

@nc~x,y,z!11#pd,xpd,ypd,z (
u,v,w

pc,upc,vpc,wf ~Pc~u,v,w!2Pd~x,y,z!!

2 (
x,y,z

nc~x,y,z!pc,xpc,ypc,z (
u,v,w

pd,upd,vpd,wf ~Pd~u,v,w!2Pc~x,y,z!!, ~A2a!

ṗc,d5 (
x,y,z

@12nc~x,y,z!#pd,xpd,ypd,z (
u,v,w

pc,upc,vpc,wf ~Pc~u,v,w!2Pd~x,y,z!!

2 (
x,y,z

@22nc~x,y,z!#pc,xpc,ypc,z (
u,v,w

pd,upd,vpd,wf ~Pd~u,v,w!2Pc~x,y,z!!, ~A2b!
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where nc(x,y,z) is the number of cooperators among t
neighborsx, y, z, andPc(x,y,z) andPd(x,y,z) specify the
payoffs of a cooperator~defector! interacting with the neigh-
borsx, y, z plus a defector~cooperator!. Note that these two
differential equations are sufficient because of the symm
condition pc,d5pd,c and the obvious constraintpc,c1pc,d

1pd,c1pd,d51. ~Including the loner strategy leads to a s
of nine ordinary differential equations, but symmetry con
tions and constraints reduce the set to five equations.! For
simplicity, Eq.~A2! omits the common factor 2pc,d /(pc

3pd
3),

which corresponds to a nonlinear transformation of the ti
scale but leaves equilibrium unaffected. The equilibrium v
ues p̂s,s8 are obtained either by numerical integration or
settingṗc,c5 ṗc,d50 and solving forpc,c andpc,d . Thep̂s,s8
then return an approximation of the equilibrium frequenc
p̂s5(s8p̂s,s8 .

Generally, predictions by the pair approximation are le
reliable near the extinction thresholds, because this appr
mation does not account for corrections arising from loo
nor the long range correlations occurring in the vicinity
critical transitions. The accuracy of this technique can
improved by considering configuration probabilities of larg
clusters. The improvement may not only be quantitative18

but in some cases even qualitative.56
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s through a
ring and
is
Rowland’s Ring. Rowland’s Ring is a device for tracing out curves of magnetic induction for an iron ring as a function of the magnetizing field ap
it. The resulting trace is known as a hysteresis curve, and the area enclosed by the B-H curve is a measure of the losses in the iron when it goe
complete cycle. Up to the 1960s the experiment was done with aid of a ballistic galvanometer; today we would probably wind the coils on a ferrite
use a modern integrating circuit in place of the galvanometer. Henry Augustus Rowland~1858–1901! developed the device and experiment. This example
in the Greenslade collection.~Photograph and Notes by Thomas B. Greenslade, Jr., Kenyon College!
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