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Preface

You need not be a scheming egotist to pick up The Calculus of Selfishnes . It is
enough to be interested in the logic behind the ceaseless give-and-take pervading
our social lives. The readership I had in mind, when writing this book, consists
mostly of undergraduates in economics, psychology, or evolutionary biology. But
simple models of social dilemmas are of general interest.

As the word Calculus in the title gives away, you will need a modicum of elemen-
tary mathematics. Beyond this, all the game-theory expertise you need is painlessly
provided step by step. As to the Selfishnes in the title, I do not mean blind greed, of
course, but “enlightened self-interest,” by which, according to Tocqueville, “Amer-
icans are fond of explaining almost all the actions of their lives; . . . . They show
with complacency how an enlightened regard for themselves constantly prompts
them to assist each other.” Such complacency may well be justified; but theoreticians
cannot share it. Most of them feel that it is hard to understand why self-interested
agents cooperate for their common good.

In the New Year 2000 edition of Science, the editors listed “The evolution of
cooperation” as one of the ten most challenging problems of the century. My book
certainly does not claim to solve the problem. Having worked for twenty years in
the field, I know that it progresses far too fast to allow an encyclopedic presentation,
even when restricted to cooperation in human societies, which is a tiny fraction of
all the cooperation encountered in biology.

Rather than trying to address all aspects, this book concentrates on one issue
only, the reciprocity between self-interested individuals, and explores it for a small
number of elementary types of interactions. The method is based on an evolutionary
approach: more successful strategies become more frequent in the population. We
neglect family ties, or neighborhood relations, or individual differences, or cultural
aspects. It is best to state this self-limitation right at the beginning. I hope not to
convey the impression that family ties, neighborhood relations, or individual aspects,
etc., play no role in the evolution of cooperation and that it all reduces to self-interest;
just as theoretical physicists writing a treatise on gravity do not imply, thereby, that
other forces in the universe can be ignored. This being said, the current trend in
economic life seems to lead away from nepotism, parochialism, and face-to-face
encounters, and toward interactions between strangers in a well-mixed world.

The introduction (an entire chapter without any formulas) describes some of the
most basic social dilemmas. Thinkers throughout the ages have been fascinated by
the topic of self-regarding vs. other-regarding behavior, but the use of formal models
and experimental games is relatively recent. Ever since Robert Trivers introduced
an evolutionary approach to reciprocity, the Prisoner’s Dilemma game serves as a
kind of model organism to help explore the issue. But other games, such as the
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Ultimatum, are quickly catching up. The most gratifying aspect of this development
is the close connection between theoretical and experimental progress.

The second chapter provides a self-contained introduction to evolutionary game
theory, stressing deterministic dynamics and stochastic processes, but tying this
up with central notions of classical game theory, such as Nash equilibria or risk-
dominance.

The third chapter provides a detailed discussion of repeated interactions, such as
the Prisoner’s Dilemma or the Snowdrift game, which allow exploration of direct
reciprocity between the same two players meeting again and again. In particular,
simple strategies based on the outcome of the previous round (such as Tit for Tat)
or implemented by finite automata (such as Contrite Tit for Tat) offer a wide range
of behavior.

The fourth chapter is devoted to indirect reciprocity. Here, players interact at
most once, but they are aware of the past behavior of their one-shot partner. This
introduces topics such as moral judgment or concern for reputation. Strategies based
on the assessment of interactions between third parties allow the emergence of
types of cooperation immune to exploitation, because they are channeled towards
cooperators only.

The fifth chapter deals with the Ultimatum and the Trust game. Such games allow
one to tackle the issues of fairness and trust, and provide, as a kind of side benefit,
a framework for analyzing the roles of positive and negative incentives. Again,
reputation plays an essential role for cooperation to emerge.

The sixth chapter turns from interactions between two players to interactions
within larger groups. In so-called Public Goods games, defection can be suppressed
by rewards or sanctions. Such incentives, properly targeted, allow reciprocation in
mixed groups of cooperators and defectors.An intriguing aspect concerns the role of
voluntary, rather than compulsory, participation in the team effort. Coercion emerges
more easily if participation is optional.

The short seventh chapter, finally, deals briefly with some of the many issues that
were neglected, such as nepotism, localized interactions, or group selection.

Needless to say, this book owes much to my colleagues, many of whom read draft
chapters and provided comments. In particular, I want to thank Christoph Hauert,
Arne Traulsen, Hannelore De Silva (formerly Brandt), Hisashi Ohtsuki, Satoshi
Uchida, Ulf Dieckmann, Tatsuya Sasaki, Simon Levin, Ross Cressman, Yoh Iwasa,
Silvia De Monte, Christoph Pflügl, Christian Hilbe, Steve Frank, Simon Gächter,
Benedikt Hermann, Dirk Semmann, Manfred Milinski, and Josef Hofbauer. Most
of all, I am indebted to Martin Nowak, without whom this book could never have
been written.
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Chapter One

Introduction: Social Traps and Simple Games

1.1 THE SOCIAL ANIMAL

Aristotle classified humans as social animals, along with other species, such as ants
and bees. Since then, countless authors have compared cities or states with bee hives
and ant hills: for instance, Bernard de Mandeville, who published his The Fable of
the Bees more than three hundred years ago.

Today, we know that the parallels between human communities and insect states
do not reach very far. The amazing degree of cooperation found among social insects
is essentially due to the strong family ties within ant hills or bee hives. Humans, by
contrast, often collaborate with non-related partners.

Cooperation among close relatives is explained by kin selection. Genes for helping
offspring are obviously favoring their own transmission. Genes for helping brothers
and sisters can also favor their own transmission, not through direct descendants,
but indirectly, through the siblings’ descendants: indeed, close relatives are highly
likely to also carry these genes. In a bee hive, all workers are sisters and the queen is
their mother. It may happen that the queen had several mates, and then the average
relatedness is reduced; the theory of kin selection has its share of complex and
controversial issues. But family ties go a long way to explain collaboration.

The bee-hive can be viewed as a watered-down version of a multicellular organ-
ism. All the body cells of such an organism carry the same genes, but the body cells
do not reproduce directly, any more than the sterile worker-bees do. The body cells
collaborate to transmit copies of their genes through the germ cells—the eggs and
sperm of their organism.

Viewing human societies as multi-cellular organisms working to one purpose is
misleading. Most humans tend to reproduce themselves. Plenty of collaboration
takes place between non-relatives. And while we certainly have been selected for
living in groups (our ancestors may have done so for thirty million years), our actions
are not as coordinated as those of liver cells, nor as hard-wired as those of social
insects. Human cooperation is frequently based on individual decisions guided by
personal interests.

Our communities are no super-organisms. Former Prime Minister Margaret
Thatcher pithily claimed that “there is no such thing as society.” This can serve
as the rallying cry of methodological individualism—a research program aiming
to explain collective phenomena bottom-up, by the interactions of the individuals
involved. The mathematical tool for this program is game theory. All “players” have
their own aims. The resulting outcome can be vastly different from any of these
aims, of course.



−1
0
1

“Chapter1” — September 21, 2009— 15:44— page 2

2 CHAPTER 1

1.2 THE INVISIBLE HAND

If the end result depends on the decisions of several, possibly many individuals
having distinct, possibly opposite interests, then all seems set to produce a cacophony
of conflicts. In his Leviathan from 1651, Hobbes claimed that selfish urgings lead to
“such a war as is every man against every man.” In the absence of a central authority
suppressing these conflicts, human life is “solitary, poore, nasty, brutish, and short.”
His French contemporary Pascal held an equally pessimistic view: “We are born
unfair; for everyone inclines towards himself. . . . The tendency towards oneself is
the origin of every disorder in war, polity, economy etc.” Selfishness was depicted
as the root of all evil.

But one century later, Adam Smith offered another view. An invisible hand har-
monizes the selfish efforts of individuals: by striving to maximize their own revenue,
they maximize the total good. The selfish person works inadvertently for the public
benefit. “By pursuing his own interest he frequently promotes that of the society
more effectually than when he really intends to promote it.” Greed promotes behav-
ior beneficial to others. “It is not from the benevolence of the butcher, the brewer, or
the baker, that we expect our dinner, but from their regard to their own self-interest.
We address ourselves, not to their humanity but to their self-love, and never talk to
them of our own necessities but of their advantages.”

A similar view had been expressed, well before Adam Smith, by Voltaire in his
Lettres philosophiques: “Assuredly, God could have created beings uniquely in-
terested in the welfare of others. In that case, traders would have been to India
by charity, and the mason would saw stones to please his neighbor. But God de-
signed things otherwise. . . . It is through our mutual needs that we are useful to
the human species; this is the grounding of every trade; it is the eternal link be-
tween men.”

Adam Smith (who knew Voltaire well) was not blind to the fact that the invisible
hand is not always at work. He merely claimed that it frequently promotes the
interest of the society, not that it always does. Today, we know that there are many
situations—so-called social dilemmas—where the invisible hand fails to turn self-
interest to everyone’s advantage.

1.3 THE PRISONER’S DILEMMA

Suppose that two individuals are asked, independently, whether they wish to give a
donation to the other or not. The donor would have to pay 5 dollars for the beneficiary
to receive 15 dollars. It is clear that if both players cooperate by giving a donation
to their partner, they win 10 dollars each. But it is equally clear that for each of
the two players, the most profitable strategy is to donate nothing, i.e., to defect. No
matter whether your co-player cooperates or defects, it is not in your interest to part
with 5 dollars. If the co-player cooperates, you have the choice between obtaining,
as payoff, either 15 dollars, or 10. Clearly, you should defect. And if the co-player
defects, you have the choice between getting nothing, or losing 5 dollars. Again,
you should defect. To describe the Donation game in a nutshell:
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if the co-player if the co-player
makes a donation makes no donation

if I make a donation 10 dollars −5 dollars
My payoff

if I make no donation 15 dollars 0 dollars

But the other player is in the same situation. Hence, by pursuing their selfish
interests, the two players will defect, producing an outcome that is bad for both.
Where is the invisible hand? “It is often invisible because it is not here,” according
to economist Joseph Stiglitz.

This strange game is an example of a Prisoner’s Dilemma. This is an interaction
between two players, player I and II, each having two options: to cooperate (play C)
or to defect (play D). If both cooperate, each obtains a Reward R that is higher than
the Punishment P , which they obtain if both defect. But if one player defects and
the other cooperates, then the defector obtains a payoff T (the Temptation) that is
even higher than the Reward, and the cooperator is left with a payoff S (the Sucker’s
payoff ), which is lowest of all. Thus,

T > R > P > S. (1.1)

As before, it is best to play D, no matter what the co-player is doing.

if player II if player II
plays C plays D

if player I plays C R S

Payoff for player I
if player I plays D T P

If both players aim at maximizing their own payoff, they end up with a subopti-
mal outcome. This outcome is a trap: indeed, no player has an incentive to switch
unilaterally from D to C. It would be good, of course, if both jointly adopted C. But
as soon as you know that the other player will play C, you are faced with the Temp-
tation to improve your lot still more by playing D. We are back at the beginning.
The only consistent solution is to defect, which leads to an economic stalemate.

The term “Prisoner’s Dilemma” is used for this type of interaction because when
it was first formulated, back in the early fifties of last century, it was presented as the
story of two prisoners accused of a joint crime. In order to get confessions, the state
attorney separates them, and proposes a deal to each: they can go free (as state’s
witness) if they rat on their accomplice. The accomplice would then have to face
ten years in jail. But it is understood that the two prisoners cannot both become
state’s witnesses: if both confess, both will serve seven years. If both keep mum,
the attorney will keep them in jail for one year, pending trial. This is the original
Prisoner’s Dilemma. The Temptation is to turn state’s witness, the Reward consists
in being released after the trial, (which may take place only one year from now), the
Punishment is the seven years in jail and the Sucker’s payoff amounts to ten years
of confinement.
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The young mathematicians who first investigated this game were employees of
the Rand Corporation, which was a major think tank during the Cold War. They
may have been inspired by the dilemma facing the two superpowers. Both the So-
viet Union and the United States would have been better off with joint nuclear
disarmament. But the temptation was to keep a few atomic bombs and wait for the
others to destroy their nuclear arsenal. The outcome was a horrendously expensive
arms race.

1.4 THE SNOWDRIFT GAME

The Prisoner’s Dilemma is not the only social dilemma displaying the pitfalls of
selfishness. Another is the so-called Snowdrift game. Imagine that the experimenter
promises to give the two players 40 dollars each, on receiving from them a “fee” of
30 dollars. The two players have to decide separately whether they want to come
up with the fee, knowing that if they both do, they can share the cost. This seems
to be the obvious solution: they would then invest 15 dollars each, receive 40 in
return, and thus earn 25 dollars. But suppose that one player absolutely refuses
to pay. In that case, the other player is well advised to come up with 30 dollars,
because this still leads to a gain of 10 dollars in the end. The decision is hard
to swallow, however, because the player who invests nothing receives 40 dollars. If
both players are unwilling to pay the fee, both receive nothing. This can be described

if my co-player if my co-player
contributes refuses to contribute

if I contribute 25 10
My payoff

if I refuse to contribute 40 0

as a game with the two options C (meaning to be willing to come up with the fee)
and D (not to be willing to do so). If we denote the payoff values with R,S,T, and
P, as before, we see that in the place of (equation 1.1.) we now have

T > R > S > P. (1.2)

Due to the small difference in the rank-ordering (only S and P have changed place),
playing D is not always the best move, irrespective of the co-player’s decision. If
the co-player opts for D, it is better to play C. In fact, for both players, the best move
is to do the opposite of what the co-player decides. But in addition, both know that
they will be better off by being the one who plays D. This leads to a contest. If both
insist on their best option, both end up with the worst outcome. One of them has to
yield. This far the two players agree, but that is where the agreement ends.

The name Snowdrift game refers to the situation of two drivers caught with their
cars in a snow drift. If they want to get home, they have to clear a path. The fairest
solution would be for both of them to start shoveling (we assume that both have a
shovel in their trunk). But suppose that one of them stubbornly refuses to dig. The
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other driver could do the same, but this would mean sitting through a cold night. It
is better to shovel a path clear, even if the shirker can profit from it without lifting a
finger.

1.5 THE REPEATED PRISONER’S DILEMMA

The prisoners, the superpowers, or the test persons from the economic experiments
may seem remote from everyday life, but during the course of a day, most of us will
experience several similar situations in small-scale economic interactions. Even in
the days before markets and money, humans were engaged in ceaseless give and take
within their family, their group or their neighborhood, and faced with the temptation
to give less and take more.

The artificial aspect of the Donation game is not due to its payoff structure, but to
the underlying assumption that the two players interact just once, and then go their
separate ways. Most of our interactions are with household members, colleagues,
and other people we are seeing again and again.

The games studied so far were one-shot games. Let us assume now that the same
two players repeat the same game for several rounds. It seems obvious that a player
who yields to the temptation of exploiting the co-player must expect retaliation.
Your move in one round is likely to affect your co-player’s behavior in the following
rounds.

Thus let us assume that the players are engaged in a Donation game repeated for
six rounds. Will this improve the odds for cooperation? Not really, according to an
argument called backward induction. Indeed, consider the sixth and last round of
the new game. Since there are no follow-up rounds, and since what’s past is past,
this round can be viewed in isolation. It thus reduces to a one-shot Donation game,
for which selfish interests, as we have seen, prescribe mutual defection. This is the
so-called “last-round effect.” Both players are likely to understand that nothing they
do can alter this outcome. Hence, they may just as well take it for granted, omit
it from further consideration, and just deal with the five rounds preceding the last
one. But for the fifth round, the same argument as before prescribes the same move,
leading to mutual defection; and so on. Hence backward induction shows that the
players should never cooperate. The players are faced with a money pump that can
deliver 10 dollars in each round, and yet their selfish interests prescribe them not to
use it. This is bizarre. It seems clearly smarter to play C in the first round, and signal
to the co-player that you do not buy the relentless logic of backward induction.

It is actually a side-issue. Indeed, people engaged in ongoing everyday interactions
do rarely know beforehand which is the last round. Usually, there is a possibility for
a further interaction—the shadow of the future. Suppose for instance that players
are told that the experimenter, after each round, throws dice. If it is six, the game is
stopped. If not, there is a further round of the Donation game, to be followed again
by a toss of the dice, etc. The duration of the game, then, is random. It could be over
after the next round, or it could go on for another twenty rounds. On average, the
game lasts for six rounds. But it is never possible to exploit the co-player without
fearing retaliation.
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In contrast to the one-shot Prisoner’s Dilemma, there now exists no strategy that is
best against all comers.If your co-player uses an unconditional strategy and always
defects, or always cooperates, come what may, then it is obviously best to always
defect. However, against a touchy adversary who plays C as long as you do, but turns
to relentlessly playing D after having experienced the first defection, it is better to
play C in every round. Indeed, if you play D, you exploit such a player and gain an
extra 5 dollars; but you lose all prospects of future rewards, and will never obtain
a positive payoff in a further round. Since you can expect that the game lasts for 5
more rounds, on average, you give up 50 dollars.

What about the repeated Snowdrift game? It is easy to see that if the two players
both play C in each round, or if they alternate in paying the fee, i.e., being the C
player, then they will both do equally well, on average; but is it likely that they
will reach such a symmetric solution? Should we rather expect that one of the two
players gives in, after a few rounds, and accepts grudgingly the role of the exploited
C player? The joint income, in that case, is as good as if they both always cooperate,
but the distribution of the income is highly skewed.

1.6 TOURNAMENTS

Which strategy should you chose for the repeated Prisoner’s Dilemma, knowing
that none is best? Some thirty years ago, political scientist Robert Axelrod held a
computer tournament to find out. People could submit strategies. These were then
matched against each other, in a round-robin tournament: each one engaged each
other in an iterated Prisoner’s Dilemma game lasting for 200 rounds (the duration
was not known in advance to the participants, so as to offer no scope for backward
induction). Some of the strategies were truly sophisticated, testing out the responses
of the co-players and attempting to exploit their weaknesses. But the clear winner
was the simplest of all strategies submitted, namely Tit for Tat (TFT), the epitome
of all retaliatory strategies. A player using TFT plays C in the first move, and from
then on simply repeats the move used by the co-player in the previous round.

The triumph of TFT came as a surprise to many. It seemed almost paradoxical,
since TFT players can never do better than their co-players in a repeated Prisoner’s
Dilemma game. Indeed, during the sequence of rounds, a TFT player is never ahead.
As long as both players cooperate, they do equally well. A co-player using D draws
ahead, gaining T versus the TFT player’s payoff S. But in the following rounds, the
TFT player loses no more ground. As long as the co-player keeps playing D, both
players earn the same amount, namely P . If the co-player switches back to C, the
TFT player draws level again, but resumes cooperation forthwith. At any stage of
the game, TFT players have either accumulated the same payoff as their adversary,
or are lagging behind by the payoff difference T − S. But in Axelrod’s tournament,
the payoffs against all co-players had to be added to yield the total score; and thus
TFT ended ahead of the rest, by doing better than every co-player against the other
entrants.

Axelrod found that among the 16 entrants for the tournaments, eight were nice in
the sense that they never defected first. And these eight took the first eight places in
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the tournament. Nice guys finish first! In fact, Axelrod found that another strategy
even “nicer” than TFT would have won the tournament, had it been entered. This
was TFTT (Tit for Two Tats), a strategy prescribing to defect only after two con-
secutive D’s of the co-player. When Axelrod repeated his tournaments, 64 entrants
showed up, and one of them duly submitted TFTT. But this strategy, which would
have won the first tournament, only reached rank 21. Amazingly, the winner of the
second tournament was again the simplistic TFT. It was not just nice, it was trans-
parent, provokable, forgiving, and robust.This bouquet of qualities seemed the key
to success.

1.7 ARTIFICIAL SOCIETIES

The success of Axelrod’s tournaments launched a flurry of computer simulations.
Individual-based modeling of artificial societies greatly expanded the scope of game
theory.Artificial societies consist of fictitious individuals, each equipped with a strat-
egy specified by a program. These individuals meet randomly, engage in an iterated
Prisoner’s Dilemma game, and then move on to meet others. At the end, the ac-
cumulated payoffs are compared. Often, such a tournament is used to update the
artificial population. This means that individuals produce “offspring”, i.e., other fic-
titious individuals inheriting their strategy. Those with higher payoffs produce more
individuals, so that successful strategies spread. Alternatively, instead of inheriting
strategies, the new individuals can adapt by copying strategies, preferentially from
individuals who did better. In such individual-based simulations, the frequencies of
the strategies change with time. One can also occasionally introduce small minori-
ties using new strategies, and see whether these spread or not. In chapter 2, we shall
describe the mathematical background to analyze such models.

Let us consider, for instance, a population using only two strategies,TFT andAllD.
The average payoff for a TFT player against another is 60 dollars (corresponding
to 6 rounds of mutual cooperation). If a TFT player meets an AllD player, the latter
obtains 15 dollars (by exploiting the co-player in the first round) and the former
loses 5 dollars. If two AllD players meet each other, they get nothing.

if the co-player if the co-player
plays Tit for Tat always defects

if I play Tit for Tat (TFT) 60 −5
My payoff

if I always defect (AllD) 15 0

Players having to choose among these two strategies fare best by doing what the
co-player does, i.e., playing TFT against a TFT player and AllD against an AllD
player. But in individual-based modeling, the fictitious players have no options.
They are stuck with their strategy, and do not know their co-player’s strategy in
advance. Obviously, the expected payoff depends on the composition of the artificial
population. If most play TFT, then TFT is favored; but in a world of defectors, AllD
does better. In the latter case, the players are caught in a social trap. Games with
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this structure are also known as Staghunt games. A fictitious population will evolve
towards a state where all play the same strategy. The outcome depends on the initial
condition. It is easy to see that if there are more than ten percent TFT players
around, they will succeed. If the probability of another round is close to 1, i.e.,
if the expected number of future rounds is large, then even a small percentage of
reciprocators suffices to overcome the defectors.

The computer simulations show, however, that a TFT regime is not the “end of
history.” Indeed,AllC players can invade, since in aTFTworld, they do as well as the
retaliators. If a small minority of AllC players is introduced into a population where
all residents play TFT, they will do just as well as the resident majority. In fact,
under plausible conditions they even offer an advantage. Indeed, an unconditional
strategy seems easier to implement than a conditional strategy. More importantly,
if a mistake occurs in an interaction between two TFT players, either because a
move is mis-implemented or because it is misunderstood by the co-player, then
the TFT players are caught in a costly sequence of alternating defections, in the
relentless logic of “an eye for an eye.” In computer simulations, such mistakes can
be excluded, but in real-life interactions, they cannot. Mis-implementing a move or
misunderstanding the co-player’s action is common. An AllC player is much less
vulnerable to errors: a mistake against a TFT player, or against another AllC player,
is overcome in the very next round.

If individual-based simulations are life-like enough to allow for occasional errors,
then a TFT regime is unlikely to last for long; less stern strategies such as AllC
can spread. But once a substantial amount of AllC players is around, then AllD
players can take over. The evolutionary chronicles of artificial populations involved
in repeated interactions of the Prisoner’s Dilemma type are fascinating to watch. The
outcome depends in often surprising ways on the range of strategies tested during
the long bouts of trial and error provided by the individual-based simulations. One
frequent winner is Pavlov, a strategy that begins with a cooperative move and then
cooperates if and only if, in the previous move, the co-player choose the same move
as oneself. In chapter 3, we shall analyze some of the game theoretical aspects behind
individual-based simulations.

1.8 THE CHAMPIONS OF RECIPROCITY

The computer tournaments led to a wave of research on reciprocity. But how much
of it relates to the real world, as opposed to thought experiments? If Tit for Tat
is so good, it should be widespread among fish and fowl. Evolutionary biologists
and students of animal behavior uncovered a handful of candidates, but no example
was universally accepted. It is difficult, in the wild, to make sure that the payoff
values (which, in the animal kingdom, are expressed in the currency of reproduc-
tive success) do really obey the ordering given by equation (1.1). It is even more
difficult to infer, from observing the outcome of a few rounds, which strategy was
actually used. TFT is but one of countless possibilities. Moreover, many real-life
collaborations offer plenty of scope for other explanations, for instance via kin-
selection.
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Today, after a few decades of this research, the net result is sobering. Beyond the
realm of primates, there are few undisputed examples of Tit for Tat–like behavior.
On the other hand, an overwhelming body of evidence proclaims that humans are,
far and wide, the champions of reciprocity. This is not only clear from a huge amount
of psychological tests and economic experiments. Brain imaging seems to support
the view that part of our cortex is specialized to deal with the ceaseless computations
required to keep count of what we give and what we receive, and to respond emo-
tionally to perceived imbalance. Moreover, humans have an extraordinary talent for
empathy—the ability to put oneself into another’s shoes. Not only do we have an
instinctive propensity to imitate another person’s acts, we also are able to understand
the intentions behind them.

For human nature, retaliation comes easy. The impulse is so strong that little chil-
dren kick back at inanimate objects that hurt them. More importantly, we empathize
with strangers interacting with each other, even as mere bystanders, as so-called
third parties. This opens up the field of indirect reciprocation.

1.9 ENTER THE THIRD PARTY

You may know the old story about the aged professor who conscientiously attends
the funerals of his colleagues, reasoning that “if I don’t come to theirs, they won’t
come to mine.” Clearly, the instinct of reciprocation is misfiring here. On second
thought, it seems likely that the funeral of the professor, when it comes, will indeed
be well-attended. His acts of paying respect will be returned, not by the recipients,
but by third parties. This is indirect reciprocity.

In direct reciprocity, an act of helping is returned by the recipient. “I’ll scratch your
back because you scratched mine.” But in indirect reciprocity, an act of helping is
returned, not by the recipient, but by a third party. “I’ll scratch your back because you
scratched somebody else’s.” This seems much harder to understand. Nevertheless
the principle suffices, so it seems, to keep cooperation going—or more precisely, to
keep it from being exploited, and thereby ruined.

Indeed, an exploiter will gladly accept help without ever giving anything in return.
If all do this, cooperation has vanished. Therefore, such exploitation should be
repressed. The obvious way to do this is to withhold help from those who are known
to withhold help. This channels cooperation towards the cooperators. But a moment’s
reflection shows that the principle is not consistent: if you restrain from helping an
exploiter, you may be perceived by third parties as an exploiter yourself, and suffer
accordingly. But we shall see in chapter 4 that indirect reciprocation can nonetheless
hold its own.

If third parties can distinguish between a justified refusal to help an exploiter, and
an unjustified refusal, then those who refuse to help exploiters run no risk of being
seen as exploiters themselves. Bystanders must be able to assess actions as justified
or not, i.e., as good or bad, even when they are not directed at themselves.

A closer investigation reveals that there are many possible assessment norms.
Some work better than others. All require a considerable amount of information
about the other members of the population. The faculty to process such information
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may have evolved in the context of direct reciprocity already. It is certainly helpful,
before you launch into a series of iterated games, to know how your prospective part-
ners behaved towards their previous co-players. In this sense, indirect reciprocity
“may have emerged from direct reciprocity in the presence of interested partners,”
in the words of evolutionary biologist Richard Alexander. But whereas direct reci-
procity requires repetition, indirect reciprocity requires reputation. In the former
case, you must be able to recognize your co-players; in the latter, you must know
about them. “For direct reciprocity, you need a face; for indirect reciprocity, you
need a name” (David Haig).

Subscribers to eBay auctions are asked to state, after each transaction, whether
they were satisfied with their partner or not. The ratings of eBay members, accumu-
lated over twelve months, are public knowledge. This very crude form of assessment
seems to suffice for the purpose of reputation-building, and seems to be reasonable
proof against manipulation. Other instances of public score-keeping abound in so-
cial history: a cut thumb signified a thief, a shaved head told of a fallen woman,
a medal announced a hero. Reputation mechanisms have also played an important
role in the emergence of long-distance trade.

If the community is small enough, direct experience and observation are likely to
be sufficient to sustain indirect reciprocity. In larger communities, individuals often
have to rely on third-party knowledge. Gossip must always have been the major tool
for its dissemination. It may well be that our language instinct and our moral sense
co-evolved.

1.10 MORAL SENTIMENTS AND MORAL HAZARDS

The role of moral judgments in everyday economic decisions was well understood
byAdam Smith, who wrote his book onThe Theory ofMoral Sentiments even before
turning to TheWealth of Nations. Later generations of economists tended to neglect
the issue of moral emotions. But today, it is generally recognized that our “pro-
pensity to trade, barter, and truck” requires, first and foremost, trust. Trust has been
hailed as a “lubricant of social life.” Different communities operate on different
levels of mutual trust. A firm moral basis for economic interactions and a consensual
“rule of law” appear to be major indicators for the wealth of nations, more important
than population size or mineral resources.

The human propensity to trust is well captured in the so-called Trust game. This
is built upon the Donation game: in the first stage, the Donor (or Investor) receives a
certain endowment by the experimenter, and can decide whether or not to send a part
of that sum to the Recipient (or Trustee), knowing that the amount will be tripled
upon arrival: each euro spent by the Investor yields three euros on the Trustee’s ac-
count. In the second stage, the Trustee can return some of it to the Investor’s account,
on a one-to-one basis: it costs one euro to the Trustee to increase the Investor’s ac-
count by one euro. This ends the game. Players know that they will not meet again.
Clearly, a selfish Trustee ought to return nothing to the Investor. A selfish Investor
ought therefore to send nothing to the Trustee. Nevertheless, in real experiments,
transfers are frequent, and often lead to a beneficial outcome for both players. The
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Trust game is analyzed in chapter 5, where it is shown that, unsurprisingly, concerns
for reputation play a vital role.

Many real-life economic interactions contain elements of the Trust game. For
instance, if I entrust money to a fund manager, I expect a positive return; and the
fund manager also expects a benefit. The most important asset of a fund is its good
reputation. A banker who fails to return the money will meet double trouble. On
the one hand, the persons who entrusted him with their money will insist on getting
it back; on the other hand, no new clients will be willing to trust him with their
earnings. Both direct and indirect reciprocity are at work.

Economists and social scientists are increasingly interested in indirect reciprocity
because one-shot interactions between far-off partners become more and more fre-
quent in today’s global market. They tend to replace the traditional long-lasting asso-
ciations and long-term interactions between relatives, neighbors, or members of the
same village. A substantial part of our life is spent in the company of strangers, and
many transactions are no longer face-to-face. The growth of e-auctions and other
forms of e-commerce is based, to a considerable degree, on reputation and trust.
The possibility to exploit such trust raises what economists call moral hazards. How
effective is reputation, especially if information is only partial?

Evolutionary biologists, on the other hand, are interested in the emergence of hu-
man communities. A considerable part of human cooperation is based on moralistic
emotions, such as, for instance, anger directed towards cheaters, or the proverbial
“warm inner glow” felt after performing an altruistic action. It is intriguing that
humans not only feel strongly about interactions that involve them directly, but also
about actions between third parties. They do so according to moral norms. These
norms are obviously to a large extent culture-specific; but the capacity for moral
norms appears to be a human universal for which there is little evidence in other
species.

It is easy to conceive that an organism experiences as “good” or “bad” anything
that affects its own reproductive fitness in a positive or negative sense. Our pleasure
in eating calorie-rich food or experiencing sex has evolved because it heightens our
chances of survival and reproduction. In the converse direction, disgust, hunger, and
pain serve as alarm signals helping us to avoid life-threatening situations. The step
from there to assessing actions between third parties as “good” or “bad” is not at all
obvious. The same terms “good” and “bad” that are applied to pleasure and discom-
fort are also used in judging interactions between third parties: this linguistic quirk
reveals an astonishing degree of empathy, and reflects highly developed faculties
for cognition and abstraction.

1.11 ULTIMATUM EXPERIMENTS

A series of economic experiments documents that indirect reciprocity works. The
more the players know about each other, the more they are likely to provide help
to each other. There seems clear evidence for the player’s concern with their own
reputation. But interestingly, many players also tend to help, although to a lesser
degree, when they know that nobody can watch them and that their action will not
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affect their reputation. Moreover, they are more likely to give help if they have
previously received help. This is difficult to explain through self-interest. It could
be the outcome of a maladaptation. If somebody holds a door open for you, then
you are more likely to hold the door open for the next person, motivated by a vague
feeling of gratitude. It may well be that similar reflexes of misdirected reciprocity
operate in other social and economic contexts.

A particularly revealing light on our propensity to empathize with others is pro-
vided by the Ultimatum game. In this experiment, two anonymous players are ran-
domly alloted the role of Proposer and Responder. The Proposer is then given 10
euros, and asked to divide that amount between the two players, subject to the Re-
sponder’s acceptance. Thus if the Responder accepts the proposed split, then the
money will be shared accordingly, and the game is over. But if the Responder re-
jects the offer, then the game is also over; the experimenter withdraws the 10 euros,
and both players receive nothing. This is it: no haggling, and no second round.

It seems obvious that the Responder should accept any positive offer, since this
is better than nothing. Accordingly, a selfish Proposer should offer only a mini-
mal share. In real experiments, however, most players offer a fair split—something
between forty and fifty percent of the total. On the few occasions that less than
twenty percent is offered, the Responder usually refuses. Proposers seem to antic-
ipate this.

In most cases, refusals are correlated with angry feelings. Brain imaging shows
that unfair offers elicit activity in two brain areas: one is in the left frontal part of
the brain, which is usually associated with rational decisions, while the other is
much deeper, in the striatum, which is linked with emotional responses. The tug
of war between these two parts of the brain corresponds to the tension between (a)
accepting the low offer, on the grounds that it is better than nothing, and (b) telling
the unfair Proposer to go to hell. The intensity of the brain activities in the two
locations foretells the decision, even before the Responder is aware of it.

The Ultimatum game experiment has been repeated many times. A large number
of variants have been explored. For instance, if the Proposer is a computer, the
Responder feels no qualms in accepting a small offer. If a game of skill (rather than
the toss of a coin) decides who of the two players is going to be the Proposer, then
smaller offers are more likely to be accepted: it is as if the Proposer had earned the
right to keep a larger part of the sum. Furthermore, if several Responders compete,
the Proposer knows that a small offer has a good chance of being accepted.

1.12 FAIRNESS NORMS

An extensive research program has used the Ultimatum game to study fairness norms
in many small scale societies, including hunter-gatherers, nomads, slash-and-burn
farmers, etc. The average offer varies between cultures. Remarkably, offers in large
cities are among the fairest; Mother Nature’s son is not always as noble as a city
slicker or even an economics undergraduate. But the average offer is always far from
the theoretical minimum. Norms of fairness seem wide-spread, maybe universal.
How did they emerge?
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Again, one possible explanation relies on reputation. Once it becomes known
that you reject unfair offers, people will think twice before proposing them to you.
The long term benefit of rejecting the offer may well outweigh the loss, which is
all the smaller, the smaller the share you have been offered. In chapter 5, a simple
mathematical model reveals how concerns for reputation can lead to the establish-
ment of fairness norms. Paradoxically, this works only if Proposers who, ordinarily,
are willing to offer a fair share, do occasionally yield to the temptation of offering
less if they can get away with it. It is thus precisely when fairness norms are not
hard-wired, and may be overcome by the opportunistic urgings of selfishness, that
these norms are upheld in the population.

What have real experiments (as opposed to individual-based computer simula-
tions) to say about this? It is easy to set up two distinct treatments of the Ultimatum
game, each with a large population of anonymous test subjects who are randomly
paired. In one treatment, players play the game for ten rounds (always against dif-
ferent co-players, of course) and nobody knows anything about the outcome of the
previous rounds. In the other treatment, the outcomes are known to all. It is obvi-
ously only in the second treatment that players can hope to establish a reputation for
rejecting small offers. The outcome is clear: the unfair offers tend to be considerably
rarer. It is as if the Proposers anticipate that Responders fear to get exploited if it
becomes known that they have meekly consented to a trifling share.

If Responders, in the Ultimatum game, reject an unfair offer, they have every
interest in letting this be known to others. Under natural circumstances, an emotional
response is likely to attract some attention. Anger is loud.

This being said, the fact remains that Ultimatum offers are often fair even if players
know that the outcome will be kept secret. This seems puzzling. But it could well
be that the players’ subconscious is hard to convince that nobody will ever know. In
our evolutionary past, it must have been exceedingly difficult to keep secrets from
the small, lifelong community of tribal members and village dwellers in which our
ancestors lived. Moreover, the belief of an overwhelming majority in a personal god
watching them day and night shows that the feeling of being observed is deep-rooted
and wide-spread.

Psychologists have devised ingenious experiments to document that our concern
of being observed is easily aroused. For instance, players sitting in a cubicle in front
of a computer are strongly affected by the mere image of an eye on the computer
screen. They know that the eye is purely symbolic, but nevertheless they react to it.
In another wonderfully simple experiment, the mere picture of eyes on a cafeteria
wall next to the “honesty box” in a British university department sufficed to raise
the amount staff members paid for coffee and cookies by more than two hundred
percent. Obviously, it is easy to trigger a concern about being watched. And it is
worth emphasizing that in our species, the eyes are uniquely revealing: due to the
white color around the iris, the direction of their gaze is particularly noticeable.
Incidentally it seems that test persons react the same, whether one or several persons
are watching. This shows that they believe, at least subconsciously, that news will
spread through gossip. One witness is enough.
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1.13 PUBLIC GOODS GAMES

The games considered so far, such as Prisoner’s Dilemma, Snowdrift, Trust, or
Ultimatum, are two-person games. But many economic interactions involve larger
groups of actors. The notion of reciprocation becomes problematic, in such cases.
If your group includes both cooperators and defectors, whom do you reciprocate
with? This introduces a new twist to social dilemmas.

So-called Public Goods games offer experimental instances of such dilemmas.
Here is a typical specimen of such an experiment: Six anonymous players are given
10 dollars each, and are offered the opportunity to invest some of it in a common
pool. The players know that the content of the common pool will subsequently be
tripled by the experimenter, and that this “public good” will then be divided equally
among all six players—irrespective of the amount that they contributed.

Obviously, all players are well off if they fully invest their 10 dollars. They receive
30 dollars each. But if one player invests nothing, and the others contribute fully,
then each of the six players receives 25 dollars back from the public good; the
defector, who contributed nothing, and thus kept the initial 10 dollars, ends up with
a net sum of 35 dollars, 10 dollars more than the others.

For each dollar invested, only 50 cents return to the contributor. A selfish income-
maximizer ought to invest nothing. But if all players do this, they have missed a
first-class opportunity to increase their stocks.

In real experiments, most players invest on average half their initial amount, or
even more. There are considerable variations among the individual contributions,
but many players seem to hedge their bets. However, if the game is repeated for a
few rounds, the contributions decline from round to round, and may end up at zero.
The mechanism seems clear. If players notice that they have contributed more than
others, they feel exploited, and reduce their future investments. But this causes other
cooperators to feel exploited, and they reduce their contribution in turn. Cooperation
goes down the drain.

In the repeated Prisoner’s Dilemma game, a strategy like Tit for Tat allows one to
retaliate against defectors. Such a reciprocating strategy loses its clout in a repeated
Public Goods game. Indeed, by withholding your contribution, you hit friend and
foe alike: your response is not directed against defectors only, but affects all the
participants of the Public Goods game.

In economic life, similar interactions based on joint efforts, or joint investments,
abound. This social dilemma is often described as multi-person Prisoner’s Dilemma,
or Free-Rider problem, or Tragedy of the Commons. A commons is a piece of graz-
ing land that can be used by all villagers. The tragedy of the commons is due to
the fact that it is usually over-exploited, and therefore ruined through overgrazing.
Today, there are not many commons left, but the tragedy is still with us: the oceans
are our new commons. On a smaller scale, the tragedy can be seen in most commu-
nal kitchens. Joint enterprises and common resources offer alluring prospects for
cheaters and defectors.
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1.14 PUNISH OR PERISH?

If you try riding free on public transportation, or dodging taxes, or littering parks,
you run the risk of being caught and fined. Many judicial and legal institutions,
as well as moral pressure, aim at keeping our contributions up. Thus the free-rider
problem has an obvious solution: cooperation can be bolstered through incentives, by
punishing or rewarding individual players, conditional on their behavior. However,
legal institutions require a fairly advanced society.

It turns out that in the absence of such institutions, individuals are often willing to
make the job of sanctioning their own.This has been neatly demonstrated by a series
of experiments. After a round of the Public Goods game, players are told what their
co-players contributed, and are given the opportunity of punishing them. If players
are punished, this means that a fine of three dollars is deducted from their account.
This fine is collected by the experimenter, and does not end up in the pockets of
the punishing player. On the contrary, the punishing player must pay one dollar
to inflict the punishment: this can be viewed as a fee which has to be paid to the
experimenter. The fee is meant to reflect the fact that punishing another individual
is usually a costly enterprise: it demands time and energy, and often enough entails
some risk.

In the economic experiments, players are often willing to punish, despite the cost
to themselves. This seems to be anticipated by most participants. The average level
of contributions is higher, with the threat of punishment, than without. Most sig-
nificantly, if the game is repeated for several rounds (each consisting of a Public
Goods game followed by an opportunity for meting out punishment), then the con-
tributions increase from round to round, up to remarkably high levels, see figure 1.1.
Punishment obviously boosts the level of cooperation.

Why do people engage in costly punishment? The first explanation is obvious.
By punishing defectors, one can hope to reform them. Thus punishers can expect
to recoup their fee in the following rounds, through the heightened contributions of
the castigated players. But this appears to be only part of the answer. Indeed, in a
variant of the game requiring a large population of test persons, the Public Goods
groups of six players are newly formed between rounds, and players know that they
will never meet a co-player twice. By inflicting punishment, they can possibly turn
a defector into a cooperator. However, punishers know that the future contributions
of such an improved player will exclusively benefit others. Punishment appears as
an altruistic act.

This is a stunning outcome. Without sanctions, the public good, i.e., the tripling
of the endowment, is not realized. With sanctions, it is, although selfish reckoning
prescribes that costly punishment should not be delivered. In the absence of institu-
tions, some players are willing “to take the law into their own hands,” which is also
known as “peer-punishing.”

What motivates players to punish defectors? Probably, we need not invoke any
drive beyond the prevailing tendency to reciprocate. If the players themselves feel
exploited, direct reciprocation is at work. If others are exploited, it is indirect recip-
rocation: humans are often willing to retaliate on behalf of third parties.
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Figure 1.1 Public Goods and punishment. In each of the twelve rounds of the Public Goods
game, groups of four players are formed (out of a population of 240 players). The
players receive 20 monetary units (MU) per round, and have to decide how much
of it to invest, knowing that their contributions will be multiplied by two and
divided equally among the four participants. In the treatment “with punishment,”
players can fine their co-players; fines are collected by the experimenter. Imposing
a fine of three monetary units costs a fee of one monetary unit. Players know that
they encounter a co-player only once. Shown is the average contribution to the
public good in each round. (After Fehr and Gächter, 2002.)

1.15 SECOND-ORDER FREE-RIDING

It is clear that in a population consisting of players ready to punish exploiters,
defection makes no sense. The gain from not contributing is more than off-set by
the expected fines. Defectors would have to bear the full brunt of punishment from
the majority. If punishers (i.e., players who contribute, and impose fines on those
who do not contribute) are established in a population, they can resist defectors and
uphold cooperation.

But a population of punishers can be subverted by players who contribute, but
do not punish. Newcomers of that type do just as well as the resident punishers
and thus can slowly spread through random fluctuations. In fact, if occasionally
some defectors enter the population, to be promptly assailed by the punishers, then
the newcomers would do better than the punishers, by economizing on the cost
of punishment. This new type is a second-order exploiter, free-riding on the sanc-
tions delivered by the punishers. Hence, this type will spread: and this means that
eventually, there will be too few punishers around to keep the defectors at bay.

Sanctioning can be seen as a service to the community, i.e., a public good. In the
long run, second-order exploiters sabotage the enforcement of contributions to the
Public Goods game, and therefore both types of contributors—the punishers and
the second-order exploiters themselves—will eventually be displaced by defectors.
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A remedy coming to mind is “second-order punishment.” It consists in punishing
not only the “first-order exploiters” who fail to contribute, but also the “second-order
exploiters” who contribute, but fail to punish. However, this could in turn give rise
to “third-order exploiters” and so on. If punishers of a sufficiently high order dom-
inate the population, there will be few defectors, and therefore few occasions for
the lower-order punishers to reveal their limitations to their sterner brethren. Hence,
their number can increase through random fluctuations, thus eroding the system.

It seems that reputation, once more, can come to the rescue. Players are less
likely to yield to the temptation to cheat if they know that their group includes some
punishers. Thus, there is an advantage in being known to react emotionally against
exploiters. This will be analyzed in chapter 5. The situation is quite similar to the
Ultimatum game. In fact, a Responder who refuses an unfair offer is effectively
punishing the Proposer. The more unfair the offer, the less is the cost to the punisher,
and the heavier the fine to the punished player.

A similar mechanism operates with positive incentives. If players, after a Public
Goods round, are given the possibility to reward the high contributors, at a cost to
themselves, they are able to promote the tendency to cooperation. Again, this system
is threatened by those players who contribute, and thus benefit from rewards, but
do not reward others. Such players are obviously free-riding at the expense of the
rewarders, and can subvert the incentive-based system. But if rewarding players can
acquire a reputation, they are more likely to experience high levels of cooperation
in their group.

The similarity between reward and punishment stops at a point. In a society where
everyone contributes, punishers have nothing to do, but rewarders have to dig deep
into their pockets. In this sense, punishment is more efficient. Ideally, the mere threat
suffices. In real experiments, however, one often finds that while fines do certainly
increase cooperation, they may be so expensive that the average payoff in the group
is actually lower than in the less cooperative groups playing the Public Goods game
without punishment, at least during the first few rounds. Moreover, in many societies
asocial punishment (i.e., the punishment of do-gooders) is frequent, and thus throws
a spanner in the work of sanctions to uphold cooperation.

1.16 VOLUNTARY PARTICIPATION

Even granted that reputation can stabilize a population of punishers, there remains
the problem of explaining how sanctioning can emerge. In a world of defectors,
punishers would have to punish right and left. Their payoff would be low and their
behavior unlikely to catch on.

This is different, however, if players are not obliged to participate in the Public
Goods game, and can opt out of it if they wish. This situation seems natural enough.
In many cases, individuals can decide whether to play the game or not. In town, you
need not use public transportation: walking is fine. In a hunter-gatherer tribe, you
need not join the big-game hunt, or the raiding party, if you suspect that the other
participants are laggards. Collecting mushrooms or fruits can provide an option that
makes you independent from the others. You need no assistance.
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Suppose thus that there exists an alternative to participation in the joint effort, an
alternative whose outcome does not depend on what the others are doing. We may
then see the Public Goods game as a newly arising opportunity. A mammoth has
moved into your valley. Will it pay to join the hunt? Participating in the common
effort means effectively to bet on cooperation. We shall assume that if all participants
contribute, engaging in the Public Goods game is more profitable than the alternative
of not participating; but that if the other participants do not contribute, the Public
Goods game is a waste of time that ought to be avoided. Searching for mushrooms
is more promising, in that case.

Let us first consider this “optional Public Goods game” without punishment. In
that case, the three strategies (to contribute, to defect, or to abstain) are superseding
each other in a cyclic fashion, as in the familiar Rock-Paper-Scissors game. If the
population consists mostly of cooperators contributing to the joint effort, then it
is best, from the selfish viewpoint, to exploit them. But if most players switch to
defection, then the Public Goods game is unprofitable and it is better not to par-
ticipate at all. Finally, if most players are not participating, then cooperation is the
best option. This last statement may seem surprising. But if few players are willing
to participate, then most teams will be small, and in this case cooperators can do
better, on average, than defectors, despite the fact that within each team, defectors
do better than cooperators.

These Rock-Paper-Scissors cycles, from contributing to defecting to abstaining
to contributing again, do not yet suffice to establish cooperation. In the long-term
average, the payoff is not higher than the payoff for non-participants. But as we shall
see in chapter 6, if the option of punishing the exploiters is added, then cooperation
will be established for most of the time. This is a statistical result. Under stochastic
fluctuations, punishers can be subverted after some time by second-order exploiters,
and these in turn by defectors; but after such a break-down of cooperation, punishers
re-emerge. In the long term, they dominate the population.

The outcome seems paradoxical. In interactions requiring a joint effort, coop-
eration based on coercion can emerge and prevail, but only if the participation is
voluntary. If participation is compulsory, coercion fails and defectors win.

Several economic experiments support the validity of this theoretical conclusion.
In Prisoner’s Dilemma games and Public Goods games, cooperation is more likely
to be achieved if players have the option to abstain from the game. In one particularly
telling experiment, players from a large pool had the possibility to choose, between
rounds, not whether to participate in a Public Goods game or not, but whether to play
their Public Goods game with or without the punishment option. In the first round,
most players decided against the version with punishment. This seems understand-
able. Nobody wants to be punished, and many people dislike punishing; but by the
fifth or sixth round, almost all players had switched, on their own free will, to the
version with punishment, and cooperated assiduously. They effectively “voted with
their feet” for the threat of sanctions, understanding that it made cooperation more
likely. This experiment looks almost like a morality play, illustrating the philosophy
of the social contract.
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1.17 THE GENTLE ART OF ABSTRACTION

How relevant are economic experiments? Often, their most striking aspect is a stark
artificiality. They are remote from everyday experience.

This in itself need not be a weakness. Classical experiments in physics or phys-
iology are equally remote from everyday life. Their aim is to probe nature, not to
mimic it. It can be argued, for instance, that a major asset of the Ultimatum game
consists in creating a situation that players have never encountered before. We have
been exposed to haggling, to the rituals of offer and counteroffer, and to market
competition. The barren “take it or leave it” alternative of the Ultimatum is pro-
foundly alien to most players. By catching us on the wrong foot, the experimenter
forces us to decide spontaneously, rather than rely on force of habit.

The anonymity under which most economic experiments are performed excludes
all possible effects of relatedness, reputation, future interactions, or advertising.
Anonymity is not a condition that humans have often encountered in their evo-
lutionary past. Most of human evolution took place in small tribes and villages,
with everyone knowing everything about everyone else. We have certainly not been
adapted, in our evolutionary past, to transferring small sums of money under con-
trived rules to faceless strangers. It makes no sense to assume that Ultimatum games
or Trust games, in their clinical sterility, have shaped our evolution. But human
behavior is based on evolved traits, and by varying the treatments in economic
experiments, we may hope to unveil these traits.

For instance, players who are allowed to briefly talk with each other, before en-
gaging in a Prisoner’s Dilemma game, are more cooperative. Moreover, they can
predict very accurately, after a short conversation, whether their co-players will co-
operate or not. Even without knowing which type of experiment is in store for them,
they quickly pick up the relevant clues for summing up their partner. By varying
the nature of their conversation, which can be face-to-face, via monitor, through a
phone, or merely a brief visual contact, experimenters can hope to understand how
we go about assessing strangers.

To give another example, players tend, as we have seen, to reject unfair offers more
readily if they know that this becomes known to their future co-players. Nevertheless,
even players who are assured that nobody will know about their decision frequently
turn small offers away. It would be naive to overlook the possibility that even if
players are convinced that nobody is watching, and have grasped the niceties of
double-blind experiments, their subconscious may yet harbor some misgivings. We
are far from completely understanding when and why subliminal factors can affect
decision making. Players can strongly react to an appropriate cue even when knowing
that reality does not back it up. An often mentioned example is the sexual arousal
produced by erotic magazines.

Experimental game theorists know this, of course. They do not try to reproduce
real life interactions, with their plethora of psychological and cultural effects, but
aim to dissect the strategic situation down to the bones. Most economic interactions
take place with innumerable side-conditions, among people bound by a plethora of
ties of personal history and cultural constraints. Experiments must abstract from all
these factors.
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1.18 HUMAN BEHAVIOR RESUMED IN TWO SECONDS

In a similar spirit of self-imposed limitation, the mathematical models filling most
of this book omit all psychological factors but one: selfishness. This by itself need
be no severe restriction: most psychologists would agree that it is a good first ap-
proximation. (To quote Jonathan Haidt: “If you are asked to explain human behavior
in two seconds or less, you might want to say ‘self-interest’.”). Some very inter-
esting and plausible theoretical approaches assume that individual utilities include
the utilities of other players—that equity, for instance, is deemed desirable—but
this eminently psychological issue cannot be tackled here. It seems likely that our
preferences emerged through evolution, and that a direct path led from the “selfish
gene” to human kindness, but such a topic is way beyond the scope of this book,
which merely explores, by mathematical means, how selfishness can overcome so-
cial dilemmas.

This is not meant to endorse the idea that our social interactions are governed by
some “homo economicus” residing in our breast, who calculates strategies to max-
imize our own gain with cold rationality. According to John Maynard Keynes, eco-
nomic decisions are often governed by “animal spirits and spontaneous optimism”
and depend on “nerves and hysteria and even digestion and reactions to the weather.”

Emotions and instincts act as a system of heuristics to guide us through computa-
tions which vastly overtax our rational faculties. Similarly, tennis players manage to
compute the trajectory of a ball with a speed and precision that no robot can match.
The players work it out subconsciously, and it is doubtful whether any Wimbledon
winner would become a better player by a course in physics. In an analogous way,
we need no pen and paper to figure out our self-interest in practical life. Game theory
may, like a course in physics, provide understanding, but it need not furnish recipes
for success.

Just as we concentrate, in the following pages, on self-interest as guiding mo-
tivation, we will also purposely ignore the effect of social structure. Neglecting
networks may be an even more serious distortion of real life than neglecting altru-
ism. The short last chapter 7 provides a brief glimpse at some factors that are left out
in all the preceding chapters: namely family ties, neighborhood effects, and group
benefits.

The major part of this book thus deals with simple games of cooperation played
by selfish individuals in well-mixed, and usually large, populations. This is an ad-
mittedly artificial scenario, but our world seems to evolve towards it. Is it the way
of the future? It certainly was no part of our evolutionary past. Nothing prepared
us for big city life, but we do have an uncanny talent for mixing with strangers and
enjoying “the tumultuous sea of human heads,” like the nameless hero of Edgar
Allan Poe’s short story, “The Man of the Crowd.”

1.19 FOOD AND MORALS

Most economic experiments use real money, and some critics say this is about all
that is real about them. But in fact, a large amount of everyday economic cooper-
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ation involves no money at all. We can lend a hand, or provide some information,
or share a meal: in each case the psychological feeling is different. To use money,
in experiments, is a simple, clear-cut way to reduce framing effects that complicate
the strategic issue.

Nevertheless, it is obvious that this way of standardizing outcomes can sometimes
be seriously misleading. For instance, when you had been thinking through the
alternatives of the Donation game in section 1.3, you probably felt uneasy about one
scenario. If the other player trusts you, would you be willing to defect? Most people
balk at that point. It usually feels bad to let another person down. The discomfort
seems hardly worth the few extra dollars. Indeed, many actual experiments indicate
that a majority of players are willing to cooperate. A comforting amount of people
are “good-natured.” But where does this good nature come from?

Similar questions are raised by the Ultimatum game. Most Proposers offer close
to half of the sum and claim that it just seems the fair thing to do. Conceivably, they
are fooling themselves, and are simply afraid that a lower offer may be rejected.
But why do Responders reject a small offer? Most claim that they are angered
by the obvious injustice of the unfair offer. Again, they possibly mistake their own
motivation, and are simply anxious to avoid the reputation of being spineless wimps,
a reputation that would harm them in the long run. These selfish imputations seem
to fail, however, in a variant of the Ultimatum game, which is known as the Dictator
game. In this variant the Proposer makes the offer, and the Responder has no say at
all: “Dictators” can do as they like.

In the Dictator game, the offers are usually lower than with the Ultimatum game.
Nevertheless, a substantial part of the Proposers offers a positive amount. It seems
difficult, in this case, to dismiss “good nature.” Proposers simply feel that to be
generous makes them happy. If, in another twist, Responders in the Dictator game
cannot reject the offer, but can write a short note to let the Responder know what
they think of it, then offers jump to almost the same level as with the Ultimatum
game. Obviously, people do not like to incur the wrath of others, even if that wrath is
guaranteed to be completely ineffective. Meting out the purely symbolic punishment
of a censorious message is not very costly in that case.

Are we simply afraid of being cursed? It has been argued that a strong motive for
cooperation and moral behavior is the fear of punishment by supernatural spirits. Su-
perstitious maladaptations are widespread, possibly because they strongly promote
conformism and obedience—traits which often have some survival value.

If we enjoy sex and food, it is because such emotions promote our survival and
reproduction. Similarly, our survival and reproduction depends on being successful
cooperators, and this is why we enjoy being virtuous, and why we feel that revenge
tastes sweet. Moralistic emotions—the warm inner glow of feeling kind, the anger
directed at unfair persons, the guilt and shame after committing a reprehensible
deed—are deeply anchored in our nature. Moral rules differ among cultures, but
juveniles’ ability to pick up prevailing norms and make them their own seems to be
as much a part of universal human nature as juveniles’ ability to pick up and speak
the language of their community.

Not all morality is meant to promote altruism and cooperation. Norms of personal
cleanliness and purity have a similar ethical status, without having an economic
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background. But a large part of moral norms serve ultimately to promote the cease-
less give and take that is such an essential part of human behavior. The German
playwright Bertold Brecht wrote in his Threepenny Opera: “Food comes first, then
morals.” It is exactly the reverse. Without morals, we could not subsist.

But fortunately, we need not end with homilies. For what they are worth, the
simple models analyzed here also contain some more surprising lessons: for instance,
that the instinct of revenge, frowned upon as base, can play a useful economic
role by deterring defectors; or that our selfish urge to exploit others whenever we
can get away with it, keeps retaliators in the population, thus boosting common
welfare; or that the option to abstain from a team effort when it appears unpromising
actually helps in enforcing team-wise cooperation. Again and again, we find that
traits rendering individuals less than perfect uphold social cohesion. So even if you
cannot always satisfy your selfish interests, you may find consolation in the thought
that they are furthering the common good.

That human and all-too-human foibles and errors sustain cooperation is not new,
by the way. It is known as Mandeville’s paradox. The author of the Fable of the
Bees subtitled his work with the slogan: “Private Vices, Publick Benefits.” Private
selfishness can promote the public good. The “invisible hand” performs surprising
tricks.

1.20 REFERENCES

Basic texts on the evolutionary biology of cooperation can be found in the works of Hamilton (1996) and
Trivers (2002), see also Trivers (1985), Frank (1998), and Nowak (2006a). Popular expositions are given
by Dawkins (1989), Sigmund (1995), and Ridley (1997). For game theoretical descriptions of social
dilemmas with minimal technical fuss, see Colman (1995), Binmore (1994), Sugden (1986), Ostrom
(1990), and Skyrms (2004). Good surveys on social dilemmas can also be found in Dawes (1980), Cross
and Guyer (1980), Heckathorn (1996), Kollock (1998), and Levin (1999). The Tragedy of the Commons
and the dilemmas surrounding collective action were presented by Hardin (1968) and Olson (1965). A
popular account of the Prisoner’s Dilemma is provided by Poundstone (1992). The Prisoner’s Dilemma
first mention in a textbook goes back to Luce and Raiffa (1957), see also Schelling (1978).The first
full book devoted to the game is by Rapoport and Chammah (1965). Rapoport submitted the Tit for Tat
strategy to Axelrod’s tournaments (Axelrod 1984). Indirect reciprocity can be traced back to Alexander
(1987) and Ellison (1994). It was modelled by Nowak and Sigmund (1998a,b), and early experimental
tests are described inWedekind and Milinski (2000) and Wedekind and Braithwaite (2002). The Snowdrift
game is due to Sugden (1986), see also Doebeli, Hauert, and Killingback (2004). The Trust game was
first proposed by Berg, Dickhaut, and McCabe (1995), the Ultimatum game by Güth, Schmittberger,
and Schwarze (1982).The Ultimatum’s use for investigating small-scale societies is covered, e.g., in
Henrich (2006). The role of reputation in economics is studied, e.g., in Kreps and Wilson (1982) or
Kurzban, DeScioli, and O’Brien (2007). Observer effects were observed in Haley and Fessler (2005),
Bateson, Nettle, and Roberts (2006) and Burnham and Hare (2007). The role of sanctions in Public
Goods games was studied by Yamagashi (1986) and Fehr and Gächter (2000, 2002), see also Boyd and
Richerson (1992), O’Gorman, Wilson, and Miller (2005), Gardner and West (2004) and Sigmund (2007).
The troubling aspects of antisocial punishment have been uncovered by Herrmann, Thöni, and Gächter
(2008). An experiment by Gürerk, Irlenbusch, and Rockenbach (2006) shows that players of Public
Good games opt for the possibility of sanctioning defectors, but only after some experience. Positive
and negative incentives to promote cooperation have been compared in many investigations, see e.g.,
Baumeister et al. (2001), Dickinson (2001), Andreoni, Harbaugh, and Vesterlund (2003), Walker and
Halloran (2004), or Sefton, Shupp, and Walker (2007). The role of voluntary participation is studied by
Orbell and Dawes (1993), Hauert et al. (2002a, 2002b), and Fowler (2005a). Extensive monographs on
experimental economics and behavioral games are by Kagel and Roth (1995) and by Camerer (2003), see
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also Camerer and Fehr (2006) and, for experiments under more natural conditions, Carpenter, Harrison,
and List (2005). Theoretical, sociological and psychological studies on ethical norms and morals are by
Yamagishi, Jin, and Kiyonari (1999), Bendor and Swistak (2001), Price, Cosmides, and Tooby (2002),
Ostrom and Walker (2003), Cose (2004), Kurzban and Houser (2005), Hauser (2006), and Haidt (2007).
Human universals are treated in Brown (1991). Richerson and Boyd (2005) offer a unified treatment of
cultural and biological evolution. The role of gossip is highlighted by Dunbar (1996) and Sommerfeld
et al. (2007). A seminal text on the economic importance of emotional committment is by Frank (1988).
The neural basis of emotions related to economic games is studied in Rilling et al. (2002), Sanfey et al.
(2003), Fehr (2004), and de Quervain et al. (2004). The importance of reciprocity is stressed by Charness
and Haruvy (2002) and Sachs et al. (2004). Bowles and Gintis (2002), see also Gintis et al. (2003, 2005),
present an influential approach termed “strong reciprocity”: for a critical view, see Burnham and Johnson
(2005). Fehr and Schmidt (1999) and Bolton and Ockenfels (2000) show how to interpret experimental
outcomes by modifying utilities, so as to incorporate concerns for equity and fairness. There exists a huge
literature on economic and social interactions in non-human primates, see e.g., de Waal (1996), Brosnan
and de Waal (2003), Stevens, Cushman, and Hauser (2005), Silk (2006), or Warneken and Tomasello
(2006). Various forms of punishment in biological communities are covered in Clutton-Brock and Parker
(1995), Kiers et al. (2003), or Wenseleers and Ratnieks (2006); for other ways of repressing competition,
see Frank (2003).

GAME ZOO: A BRIEF LEXICON OF TWO-PERSON GAMES

Many experimental two-person games are related to social dilemma issues. Typically,
the players are anonymous, and are endowed with a certain amount of money beforehand
(e.g., a show-up fee). They are asked to make their decision after having understood the
rules of the game and being assigned to the role of Proposer and Responder (or Donor and
Recipient).

Donation: in some sense, an atom of social interaction. The Donor decides whether to pay
one dollar to give a benefit of three dollars to the Recipient.

Prisoner’s Dilemma: the mother of all cooperation games is played in many variations. In
one particularly transparent set-up, both players engage in a Donation game with each
other. When players decide simultaneously, this is similar to a two-player Public Goods
game. If both cooperate by sending a gift to the other, both gain two dollars. But sending
a gift costs one dollar, so that the best reply to whatever the co-player decides is to send
no gift (i.e., to defect). If both players defect, however, they gain nothing.

Ultimatum: the experimenter assigns a certain sum, and the Proposer can offer a share
of it to the Responder. If the Responder (who knows the sum) accepts, the sum is split
accordingly between the two players, and the game is over. If the Responder declines,
the experimenter withdraws the money. Again, the game is over: but this time, neither
of the two players gets anything.

Dictator: same as Ultimatum, except that the Responder cannot reject the offer.
Trust: in a first stage, the Proposer (or Investor) can give a certain benefit to the Responder

(or Trustee), as in the Donation game. In the second stage, the Responder can decide
how much of it to return to the Proposer. This is similar to the sequential Prisoner’s
Dilemma game (when first one player acts as Donor and then the other).

Repeated Prisoner’s Dilemma: the two players interact for several rounds of the Prisoner’s
Dilemma. Usually, they are not told beforehand when the interaction will be over, so as
to avoid “last round effects” (defection motivated by the fact that the co-player cannot
retaliate in a one-shot Prisoner’s Dilemma game).

Indirect Reciprocity: in a large population of players, two players are sampled at random
and play the Donation game or the (one-shot) Prisoner’s Dilemma game. This is repeated
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again and again. The players know that they interact only once, so that retaliation is
impossible.

Snowdrift: two players each receive an endowment, on provision that they pay a fee to
the experimenter that is lower than the endowment. They must decide whether they are
willing to pay the fee or not, knowing that if both are willing, each of them pays only
half.
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Chapter Two

Game Dynamics and Social Learning

2.1 GAMES

It can be difficult to decide what is best. The task can be fraught with uncertainties
(as when an investor wants to optimize a portfolio), or it can be computationally
demanding (as when a traveling salesman has to find the shortest route through
87 towns). A peculiar complication arises in interactions between two (or more)
decision-makers with different views about what is best. This is the realm of game
theory.

As an example, consider two players I and II engaged in the following, admittedly
childish game. At a given signal, each holds up one or two fingers. If the resulting
sum is odd, player I wins. If the sum is even, player II wins. Clearly there is no
outcome that can satisfy both players. One of the players would always prefer to
switch to the other alternative. Situations with a similar structure abound in social
interactions.

Let us formalize this. Suppose that player I has to choose between n options,
or strategies, which we denote by e1, . . . , en, and player II between m strategies
f1, . . . , fm. If I chooses ei and II chooses fj , then player I obtains a payoff aij and
player II obtains bij. The game, then, is described by two n × m payoff matrices A

and B: alternatively, we can describe it by one matrix whose element, in the i-th row
and j -th column, is the pair (aij, bij) of payoff values. The payoff is measured on a
utility scale consistent with the players’ preferences. In biological games, it can be
some measure of Darwinian fitness reflecting reproductive success. For simplicity,
we stick to monetary payoffs.

The two players in our example could bet, say, one dollar. Each player has two
strategies, even and odd, which correspond to e1 and e2 for player I and f1 and f2

for player II, and the payoff matrix is

(
(−1, 1) (1, −1)

(1, −1) (−1, 1)

)
. (2.1)

If the outcome is (−1, 1), player I (who chooses the row of the payoff matrix) would
have done better to choose the other strategy; if the outcome is (1, −1), it is player II,
the column player, who would have done better to switch. If players could out-guess
each other, they would be trapped in a vicious circle.
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Figure 2.1 The simplices S2, S3, and S4. On the top row, S2 and S3 are imbedded in R2 and
R3 respectively.

2.2 MIXED STRATEGIES

For both players, it is clearly important not to have their decision anticipated by
the co-player. A good way to achieve this is to randomize, i.e., to let chance decide.
Suppose that player I opts to play strategy ei with probability xi . Thismixed strategy
is thus given by a stochastic vector x = (x1, . . . , xn) (with xi ≥ 0 and x1 + · · · +
xn = 1). We denote the set of all such mixed strategies by Sn: this is a simplex in
Rn, spanned by the unit vectors ei of the standard base, which are said to be the
pure strategies, and correspond to the original set of alternatives, see figure 2.1. (All
components of ei are 0 except the i-th component, which is 1.)

Similarly, a mixed strategy for player II is an element y of the unit simplex Sm.
If player I uses the pure strategy ei and player II uses strategy y, then the payoff for
player I (or more precisely, its expected value) is

(Ay)i =
m∑

j=1

aijyj . (2.2)

If player I uses the mixed strategy x, and II uses y, the payoff for player I is

x · Ay =
∑

i

xi(Ay)i =
∑
i,j

aijxiyj , (2.3)

and the payoff for player II, similarly, is

x · By =
∑
i,j

bijxiyj . (2.4)
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(The dot on the left hand side denotes the dot product, or Euclidean product, of two
vectors.)

If player I knows, by any chance, the strategy y of the co-player, then player I
should use a strategy that is a best reply to y. The set of best replies is the set

BR(y) = arg max
x

x · Ay, (2.5)

i.e., the set of all x ∈ Sn such that

z · Ay ≤ x · Ay (2.6)

holds for all z ∈ Sn. Player I has no incentive to deviate from x.
Since the function z �→ z · Ay is continuous and Sn is compact, the set of best

replies is always non-empty. It is a convex set. Moreover, if x belongs to BR(y),
so do all pure strategies in the support of x, i.e., all ei for which xi > 0. Indeed, for
all i,

(Ay)i = ei · Ay ≤ x · Ay. (2.7)

If the inequality sign were strict for some i with xi > 0, then xi(Ay)i < xi(x · Ay);
summing over all i = 1, . . . , n then leads to a contradiction. It follows that the set
BR(y) is a face of the simplex Sn. It is spanned by the pure strategies which are best
replies to y.

2.3 NASH EQUILIBRIUM

If player I has found a best reply to the strategy y of player II, player I has no reason
not to use it—as long as player II sticks to y.

But will player II stick to y? Only if player II has no incentive to use another
strategy, i.e., has also hit upon a best reply. Two strategies x and y are said to form
a Nash equilibrium pair if each is a best reply to the other, i.e., if x ∈BR(y) and
y ∈BR(x), or alternatively if

z · Ay ≤ x · Ay (2.8)

holds for all z ∈ Sn, and

x · Bw ≤ x · By (2.9)

holds for all w ∈ Sm. A Nash equilibrium pair (x, y) satisfies a minimal consistency
requirement: no player has an incentive to deviate (as long as the other player does
not deviate either).

A basic result states that Nash equilibrium pairs always exist for any game (A, B).
This will be proved in section 2.11. The result holds for vastly wider classes of games
than considered so far; it holds for any number of players, any convex compact sets
of strategies, any continuous payoff functions, and even beyond. But it would not
hold if we had not allowed for mixed strategies: this is shown by the simple example
from section 2.1 (betting on even or odd). In that case, the mixed strategies of
choosing, with equal probability 1/2, an even or an odd number, obviously lead to
an equilibrium pair: each player gains, on average, zero dollars, and none has an
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incentive to deviate. On the other hand, if player I uses any other strategy (x1, x2)

against the (1/2, 1/2) of player II, player I would still have an expected payoff of
zero. However, the other player would then have an incentive to deviate: whenever
x1 > x2, the best reply for II would be to play (1, 0). If player II did that, however,
player I would do better to play (0, 1), and the vicious circle would be in full swing.

In this example, (x, y) with x = y = (1/2, 1/2) is the unique Nash equilibrium
pair. We have seen that as long as player II chooses the equilibrium strategy y, player
I has no reason to deviate from the equilibrium strategy x; but that on the other hand,
player I has no reason not to deviate, either. This would be different if (x, y) were a
strict Nash equilibrium pair, i.e., if

z · Ay < x · Ay (2.10)

holds for all z �= x, and

x · Bw < x · By (2.11)

holds for all w �= y. In this case, i.e., when both best-reply sets are singletons, each
player will be penalized for unilaterally deviating from the equilibrium.

Whereas every game admits a Nash equilibrium pair, many games admit no strict
Nash equilibrium pair; the number game from section 2.1 is an example.

Moreover, even if there exists a strict Nash equilibrium, it can be a let-down, as the
Prisoner’s Dilemma example from section 1.3 shows. This game has a unique Nash
equilibrium, which is strict: both players defect, i.e., x = y = (0, 1). Each player, in
that case, would be penalized for deviating unilaterally. If both players, however,
were to deviate, and opt for cooperation, they would be better off.

A further caveat applies: for many games, there exists not one, but several equi-
librium pairs. Which one should the players choose? They could, of course, sit down
and talk it over, but this is not considered a solution. In many cases players cannot
communicate—sometimes this is prohibited by explicit rules, and sometimes it is
just a waste of breath. Consider the Snowdrift game from section 1.4, for instance.
In that case, it is easy to see that (e1, f2) and (e2, f1) are two Nash equilibrium pairs.
They look similar to a bystander, but certainly not to the players themselves. The
strategy pair (e1, f2) means that player I shovels and player II leans back and relaxes.
Player I will not like this, but has no incentive not to shovel—for refusing to shovel
means spending the night in the car. Of course player I would prefer the other Nash
equilibrium pair. But if player I aims at that other equilibrium, and consequently
uses strategy e2, while player II stubbornly clings to the strategy f2 corresponding
to the equilibrium pair which is better for II, then both players end up with the
strategy pair (e2, f2) (an uncomfortably cold night in the car), which is not a Nash
equilibrium pair.

2.4 POPULATION GAMES

So far, we have considered games between two specific players trying to guess each
other’s strategy and find a best reply. Let us now shift perspective, and consider a
population of players, each with a given strategy. From time to time, two players
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meet randomly and play the game, using their strategies. We shall consider these
strategies as behavioral programs. Such programs can be learned, or inherited, or
imprinted in any other way. In a biological setting, strategies correspond to different
types of individuals (or behavioral phenotypes).

In order to analyze this set-up, it is convenient to assume that all individuals in
the population are indistinguishable, except in their way of interacting, i.e., that the
players differ only by their type, or strategy. This applies well to certain games such
as the Prisoner’s Dilemma, where both players are on an equal footing; but for many
other examples of social interactions, there is an inherent asymmetry—for instance,
between buyers and sellers.

For simplicity, we start by considering only symmetric games. In the case of two-
player games, this means that the game remains unchanged if I and II are permuted.
In particular, the two players have the same set of strategies. Hence we assume
that n = m and fj = ej for all j ; and if a player plays strategy ei against someone
using strategy ej (which is the former fj ), then that player receives the same payoff,
whether labeled I or II. Hence aij = bji, or in other words B = AT (the transpose of
matrix A). Thus a symmetric game is specified by the pair (A, AT ), and therefore
is defined by a single, square payoff matrix A.

As we have seen with the Snowdrift example, a symmetric game can have asym-
metric Nash equilibrium pairs. These are plainly irrelevant, as long as it is impossi-
ble to distinguish players I and II. Of interest are only symmetric Nash equilibrium
pairs, i.e., pairs of strategies (x, y) with x = y. A symmetric Nash equilibrium, thus,
is specified by one strategy x having the property that it is a best reply to itself (i.e.,
x ∈BR(x)). In other words, we must have

z · Ax ≤ x · Ax (2.12)

for all z ∈ Sn. A symmetric strict Nash equilibrium is accordingly given by the
condition

z · Ax < x · Ax (2.13)

for all z �= x.
We shall soon prove that every symmetric game admits a symmetric Nash equi-

librium.

2.5 SYMMETRIZING A GAME

There is an obvious way to turn a non-symmetric game (A, B) into a symmetric
game: simply by letting a coin toss decide who of the two players will be labeled
player I. A strategy for this symmetrized game must therefore specify what to do in
role I, and what in role II, i.e., such a strategy is given by a pair (ei , fj ). A mixed
strategy is given by an element z = (zij) ∈ Snm, where zij denotes the probability
to play ei when in role I and fj when in role II. To the probability distribution z
correspond its marginals: xi = ∑

j zij and yj = ∑
i zij. The vectors x = (xi) and

y = (yj ) belong to Sn and Sm, respectively. It is easy to see that for any given
x ∈ Sn and y ∈ Sm there exists a z ∈ Snm having x and y as marginals, for instance
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zij = xiyj (barring exceptions, there exist many probability distributions with the
same marginals).

The payoff for a player using (ei , fj ) against a player using (ek, fl), with i, k ∈
{1, . . . , n} and j, l ∈ {1, . . . , m}, depends on the outcome of the coin-toss and is
given by

cij,kl = 1

2
ail + 1

2
bkj . (2.14)

Let us briefly take for granted that every symmetric game has a symmetric Nash
equilibrium. Then it can easily be deduced that every game (A, B) has a Nash
equilibrium pair.

Indeed, let us assume that z̄ ∈ Snm is a symmetric Nash equilibrium for the sym-
metrized game (C, CT ). This means that

z · Cz̄ ≤ z̄ · Cz̄ (2.15)

for all z ∈ Snm. Let x and y be the marginals of z, and x̄ and ȳ the marginals for z̄.
Then

z · Cz̄ =
∑
ijkl

zijcij,kl z̄kl (2.16)

= 1

2

∑
ijkl

zijail z̄kl + 1

2

∑
ijkl

zijbkj z̄kl (2.17)

= 1

2

∑
il

xiail ȳl + 1

2

∑
jk

yjbkj x̄k = 1

2
x · Aȳ + 1

2
y · BT x̄. (2.18)

Since z̄ is a symmetric Nash equilibrium, equation (2.15) implies

x · Aȳ + x̄ · By ≤ x̄ · Aȳ + x̄ · Bȳ. (2.19)

For y = ȳ this yields

x · Aȳ ≤ x̄ · Aȳ, (2.20)

and for x = x̄,

x̄ · By ≤ x̄ · Bȳ. (2.21)

Hence x̄ ∈BR(ȳ) and ȳ ∈BR(x̄), i.e., (x̄, ȳ) is a Nash equilibrium pair of the game
(A, B).

2.6 POPULATION DYNAMICS MEETS GAME THEORY

We now consider a symmetric game with payoff matrix A and assume that in a large,
well-mixed population, a fraction xi uses strategy ei , for i = 1, . . . , n. The state of
the population is thus given by the vector x ∈ Sn. A player with strategy ei has as
expected payoff

(Ax)i =
∑

j

aijxj . (2.22)
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Indeed, this player meets with probability xj a co-player using ej . The average
payoff in the population is given by

x · Ax =
∑

i

xi(Ax)i . (2.23)

It should be stressed that we are committing an abuse of notation. The same symbol
x ∈ Sn which denoted in the previous sections the mixed strategy of one specific
player now denotes the state of a population consisting of different types, each type
playing its pure strategy. (We could also have the players use mixed strategies, but
there will be no need to consider this case.)

Now comes an essential step: we shall assume that populations can evolve, in the
sense that the frequencies xi change with time. Thus we let the state x(t) depend on
time, and denote by ẋi (t) the velocity with which xi changes, i.e., ẋi = dxi/dt . In
keeping with our population dynamical approach, we shall be particularly interested
in the (per capita) growth rates ẋi/xi of the frequencies of the strategies.

How do the frequencies of strategies evolve? How do they grow and diminish?
There are many possibilities for modeling this process. We shall mostly assume that
the state of the population evolves according to the replicator equation. This equation
holds if the growth rate of a strategy’s frequency corresponds to the strategy’s payoff,
or more precisely to the difference between its payoff (Ax)i and the average payoff
x · Ax in the population. Thus we posit

ẋi = xi[(Axi) − x · Ax] (2.24)

for i = 1, . . . , n. Accordingly, a strategy ei will spread or dwindle depending on
whether it does better or worse than average.

This yields a deterministic model for the state of the population. Indeed, any
ordinary differential equation ẋ = F(x) with a smooth right hand side (such as eq.
(2.24)) has a unique solution for each initial condition x, i.e., a function t �→ x(t)

from an open interval I (containing 0) into Rn such that x(0) = x and such that
ẋ(t) = F(x(t)) holds for all t ∈ I . For all differential equations that we consider in
this book, the interval I can always be taken to be the whole real line R.

We may interpret the right hand side of the differential equation as a vector field
x �→ F(x). It associates to each point x in the domain of definition of F (an open
subset B of Rn) the “wind velocity” F(x) ∈ Rn at that point. The solution then
describes the motion of a particle, released at time 0 at x and carried along by
the wind. At a point z such that F(z) = 0, the velocity is zero. This corresponds to
a rest point: a particle released at z will not move. We note that multiplying the
right hand side F(x) by a positive function M(x) > 0 corresponds to a change in
velocity. The particle will then travel with a different speed, but along the same
orbit.

Before we try to explain (in section 2.7) why we are interested in equation (2.24),
let us note that

∑
ẋi = 0. Furthermore, it is easy to see that the constant function

xi(t) = 0 for all t obviously satisfies the i-th equation in (2.24). From this follows
that the state space, i.e., the simplex Sn, is invariant: if x(0) ∈ Sn then x(t) ∈ Sn for
all t ∈ R. The same holds for all sub-simplices of Sn, (which are given by xi = 0
for one or several i), and hence also for the boundary bdSn of Sn (i.e., the union of
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all such sub-simplices), and moreover also for the interior intSn of the simplex (the
subset satisfying xi > 0 for all i).

2.7 IMITATION DYNAMICS

The replicator equation initially showed up in the context of biological games. The
assumption that payoff corresponds to reproductive success, and that individuals
breed true, leads almost immediately to this equation. Clearly, for the economic
games we are considering here, strategies are unlikely to be inherited, but they can
be transmitted through social learning. If we assume that individuals imitate each
other, we meet the replicator equation again.

To be more precise, let us assume that from time to time, a randomly chosen
individual randomly samples a model from the population and imitates that model
with a certain likelihood. Thus the probability that during an interval of length �t ,
an individual switches from strategy ej to ei is given by xifij�t . The corresponding
input-output equation is

xi(t + �t) − xi(t) =
∑

fijxixj�t −
∑

fjixixj�t, (2.25)

which in the limit �t → 0 yields

ẋi = xi

∑
j

(fij − fji)xj . (2.26)

In general, the rates fij will depend on the state x. For instance, we can assume that

fij = [(Ax)i − (Ax)j ]+. (2.27)

This means that an ej player comparing himself with an ei player will adopt the
latter’s strategy only if it promises a higher payoff: and if this is the case, the switch
is more likely if the difference in payoff is higher. In that case, since fij − fji =
(Ax)i − (Ax)j , the input-output equation yields

ẋi = xi

∑
j

[(Ax)i − (Ax)j ]xj = xi[(Ax)i − x · Ax], (2.28)

which is just the replicator equation (2.24). We would obtain it in a similar way if,
instead of the payoff (Ax)i , we use a more general “fitness” term measuring the
success of a strategy, for instance (1 − s)B + s(Ax)i , with 0 < s ≤ 1. This is the
convex combination of a “baseline fitness” B = B(x) > 0 (the same for all types)
and the payoff. The size of s specifies the importance of the game in evaluating the
“appeal” of a strategy.

We could also assume that

fij = (1 − s)B + s(Ax)i, (2.29)

which means that the switching rate depends only on the success of the model (and
not on the payoff of the ej player); or that

fij = (1 − s)B − s(Ax)j , (2.30)
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which means that players are all the more prone to imitate one another the more
reason they have to be dissatisfied with their own payoff. The role of the convex
combination is to guarantee that (at least for small s) the rate is positive.

Not every imitation mechanism leads to the replicator equation. For instance, we
could assume that if two players compare their payoffs, the better will always be
imitated by the worse. Thus fij = 0 if (Ax)i < (Ax)j , fij = 1 if (Ax)i > (Ax)j , and
fij = 1

2 , say, in the case of a tie. This leads to a differential equation with a discon-
tinuous right hand side. The dynamics reduces, incidentally, to that of a replicator
equation in every region of the state space defined by a specific ordering of the
payoff values (Ax)i .

Not all learning is social learning (i.e., learning from others). We can also learn
from our own experience, for instance by using mostly those strategies that have
brought success so far. Moreover, social learning could disregard the success of a
model, for instance, by simply imitating whatever is most frequent.

It is worth emphasizing that imitation (like selection, in genetics) does not produce
anything new. If a strategy ei is absent from the population, it will remain so (i.e., if
xi(t) = 0 holds for some time t , it holds for all t). There exist game dynamics that are
more innovative. For instance, clever players could adopt the strategy that offers the
highest payoff, even if no one in the population is currently using it. Other innovative
dynamics arise if we assume a steady rate of switching randomly to other strategies.
This can be interpreted as an “exploration rate,” and corresponds to a mutation term
in genetics.

2.8 BASIC PROPERTIES OF THE REPLICATOR EQUATION

It is easy to see that if we add an arbitrary function f (x) to all payoff terms (Ax)i ,
the replicator equation (2.24) remains unchanged: what is added to the payoff is
also added to the average payoff x · Ax, since

∑
xi = 1, and cancels out in the

difference of the two terms. In particular, this implies that we can add a constant cj

to the j -th column of A (for j = 1, . . . , n) without altering the replicator dynamics
in Sn. We shall frequently use this to simplify the analysis.

Another useful property is the quotient rule: if xj > 0, then the time-derivative of
the quotient satisfies

(
xi

xj

).

=
(

xi

xj

)
[(Ax)i − (Ax)j ]. (2.31)

More generally, if V = ∏
x

pi
i then

V̇ = V
[
p · Ax −

(∑
pi

)
x · Ax

]
. (2.32)

The rest points z of the replicator equation are those for which all payoff values
(Az)i are equal, for all indices i for which zi > 0. The common value of these payoffs
is the average payoff z · Az. In particular, all vertices ei of the simplex Sn are rest
points. (Obviously, if all players are of the same type, imitation leads to no change.)
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The replicator equation admits a rest point in intSn if there exists a solution (in
intSn) of the linear equations

(Ax)1 = · · · = (Ax)n. (2.33)

Similarly, all rest points on each face can be obtained by solving a corresponding
system of linear equations. Typically, each sub-simplex (and Sn itself ) contains one
or no rest point in its interior.

One can show that if no rest point in Sn exists in the interior of Sn, then all orbits
in intSn converge to the boundary, for t → ±∞. In particular, if strategy ei is strictly
dominated, i.e., if there exists a w ∈ Sn such that (Ax)i < w ·Ax holds for all x ∈ Sn,
then xi(t) → 0 for t → +∞. In the converse direction, if there exists an orbit x(t)

bounded away from the boundary of Sn (i.e., such that for some a > 0 the inequality
xi(t) > a holds for all t > 0 and all i = 1, . . . , n), then there exists a rest point in
intSn. One just has to note that for i = 1, . . . , n,

(log xi)
. = ẋi/xi = (Ax(t))i − x(t) · Ax(t). (2.34)

Integrating this from 0 to T , and dividing by T , leads on the left hand side to
[log xi(T ) − log xi(0)]/T , which converges to 0 for T → +∞. The corresponding
limit on the right hand side implies that for the accumulation points zi of the time
averages

zi(T ) = 1

T

∫ T

0
xi(t)dt, (2.35)

the relations zi ≥ a > 0,
∑

zi = 1, and

∑
a1j zj = · · · =

∑
anj zj (2.36)

must hold. Thus z is a rest point in intSn.

2.9 THE CASE OF TWO STRATEGIES

Let us discuss the replicator equation when there are only two types in the population.
Since the equation remains unchanged if we subtract the diagonal term in each
column, we can assume without restricting generality that the 2 × 2 matrix A is of
the form (

0 a

b 0

)
. (2.37)

Since x2 = 1−x1, it is enough to observe x1, which we denote by x. Thus x2 = 1−x,
and

ẋ = x[(Ax)1 − x · Ax] = x[(Ax)1 − (x(Ax)1 + (1 − x)(Ax)2)], (2.38)

and hence

ẋ = x(1 − x)[(Ax)1 − (Ax)2]. (2.39)
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(a)

(b)

(c)

(d)

Figure 2.2 Classification of the replicator dynamics for n = 2: (a) inertia; (b) dominance;
(c) bi-stability; (d) stable coexistence. Circles denote rest points. Filled circles
correspond to stable rest points.

Since (Ax)1 = a(1 − x) and (Ax)2 = bx, (2.39) reduces to

ẋ = x(1 − x)[a − (a + b)x]. (2.40)

We note that

a = lim
x→0

ẋ

x
. (2.41)

Hence a corresponds to the limit of the per capita growth rate of the missing strategy
e1. Alternatively,

a = dẋ

dx
, (2.42)

where the derivative is evaluated at x = 0.
Let us omit the trivial case a = b = 0: in this case all points of the state space S2

(i.e., the interval 0 ≤ x ≤ 1) are rest points. The right hand side of our differential
equation is a product of three factors, the first vanishing at 0 and the second at 1;
the third factor has a zero x̂ = a

a+b
in the open interral ]0, 1[ if and only if ab > 0.

Thus we obtain three possible cases, see figure 2.2:

1. There is no fixed point in the interior of the state space. This happens if and
only if ab ≤ 0. In this case, ẋ always has the same sign in ]0, 1[. If this sign is
positive (i.e., if a ≥ 0 and b ≤ 0, at least one inequality being strict,) this means
that x(t) → 1 for t → +∞, for every initial value x(0) with 0 < x(0) < 1. The
strategy e1 is said to dominate strategy e2. It is always the best reply, for
any value of x ∈ ]0, 1[. Conversely, if the sign of ẋ is negative, then x(t) → 0
and e2 dominates. In each case, the dominating strategy converges towards
fixation.
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As an example, we consider the Prisoner’s Dilemma game from section 1.3. The
payoff matrix is transformed into (

0 −5
5 0

)
(2.43)

and defection dominates.

2. There exists a rest point x̂ in ]0, 1[ (i.e., ab > 0), and both a and b are negative.
In this case ẋ < 0 for x ∈ ]0, x̂[ and ẋ > 0 for x ∈ ]x̂, 1[. This means that the
orbits lead away from x̂: this rest point is unstable. As in the previous case, one
strategy will be eliminated: but the outcome, in this bistable case, depends on
the initial condition. If x is larger than the threshold x̂, it will keep growing; if
it is smaller, it will vanish—a positive feedback.

As an example, we can consider the repeated Prisoner’s Dilemma from section
1.5. The payoff matrix is transformed into(

0 −5
−45 0

)
(2.44)

and it is best to play TFT if the frequency of TFT-players exceeds 10 percent.

3. There exists a rest point x̂ in ]0, 1[ (i.e., ab > 0), and both a and b are positive.
In this case ẋ > 0 for x ∈ ]0, x̂[ and ẋ < 0 for x ∈ ]x̂, 1[. This negative feedback
means that x(t) converges towards x̂, for t → +∞: the rest point x̂ is a stable
attractor. No strategy eliminates the other: rather, their frequencies converge
towards a stable coexistence.

This example can be found in the Snowdrift game from section 1.4. The payoff
matrix is transformed into (

0 10
15 0

)
(2.45)

and the fixed point corresponds to 40 percent helping and 60 percent shirking.
These three cases (dominance, bi-stability and stable coexistence) will be revisited

in the next section. But first, we relate the replicator dynamics to the Nash equilibrium
concept.

2.10 NASH EQUILIBRIA AND SATURATED REST POINTS

Let us consider a symmetric n×n game (A, AT ) with a symmetric Nash equilibrium
z. This means that

x · Az ≤ z · Az (2.46)

for all x ∈ Sn. With x = ei , this implies

(Az)i ≤ z · Az (2.47)

for i = 1, . . . , n. Equality must hold for all i such that zi > 0, as we have seen in
section 2.2. Hence z is a rest point of the replicator dynamics. Moreover, it is a
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saturated rest point: this means by definition that if zi = 0, then

(Az)i − z · Az ≤ 0. (2.48)

Conversely, every saturated rest point is a Nash equilibrium. The two concepts
are equivalent.

Every rest point in intSn is trivially saturated; but on the boundary, there may be
rest points that are not saturated, as we shall presently see. In that case, there exist
strategies not present in the population z, that would do better than average (and
better, in fact, than every type that is present). Rest points and Nash equilibria have
in common that there exists a c such that (Az)i = c whenever zi > 0; the additional
requirement, for a Nash equilibrium, is that (Az)i ≤ c whenever zi = 0.

Hence every symmetric Nash equilibrium is a rest point, but the converse does
not hold. Let us discuss this for the examples from the previous section. It is clear
that the fixed points x̂ ∈ ]0, 1[ are Nash equilibria. In case (1), the dominant strategy
is a Nash equilibrium, and the other is not. In case (2), both pure strategies are
Nash equilibria. In case (3), none of them is a Nash equilibrium. If you play a bi-
stable game, you are well advised to choose the same strategy as your co-player;
but in the case of stable coexistence, you should choose the opposite strategy. In
both cases, however, the two of you might have different ideas about who plays
what.

In the bi-stable case, which of the two pure equilibria, e1 or e2, should be chosen?
The first idea is: the one with the higher payoff (if it exists). This is said to be the
Pareto-optimal outcome. In the example given in section 1.7, this is clearly the TFT
strategy. The definition of Pareto-optimality depends on the actual payoff values, and
is not specified by the replicator dynamics: after adding constants to every column
of the payoff matrix, a different strategy may be Pareto-optimal.

The Pareto-optimal solution is not always convincing. Consider for instance the
payoff matrix

(
2 −1000
0 1

)
(2.49)

Clearly, e1 is Pareto-optimal. But will you play it against an unknown adversary?
That player might be a fool, and choose e2. In that case, you would lose much.
Obviously, e2 is the safer Nash equilibrium. (And on second thought, your co-
player may not be a fool, but just suspect that you might be one; or suspect that you
might suspect, etc., . . .)

In a bi-stable game
(

α β

γ δ

)
(2.50)

(with α > γ and δ > β), the strategy e1 is said to be risk-dominant if it provides the
higher payoff against a co-player who is as likely to play e1 as e2. This means that
(1/2)(α + β) > (1/2)(γ + δ), or

γ − α < β − δ. (2.51)
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This condition is invariant with respect to adding constants to each column, and
implies for the normalized matrix (2.37) that a > b, i.e., (since both values are
negative) x̂ < 1/2. Hence the risk-dominant equilibrium, in a bistable 2 × 2 game,
is the one with the larger basin of attraction.

A handful of results about Nash equilibria and rest points of the replicator dy-
namics are known as folk theorem of evolutionary game theory. For instance, any
limit, for t → +∞, of a solution x(t) starting in intSn is a Nash equilibrium; and
any stable rest point is a Nash equilibrium. (A rest point z is said to be stable if for
any neighborhood U of z there exists a neighborhood V of z such that if x(0) ∈ V

then x(t) ∈ U for all t ≥ 0.) Both results are obvious consequences of the fact that if
z is not Nash, there exists an i and an ε such that (Ax)i −x ·Ax > ε for all x close to
z. In the other direction, if z is a strict Nash equilibrium, then z is an asymptotically
stable rest point (i.e., not only stable, but in addition attracting in the sense that for
some neighborhood U of z, x(0) ∈ U implies x(t) → z for t → +∞). The converse
statements are generally not valid.

2.11 EXISTENCE OF NASH EQUILIBRIA

In order to prove the existence of a symmetric Nash equilibrium for the symmetric
game with n × n matrix A, i.e., the existence of a saturated rest point for the cor-
responding replicator equation (2.24), we perturb that equation by adding a small
constant term ε > 0 to each component of the right hand side. Of course, the relation∑

ẋi = 0 will no longer hold. We compensate this by subtracting the term nε from
each growth rate (Ax)i − x · Ax. Thus we consider

ẋi = xi[(Ax)i − x · Ax − nε] + ε. (2.52)

Clearly,
∑

ẋi = 0 is satisfied again. On the other hand, if xi = 0, then ẋi = ε > 0.
This influx term changes the vector field of the replicator equation: at the boundary
of Sn, (which is invariant for the unperturbed replicator equation), the vector field
of the perturbed equation points towards the interior.

We shall see presently that (2.52) admits at least one rest point in intSn, which
we denote by zε . It satisfies

(Azε)i − zε · Azε = ε

(
n − 1

(zε)i

)
. (2.53)

Let ε tend to 0, and let z be an accumulation point of the zε in Sn. The limit on
the left hand side exists, it is (Az)i − z · Az. Hence the right hand side also has a
limit for ε → 0. This limit is 0 if zi > 0, and it is ≤ 0 if zi = 0. This implies that z
is a saturated rest point of the (unperturbed) replicator equation (2.24), and hence
corresponds to a Nash equilibrium.

All that remains to be shown is the existence of a rest point for equation (2.52).
Readers who know Brouwer’s fixed point theorem will need no proof. All others
can find it in the next two sections.
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(a) (b)

Figure 2.3 (a) This is not a simplicial decomposition. (b) The barycentric decomposition is
a simplicial decomposition.

2.12 SPERNER’S LEMMA

Let us consider an n − 1-dimensional simplex S, i.e., the closed convex hull of n

points y1, . . . , yn such that the vectors yi − yn, i = 1, . . . , n − 1, are linearly in-
dependent. Any non-trivial subset of the vertices y1, . . . , yn spans a sub-simplex
of S. The boundary of S is the union of the n full (i.e., n − 2-dimensional) faces.
A simplicial decomposition of S consists of finitely many n − 1-dimensional sim-
plices whose union is S and whose interiors are pairwise disjoint. We furthermore
require that if two such (closed) sub-simplices are not disjoint, they must share a
face: i.e., if the intersection contains a vertex of one sub-simplex, that point is also
a vertex of the other, see figure 2.3.

An example is the barycentric subdivision. (The barycenter of the simplex S

is (y1 + · · · + yn)/n). We begin with the barycenters of all 1-dimensional sub-
simplices, i.e., the midpoints of the edges. They divide the edges of S into
1-dimensional subsimplices. We then introduce the barycenters of the 2-dimensional
sub-simplices of S, and consider the 2-dimensional sub-simplices obtained as a con-
vex hull of such a barycenter and a 1-dimensional sub-simplex on the boundary of
the corresponding face; and so on into higher dimensions.

Now suppose that we are given a coloring of the vertices of the simplicial decom-
position by n colors, in the sense that we associate to each vertex an i ∈ {1, . . . , n}.
We require that the vertices yi of S are colored by the colors i, and that for any sub-
simplex of S, only the colors of the vertices spanning that sub-simplex are used. We
say that a sub-simplex is I -colored if I ⊂ {1, . . . , n} is the list of all colors actually
occurring at the vertices of that sub-simplex.
Sperner’s lemma states that there always exists an odd number of {1, . . . , n}-

colored sub-simplices. (In particular, we need the full set of colors for at least one
sub-simplex of S.)

The proof goes by induction. For n = 2 (i.e., for the segment S2) the statement is
obvious. Suppose it is proved up to n− 1. We can apply this to the boundary face of
S, which is opposed to yn: its simplicial decomposition contains an odd number
of sub-simplices which are {1, . . . , n − 1}-colored.
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Figure 2.4 A coloring of a simplicial decomposition of S3, and the graph described in section
2.12.

We now construct a graph having as vertices the barycenters of the sub-simplices
of S. We join two such barycenters by an edge if and only if the corresponding sub-
simplices share a {1, . . . , n − 1}-colored face, see figure 2.4. We add one further
vertex o lying outside of S, and connect it with the barycenters of those sub-simplices
having a {1, . . . , n−1}-colored face on the boundary of S. We see immediately that
o is connected to an odd number of barycenters, which belong to sub-simplices
having a full face belonging to the face of S opposite of yn.

If a sub-simplex is {1, . . . , n}-colored, it has exactly one {1, . . . , n − 1}-colored
face. Hence its barycenter lies on exactly one edge of the graph; it is an end-point of
the graph. As to the other barycenters, they either lie on two edges, or on none at all.
Indeed, if a sub-simplex that is not {1, . . . , n}-colored has an {1, . . . , n−1}-colored
face, then the opposite vertex must have one of the colors 1, . . . , n − 1, and hence
that sub-simplex has exactly one additional {1, . . . , n − 1}-colored face.

We note that it is possible that the graph has closed loops. But since an odd number
of edges issues from o, there must be an odd number of end-points of the graph, and
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hence an odd number of fully colored sub-simplices of S. Thus Sperner’s lemma
holds.

2.13 A FIXED-POINT THEOREM

We now show that a smooth vector field on the plane
∑

xi = 1 satisfying∑
ẋi = 0 (2.54)

and

xi = 0 ⇒ ẋi > 0 (2.55)

has a fixed point in intSn. We proceed indirectly and assume that it has no fixed
point. To each point x ∈ Sn we can associate the “color” i := min{j : ẋj < 0}. This
is possible because ẋ �= 0 and

∑
j ẋj = 0. We note that condition (2.55) implies that

on each sub-simplex of Sn, only the colors of the vertices spanning that face are used.
This induces a coloring for any simplicial decomposition. Each such decompo-

sition must have an odd number of fully-colored sub-simplices. Now consider a
sequence of simplicial decompositions whose width (the size of the largest sub-
simplex) converges to 0. (For instance, we can start with the barycentric subdivision
of S, and then iterate this ad lib.)

This yields a sequence of fully-colored sub-simplices: by compactness, the sub-
sequence converges to a point x ∈ Sn. For each i, this point is a limit of i-colored
vertices, and hence must satisfy ẋi ≤ 0. Since

∑
ẋi = 0 this implies ẋ = 0, a contra-

diction.
Hence the vector field (2.52) must have some fixed point in Sn. This closes the

gap in the proof that each replicator equation admits a saturated fixed point.

2.14 ROCK-SCISSORS-PAPER

Whereas there exist only four possible types of replicator dynamics for n = 2, there
exist about a hundred of them for n = 3 (and for n > 3 a full classification seems
presently out of sight). A particularly interesting example occurs if the three strate-
gies dominate each other in a cyclic fashion, i.e., if e1 dominates e2, in the absence
of e3; and similarly if e2 dominates e3; and e3, in turn, dominates e1. Such a cycle
occurs in the game of Rock-Scissors-Paper. If we assume that the winner receives
one dollar from the loser, the payoff matrix is⎛

⎝ 0 1 −1
−1 0 1
1 −1 0

⎞
⎠. (2.56)

This is a zero-sum game: one player receives what the other player loses. Hence the
average payoff in the population, x · Ax, is zero. There exist only four rest points,
one in the center, m = (1/3, 1/3, 1/3) ∈ intS3, and the other three at the vertices ei .
The only Nash equilibrium is m.
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(a) (b) (c)

e3

e1 e2

e3

e1 e2

e3

e1 e2

Figure 2.5 The replicator dynamics of the Rock-Scissors-Paper game with payoff matrix
(2.58): (a) a = 1; (b) a > 1 ; (c) 0 < a < 1.

Let us consider the function V := x1x2x3, which is positive in the interior of S3

(with its maximum at m) and vanishes on the boundary. Using (2.32) we see that
t → V (x(t)) satisfies

V̇ = V (x2 − x3 + x3 − x1 + x1 − x2) = 0. (2.57)

Hence V is a constant of motion: all orbits t → x(t) of the replicator equation remain
on constant level sets of V, see figure 2.5. This implies that all orbits in intSn are
closed orbits surrounding m. The invariant set consisting of the three vertices ei and
the orbits connecting them along the edges of S3 is said to form a heteroclinic set.
Any two points on it can be connected by “shadowing the dynamics.” This means to
travel along the orbits of that set and, at appropriate times that can be arbitrarily rare,
to make an arbitrarily small step. In the present case, it means for instance to flow
along an edge towards e1, and then step onto the edge leading away from e1. This
step can be arbitrarily small: travelers just have to wait until they are sufficiently
close to the “junction” e1.

Now let us consider the game with matrix⎛
⎝ 0 a −1

−1 0 a

a −1 0

⎞
⎠. (2.58)

For a > 0, it has the same structure of cyclic dominance. For a �= 1 the game is
no longer a zero sum game, but it has the same rest points. The point m is a Nash
equilibrium and the boundary of S3 is a heteroclinic set, as before. But now,

x · Ax = (a − 1)(x1x2 + x2x3 + x3x1) (2.59)

and hence

V̇ = V (a − 1)[1 − 3(x1x2 + x2x3 + x3x1)] (2.60)

= V (a − 1)

2
[(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2]. (2.61)

This expression vanishes on the boundary of S3 and at m. It has the sign of a − 1
everywhere else on S3. If a > 1, this means that all orbits cross the constant-level sets
of V in the uphill direction, and hence converge to m. This implies that ultimately,
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all three types will be present in the population in equal frequencies: the rest point
m is asymptotically stable, see figure 2.5b. But for a < 1, the orbits flow downhill,
towards the boundary of S3. The Nash equilibrium m corresponds to an unstable
rest point, and the heteroclinic cycle on the boundary attracts all other orbits, see
figure 2.5c.

Let us follow the state x(t) of the population, for a < 1. If the state is very close
to a vertex, for instance e1, it is close to a rest point and hence almost at rest. For
a long time, the state does not seem to change. Then, it picks up speed and moves
towards the vicinity of the vertex e3, where it slows down and remains for a much
longer time, etc. This looks like a recurrent form of “punctuated equilibrium”: long
periods of quasi-rest followed by abrupt upheavals.

2.15 STOCHASTIC PROCESSES AND FIXATION PROBABILITIES

So far, we have considered the limiting case of infinitely large populations. If we
assume a population of finite size, we can no longer rely on deterministic models. In
finite populations, random fluctuations, due for instance to sampling effects, have
to be taken into account. Instead of ordinary differential equations, we must use
stochastic processes.

Let us assume, in the simplest case, that a population of finite size M consists of
two types of players only, e1 and e2. From time to time, one of the players updates
strategy, by imitating a model chosen from the population. The state of the population
is given by the number i of individuals of type e1 (while the number of players of
type e2 is M − i). Let pij be the probability that the transition leads from i to j . The
matrix P is tri-diagonal, i.e., pij = 0 if |j − i| > 1. The states 0 and M are absorbing:
if all individuals are of the same type, imitation can not introduce the other type. We
write pi,i+1 = bi and pi,i−1 = di (because these transition probabilities correspond,
in another interpretation, to birth and death rates).

We denote by pi the probability that a population in state i will eventually reach
state M , i.e., consist entirely of type e1. This state M is absorbing, since once reached
it will not be left. The probability pi that, starting in state i, such a fixatio of the
type e1 occurs, must satisfy

pi = dipi−1 + (1 − bi − di)pi + bipi+1 (2.62)

for i = 1, . . . , M−1. Indeed, in the first updating event, the number of e1’s will either
increase or decrease by 1, or remain unchanged (when a player imitates someone
of his own kind); and after this first step, fixation must occur. Moreover, we have
p0 = 0 and pM = 1. Setting yi := pi − pi−1, equation (2.62) can be written as

yi+1 = di

bi

yi . (2.63)

Since p1 = y1 and
∑k

i=0 yi = pk − p0 = pk , we obtain

1 = pM =
M∑
i=1

yi = p1

(
1 + d1

b1
+ · · · + d1

b1

d2

b2
· · · dM−1

bM−1

)
, (2.64)
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so that

pi = 1 + ∑i−1
j=1

∏j

k=1 dk/bk

1 + ∑M−1
j=1

∏j

k=1 dk/bk

(2.65)

for i = 1, . . . , M . In particular, we denote by ρ1,2 the fixatio probability p1, i.e., the
probability that a single individual of type e1 in a population consisting otherwise
of type e2 will eventually be imitated by everyone. It is given by

ρ1,2 = 1

1 + ∑M−1
j=1

∏j

k=1 dk/bk

. (2.66)

So far, we have not specified the imitation mechanism. In this chapter, we shall
consider only the so-called Moran process, developed in the context of population
genetics. For this reason, we shall adopt the corresponding terminology, and assume
that each individual has a certain “fitness,” which in our context means some measure
of success, such that individuals with a higher fitness are more likely to be imitated
(see section 2.7). The Moran process consists in drawing one individual at random
(each has the same probability 1/M of being chosen) and endowing it with the
type of a “model player” who is selected from the population with a probability
proportional to that model’s success.

Thus let us assume, as a first example, that individuals of type e1 have fitness r ,
while those of type e2 have a fitness normalized to be equal to 1. We then obtain for
the death rate

di =
(

i

M

) (
M − i

ri + M − i

)
, (2.67)

where the first fraction is the probability that the updating individual is of type e1,
and the second that the selected model is of type e2. Similarly, for the birth rate,

bi =
(

M − i

M

) (
ri

ri + M − i

)
. (2.68)

Hence di/bi = 1/r and

ρ1,2 = 1 − r−1

1 − r−M
. (2.69)

If r → 1, we obtain as limiting value ρ1,2 = 1/M , which is reassuring. This is the
fixation probability of a neutral type, i.e., the probability that a single individual
of type e1, doing exactly as well as the resident e2 individuals, will eventually be
copied by the entire population.

2.16 GAMES IN FINITE POPULATIONS

Now suppose that in a population of size M , individuals are engaged in pairwise
games, and strategies are determined by type e1 or e2. If the payoff matrix is(

α β

γ δ

)
, (2.70)
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then the expected payoff depends on the state i of the population. For a player of
type e1, it is given by

Fi = α
i − 1

M − 1
+ β

M − i

M − 1
, (2.71)

and for a player of type e2 by

Gi = γ
i

M − 1
+ δ

M − i − 1

M − 1
. (2.72)

(Players do not play against themselves.) As in section 2.7, we assume that the
fitness, i.e., the likelihood to be imitated, is given as a convex combination of the
payoff and a “baseline fitness,” the same for all, which we normalize to 1. Hence
the fitness of an e1 individual, if the population is in state i, is given by

fi = (1 − s) + sFi (2.73)

and that of an e2 individual is

gi = (1 − s) + sGi. (2.74)

Here the parameter s ∈ [0, 1] measures the “strength of selection,” i.e., the impor-
tance of the game for overall success. If s = 0 the game is irrelevant. In the limiting
case of an infinitely large population, the Moran process leads to the switching rate
given by equation (2.29) and hence to the replicator dynamics.

The birth and death rates are

bi =
(

M − i

M

) (
if i

ifi + (M − i)gi

)
(2.75)

and

di =
(

i

M

) (
(M − i)gi

ifi + (M − i)gi

)
, (2.76)

so that

di

bi

= gi

fi

= 1 − s(1 − Gi)

1 − s(1 − Fi)
. (2.77)

The fixation probability (2.66) is therefore given by

ρ1,2 =
⎡
⎣1 +

M−1∑
j=1

j∏
i=1

1 − s + sGi

1 − s + sFi

⎤
⎦

−1

. (2.78)

2.17 LIMITING CASES

For small s, expression (2.77) can be approximated, up to first order, by

di

bi

= 1 − s(Fi − Gi). (2.79)
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Now by equations (2.71) and (2.72),

Hi := Fi − Gi = 1

M − 1
[ē + f̄ i] (2.80)

with ē = − α + βM − δM + δ and f̄ = α − β − γ + δ. Hence up to first order in
s, the fixation probability of type e1 is, according to equation (2.78), given by

ρ1,2 =
[

1 +
M−1∑
k=1

k∏
i=1

(1 − sHi)

]−1

. (2.81)

It is easy to see that

M−1∑
k=1

k∏
i=1

(1 − sHi) = M − 1 − s

M−1∑
i=1

(M − i)Hi, (2.82)

and that

M−1∑
i=1

(M − i)(ē + f̄ i) = M(M − 1)ē + (Mf̄ − ē)

M−1∑
i=1

i − f̄

M−1∑
1

i2. (2.83)

The first sum on the right hand side is M(M − 1)/2 and the second sum is
M(M − 1)(2M − 1)/6. This yields altogether

M(M − 1)(Mf̄ + f̄ + 3ē)/6 = M(M − 1)(eM − f )/6, (2.84)

with e = α + 2β − γ − 2δ and f = 2α +β + γ − 4δ. Up to first order in s, equation
(2.81) yields

ρ1,2 =
[
1 − s

6
(eM − f )

]−1
/M. (2.85)

We say that strategy e1 is advantageous if its fixation probability is higher than that
of a neutral mutant, i.e., if ρ1,2 > 1/M . This condition reads eM > f , i.e.,

α(M − 2) + β(2M − 1) > γ (M + 1) + δ(2M − 4). (2.86)

For the limit M → ∞ we obtain

α + 2β > γ + 2δ, (2.87)

or, with the normalization from matrix (2.37), b < 2a. This inequality always holds
if e1 dominates e2, i.e., if b ≤ 0 and a ≥ 0 (one inequality being strict). The domi-
nant strategy is always advantageous. In the case of stable coexistence, i.e., a > 0
and b > 0, it means that x̂ > 1/3, where x̂ = a

a+b
is the Nash equilibrium. Thus if

1/3 < x̂ < 2/3, both strategies are advantageous. Finally, in the case of a bi-stable
game, i.e., if a < 0 and b < 0, inequality (2.86) means that x̂ < 1/3, where x̂ is the
unstable Nash equilibrium in ]0, 1[. This means that for the replicator equation, the
basin of attraction of e1 is more than twice as large as that of e2. In particular, if e1

is advantageous, it is risk-dominant. If x̂ lies between 1/3 and 2/3, none of the two
strategies is advantageous.
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For the examples of a Repeated Prisoner’s Dilemma game (section 1.7) or a
Snowdrift game (section 1.4), we see from inequality (2.86) that cooperation is
advantageous for M > 4 resp. M > 20.

The fixation probability ρ2,1 of e2 is obtained similarly to that of e1 (by replacing
e with −2α −β + 2γ + δ and f with −4α +β + γ + 2δ). The condition ρ1,2 > ρ2,1

means

(M − 2)(α − δ) > M(γ − β). (2.88)

In the limit of large M , this reduces to the condition α − δ > γ − β. This is just the
condition a > b that e1 is risk-dominant.

For any value of π ∈ [0, 1], the vector (π, 0, . . . , 0, 1 − π) ∈ SM is a stationary
distribution of the imitation process. Let us assume that with some probability µ > 0,
players can change their strategy without imitating another player, just by random
trial. In that case, the resulting Markov chain is recurrent. It describes the interplay
between innovation and imitation. Let us assume that µ is so small that we can
separate the time scales of the two processes. This means that most of the time, the
population is in the homogeneous state 0 or M . Occasionally, a single individual
tries the other strategy. Then, the imitation process starts anew, leading either to the
extinction of the new type or to its fixation. In this “adiabatic” case, the resulting
process can be approximated by a Markov chain with two states, 1 and 2, (which
correspond to homogeneous populations consisting of type e1 or e2). This Markov
chain is given by the matrix

(
1 − ρ2,1 ρ2,1

ρ1,2 1 − ρ1,2

)
(2.89)

whose unique stationary distribution, the left eigenvector
(

ρ1,2

ρ1,2 + ρ2,1
,

ρ2,1

ρ1,2 + ρ2,1

)
(2.90)

describes the prevalence of the two types, for large time spans. In particular, for the
bi-stable case and large M , strategy e1 is risk-dominant if and only if the stochastic
process spends more time in the corresponding homogeneous state.

The same “adiabatic” argument holds also for n types ei . If the “innovation rate”
µ is sufficiently small, the population will always consist of one or at most two types
only. If in a homogeneous population, a single individual switches to a different type,
then the imitation process will have caused the fixation or the elimination of that type
before the next innovation occurs. If we assume that these innovations are random
explorations, i.e., that every non-resident type has the same chance 1/(n − 1) to
occur, we obtain an n×n Markov chain P with transition probabilities pij given by

pij = ρj,i/(n − 1) (2.91)

for i �= j . Here, ρj,i is the fixation probability of j in i, i.e., the probability that
a single individual of type j in a population consisting otherwise of type i will
eventually be copied by the entire population.
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Chapter Three

Direct Reciprocity: The Role of Repetition

3.1 HELP

As Darwin wrote, “The small strength and speed of man, his want of natural weapons,
etc., are more than counterbalanced . . . by his social qualities which lead him to
give and receive aid from his fellow-men” (italics added). In its simplest form, to
help means to confer a benefit b to another individual, at a cost c to oneself. This
can be viewed as an atom of social interaction.

In theDonation game, two players have to decide simultaneously (more precisely,
in ignorance of the co-player’s decision) whether to give help to their co-player or
not. The two strategies e1 and e2 will be denoted by C (for cooperate) and D (for
defect), respectively. This yields the following payoff matrix:(

b − c −c

b 0

)
. (3.1)

If not otherwise stated, we will assume b > c > 0. The second strategy D dom-
inates the first. This is an example of a Prisoner’s Dilemma game, as described in
section 1.3, i.e., a symmetric 2 × 2 game whose payoff matrix(

R S

T P

)
(3.2)

satisfies

T > R > P > S. (3.3)

The Prisoner’s Dilemma game encapsulates the tug-of-war between the common
interest (R is larger than P ) and the selfish interest (D dominates C). Selfishness
ought to win in this conflict. Indeed, the game has a unique Nash equilibrium, namely
defection; and imitation of successful individuals leads inexorably to the demise of
cooperation, see section 2.10.

It can be interesting to compare this Donation game with the Snowdrift game (see
section 1.4). Both players can receive a benefit b each, if they come up with a fee
c < b. They have to decide simultaneously whether to pay the fee or not, knowing
that if both decide to pay, they will share the cost. The payoff matrix is(

b − c
2 b − c

b 0

)
. (3.4)

Obviously, it is best to do the opposite of what the other player does. If your co-
player is willing to pay the fee, you yourself can safely skip it. But if your co-player
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is unwilling to pay the fee, you should better pay. Clearly, a player would prefer
to be the one who does not pay the cost. The game has a unique symmetric Nash
equilibrium. It consists in paying the fee with a probability of 2(b−c)

2b−c
= 1 − c

2b−c
.

We note that if the Donation game is played twice, then the two players would do
twice as well to both play C each time than to take turns in playing C. In two turns
of the Snowdrift game, they would do as well to both play C each time than to take
turns in playing C. The Snowdrift game is an example of the so-called Chicken
game, a symmetric 2 × 2 game whose payoff matrix (3.2) satisfies

T > R > S > P. (3.5)

The small difference in rank order (S and P are permuted) has a considerable effect.

3.2 ITERATED GAMES

Let us now consider several rounds of the simultaneous Donation game. If the
number of rounds is known to both players, then backward induction predicts, as
seen in section 1.5, that selfish players ought to play D in each round.

Let us suppose instead that the two players do not know how many rounds their
game will last. Usually, one assumes that after every round, a further round can
occur with a constant probability w < 1. (One could alternatively assume that the
number of rounds is given by a Poisson distribution, for instance.) We number the
initial round by 0, and by n the round obtained at the n-th iteration. The probability
that the game is iterated at least n times is given by wn. The probability that the game
has exactly n + 1 rounds (the initial round followed by n iterations) is wn(1 − w).
The number of rounds is a random variable with a geometric distribution, and its
expected value is

1(1 − w) + 2w(1 − w) + · · · + nwn−1(1 − w) + · · · = 1

1 − w
. (3.6)

Let us denote by A(n) the payoff in the n-th round. The expected value of the
total payoff is given by

+∞∑
n=0

wn(1 − w)[A(0) + · · · + A(n)], (3.7)

which by Abel’s summation formula is the power series A(0) + wA(1) + · · · .
Since A(n) ∈ {R, S, T , P }, all A(n) are uniformly bounded, and hence expression
(3.7) always converges to some value A(w), for 0 ≤ w < 1. The average payoff per
round is given by

(1 − w)A(w) = (1 − w)

+∞∑
n=0

wnA(n). (3.8)

It is often instructive to analyze the limiting case w = 1. In this case, the game
consists of infinitely many rounds, and the total payoff A(0) + A(1) + · · · may
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diverge. It is convenient, in that case, to consider the average (over time) of the
payoff per round, namely

lim
n→+∞

A(0) + · · · + A(n)

n + 1
, (3.9)

provided this limit exists. The theorem of Frobenius implies that in this case, ex-
pression (3.9) is given by the limit of equation (3.8), i.e., by limw→1(1 − w)A(w).

3.3 THE GOOD, THE BAD, AND THE RECIPROCATOR

Let us first consider the interaction of three strategies only. The cooperator always
decides to help; the defector always refuses to help; and the reciprocator refuses to
help if and only if the co-player refused to help in the previous round. (By default,
thus, the reciprocator donates in the initial round.) These are the strategies e1 =AllC,
e2 =AllD and e3 = TFT , respectively.

We consider a large, well-mixed population. The frequencies of the three strategies
are given by x, y, and z, respectively (with x + y + z = 1). With Px , Py , and Pz

we denote the expected values for the total payoff obtained by players using these
strategies (rather than by (Ax)1, etc., as in the previous chapter). The average payoff
in the population is P̄ = xPx + yPy + zPz. We shall assume that more successful
strategies are more likely to be imitated, as in section 2.7. Hence the evolution of
the frequencies of the three strategies in the population is given by the replicator
equation

ẋ = x(Px − P̄ )

ẏ = y(Py − P̄ ) (3.10)

ż = z(Pz − P̄ ).

We will frequently use the fact that the replicator equation remains unchanged
(on the simplex S3) if the same function is added to each payoff term (see section
2.8), and by abuse of notation still design the corresponding terms with Px , Py , Pz,
and P̄ . In particular, we can normalize the payoff matrix by adding an appropriate
constant to each column.
AllD against AllD obtains payoff A(n) = 0 in every round, so that A(w) = 0. TFT

againstAllD earns A(0) = −c in the initial round, and henceforth A(n) = 0 for n ≥ 1,
so that A(w) = −c, etc.

The payoff matrix for the three strategies AllC, AllD, and TFT is given by

⎛
⎝ b − c −c b − c

b 0 b(1 − w)

b − c −c(1 − w) b − c

⎞
⎠ , (3.11)

where we omitted the factor (1 − w)−1, (i.e., considered the average payoff per

round). Setting w = 1 yields the infinitely repeated case.
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In the general Prisoner’s Dilemma game, the payoff matrix corresponding to
matrix (3.11) is ⎛

⎝ R S R

T P (1 − w)T + wP

R (1 − w)S + wP R

⎞
⎠ . (3.12)

3.4 PYRRHIC VICTORIES

Let us stick with the Donation game and normalize the corresponding replicator
equation such that Py , the payoff for defectors, is 0. Then we obtain

Px = −c + wbz Pz = Px + wcy. (3.13)

We note that Pz − P̄ = yg, with

g = w(b − c)z − c(1 − w). (3.14)

On the edge of the state space simplex S3 with z = 0 (no reciprocators), AllD clearly
dominates. On the edge with x = 0, i.e., in a population consisting of defectors and
TFT players, we have bi-stable dynamics. The unstable equilibrium is Fyz = (0, 1 −
ẑ, ẑ), with

ẑ = (1 − w)c

w(b − c)
, (3.15)

provided ẑ < 1, i.e., w > c/b. In particular, TFT is risk-dominant (see section 2.10)
if

w >
2c

b + c
, (3.16)

and selectively advantageous (see section 2.17) if

w >
3c

b + 2c
. (3.17)

Since ẑ is small if w is close to 1, a small TFT population is able to invade a
population of defectors if w, i.e., the “shadow of the future” is sufficiently large.

The edge y = 0 consists of fixed points only. Clearly, a population of AllC and
TFT players will always cooperate, and none of the two strategies is favored. On the
edge y = 0, those points with z ≥ c/wb are Nash equilibria, and the others are not.
To see this, we have only to look at the sign of Py − P̄ , i.e., of Px = −c + wbz, and
recall from section 2.10 that the Nash equilibria are exactly those fixed points that
are saturated (i.e., if y = 0, then Py ≤ P̄ ).

The other Nash equilibria of the game are the vertex y = 1 (defectors only) and
the point Fyz. In the interior of the simplex S3, there is no fixed point, since Pz > Px

whenever y > 0. It is easy to see that the function

V = x
1−w
w z− 1

w g (3.18)

is an invariant of motion, i.e., satisfies V̇ = 0.
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z

x

Cooperators

Reciprocators

y

Defectors

Figure 3.1 The good, the bad, and the reciprocator, in the absence of errors. A horizontal line
z = c/wb divides the state space. Below the line, defectors win; above the line,
defectors are eliminated. Here and in all other figures, filled circles correspond to
stable rest points, and empty circles to unstable rest points.

In the case c < wb, the dynamics shows an interesting behavior, see figure 3.1.
The segment with g = 0 consists of a single orbit parallel to the edge z = 0, which
converges to the saddle point Fyz and separates the simplex into two parts. Below
this line, z decreases, and y converges to 1, i.e., defectors win. Above the line g = 0,
z increases, and y converges to 0, i.e., defectors lose.

In the absence of defectors, any mixture of TFT players and AllC players corre-
sponds to a rest point. Such a mixture can be viewed as a mixture of discriminating
and indiscriminating altruists. If we assume that occasionally, small random shocks
perturb the system, then these will send the system up and down the defectors-
free edge y = 0. If a random shock introduces a small amount of defectors while
z > c/wb, the defectors will forthwith be eliminated. If the defectors are introduced
while z < (1−w)c/w(b−c), they will take over. But if the defectors are introduced
in the “middle zone” where

c/wb > z > (1 − w)c/w(b − c), (3.19)

the amount of defectors will first increase, and then vanish. During the phase of their
invasion, the AllD players will exploit and eventually deplete the AllC players. This
is a kind of Pyrrhic victory: the defectors end up meeting mostly TFT players, and
this is their undoing.
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Looking at it from the point of view of defectors, any invasion attempt while z > ẑ

is doomed to failure and will result in a state with y = 0 and z > c/wb. Figuratively
speaking, the only hope for the defectors is to wait with their invasion attempt
until drift, i.e., a succession of small random shocks, has moved the population
state along the edge y = 0, to the region where z < ẑ. This drift needs time. If the
invasion attempts occur too often, the drift will never have enough time to lead
into the zone that favors the defectors. Thus defectors should not try to invade too
often. In other terms, cooperators are safe only if invasion attempts by defectors are
sufficiently frequent. If the invasion attempts are too rare, a cooperative society can
lose its immunity—random fluctuations can lead to a population state with too few
reciprocators to repel an invading minority of defectors.

3.5 REACTIVE STRATEGIES

So far, we have assumed that the players execute their intentions faultlessly. If we
assume that they occasionally commit errors, we obtain very different results. This
leads to the investigation of stochastic strategies, described by the probabilities, in
each round, to cooperate or not.

To begin with, let us consider strategies given by triplets (f, p, q), where f is the
probability to cooperate in round 0, and p resp. q are the probabilities to cooperate
after a cooperation resp. defection by the co-player in the previous round. For such
reactive strategies, the propensity to cooperate depends uniquely on what the co-
player did in the previous round. The pair (p, q) defines the reaction norm of the
strategy. It is a point in the unit square [0, 1]2, and it is said to be deterministic if
it corresponds to one of the corners. For instance, TFT corresponds to (1, 1, 0) and
AllD to (0, 0, 0); both have deterministic reaction norms. A (small) probability ε to
implement the unintended move would change this to (1−ε, 1−ε, ε) resp. (ε, ε, ε).
We shall use the notation ρ := p − q. Clearly | ρ |< 1 except for some strategies
with deterministic reaction norm, such as TFT.

Let us consider an (f, p, q) player encountering an (f ′, p′, q ′) player. In each
round, there are four possible outcomes, namely (C, C), (C, D), (D, C), and (D, D),
depending on the moves of the first and the second player. This outcome can also be
described by the payoff obtained by the first player, namely R, S, T , or P , which
we enumerate by 1, 2, 3, 4. (Note that an S for the first player corresponds to a T

for the second player.)
In the initial round, the probabilities xi(0) for outcome i ∈ {1, 2, 3, 4} are given

by the quadruple

x(0) = (ff ′, f (1 − f ′), (1 − f )f ′, (1 − f )(1 − f ′)). (3.20)

In the following rounds, these probabilities change according to the reaction norms
of the two players. We denote by pij the probability that from one round to the next,
the state changes from i to j (with i, j ∈ {1, 2, 3, 4}). Thus x(n) turns into x(n + 1)

according to the transition rule

x(n + 1) = x(n)P, (3.21)
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where P = (pij) is the stochastic matrix

P =

⎛
⎜⎜⎜⎝

pp′ p(1 − p′) (1 − p)p′ (1 − p)(1 − p′)
qp′ q(1 − p′) (1 − q)p′ (1 − q)(1 − p′)
pq ′ p(1 − q ′) (1 − p)q ′ (1 − p)(1 − q ′)
qq ′ q(1 − q ′) (1 − q)q ′ (1 − q)(1 − q ′)

⎞
⎟⎟⎟⎠ . (3.22)

This yields a Markov chain.

3.6 LINKAGE

If the probabilities xi to be in state i satisfy the condition

x1x4 = x2x3, (3.23)

then the moves of the two players are independent. Indeed, x1 is the probability
that both player I and player II play C. The probability that I plays C is x1 + x2,
and the probability that II plays C is x1 + x3. Independence means that x1 = (x1 +
x2)(x1+x3), which for x ∈ S4 is equivalent with x1x4 = x2x3. In this sense the linkage
D = x1x4 − x2x3 measures the interdependence of the two players: D = 0 means
that their moves are independent.

A straightforward computation shows that

D(n + 1) = ρρ ′D(n), (3.24)

where ρ = p−q and ρ ′ = p′−q ′ as before. Indeed, we have only to replace xj (n+1)

in D(n+1) by
∑

i xi(n)pij, using equation (3.21), and then compare the coefficients
of the product terms xi(n)xj (n). Most of the coefficients cancel obligingly, since
pk1pk4 = pk2pk3 and p1kp4k = p2kp3k for k = 1, 2, 3, 4.

It follows that the linkage disequilibrium D(n), which is 0 in the initial round,
remains 0. (If it were initially distinct from 0, it would converge to 0 exponentially
if at least one of the reaction norms is non-deterministic.) This confirms that the
moves of the two players are independent in every round, as expected.

3.7 COOPERATION LEVELS

Players using reactive strategies play a kind of ping-pong with each other: if player
II cooperates with a probability y, then player I cooperates with probability

α(y) = py + q(1 − y) = q + ρy (3.25)

in the following round. Thus if player I’s cooperation level in round n is denoted by
cn = x1(n) + x2(n), then

cn+2 = q + ρ(q ′ + ρ ′cn) = A + ucn, (3.26)
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where u : = ρρ ′ and A = q + ρq ′ (which is αα′(0)). Equation (3.26) defines an
affine-linear mapping from the unit interval (the set of all cooperation levels) into
itself. The mapping can be iterated, starting from the initial round:

c0 = f �→ c2 = A + uf �→ c4 = A + u(A + uf )

= A(1 + u) + u2f �→ · · · . (3.27)

Since

c2n = A(1 + u + · · · + un−1) + unf = A

1 − u
+ un

(
f − A

1 − u

)
, (3.28)

we obtain

c2n = v + un(f − v), (3.29)

where

v := A

1 − u
= q + ρq ′

1 − ρρ ′ (3.30)

is just the fixed point of y �→ A + uy. A similar equation holds for c2n+1 (with f

replaced by c1 = q + ρf ′). The cooperation level cn thus converges to v. The same
holds for the other player, whose cooperation level converges to v′. Clearly, one has
α(v′) = v, etc. It is only if both strategies have deterministic reaction norms that the
cooperation levels may periodically oscillate forever, for instance if a TFT player
encounters a “suspicious TFT player” using (0, 1, 0).

In addition to the stationary cooperation levels v and v′ of the two players against
each other, we can also consider the hypothetical cooperation levels s and s ′ which
the players would obtain, in the limit, against a co-player using their own strategy.
An (f, p, q) player reaches a cooperation level

s := q

1 − ρ
(3.31)

against another (f, p, q) player. Interestingly, v − v′ has the same sign as s − s ′
(and as v − s ′, as well as s − v′). In particular, if two of the limits v, v′, s, and s ′ of
cooperation levels are equal, so are all four. It is useful to note that

v − s = ρ(v′ − s). (3.32)

This leads to a simple interpretation linking cooperation levels to reaction norms.
All reaction norms (p′, q ′) lying on the line from (p, q) to (1, 0) (the TFT norm)
have the same asymptotic cooperation level against themselves, and consequently
against each other. If a reaction norm (p′, q ′) lies above the line from (p, q) to (1, 0),
it has a higher asymptotic cooperation level (against itself, and against (p, q)), and
vice versa.

3.8 PAYOFF VALUES

We shall not consider the case u2 = 1, (which occurs only if both strategies have a
deterministic reaction norm).
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Since the decisions of the two players are independent, the player using (f, p, q)

obtains in round n against a player using (f ′, p′, q ′) the payoff

A(n) = Rcnc
′
n + Scn(1 − c′

n) + T (1 − cn)c
′
n + P(1 − cn)(1 − c′

n). (3.33)

In the special case of the Donation game, this reduces to

A(n) = bc′
n − ccn. (3.34)

For the infinitely iterated case w = 1 this means that the average payoff per round is

(R − S − T + P)vv′ + (S − P)v + (T − P)v′ + P, (3.35)

which reduces to

bv′ − cv (3.36)

for the Donation game. These expressions do not depend on the initial propensities
to cooperate, namely f and f ′.

In order to obtain the total payoff for the Donation game with w < 1, we have to
compute

∑
wncn. By equation (3.29),

∑
wncn =

∑
w2n[v + un(f − v)] +

∑
w2n+1[v + un(c1 − v)], (3.37)

which is, up to the factor [(1 − w)(1 − uw2)]−1,

v(1 − uw2) − v(1 − w) − vw(1 − w) + f (1 − w) + c1w(1 − w) (3.38)

= vw2(1 − u) + (1 − w)(f + qw + wρf ′)
= (q + ρq ′)w2 + (1 − w)(f + qw + wρf ′). (3.39)

Collecting the terms in f , f ′, q, and q ′, and setting e := (1 − w)f + wq, e′ :=
(1 − w)f ′ + wq ′, we obtain

∑
wncn = e + wρe′

(1 − w)(1 − uw2)
. (3.40)

Thus the average payoff per round is given by

−c(e + wρe′) + b(e′ + wρ ′e)
1 − uw2

. (3.41)

3.9 THE GOOD, THE BAD, AND THE RECIPROCATOR

WITH ERRORS

We will assume that an intended donation can fail with probability ε, and an intended
refusal with probability kε, for some k ≥ 0. It makes sense to distinguish between
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these two errors in implementation, and in particular to keep the case k = 0 in
mind. For instance, players who want to donate, but are out of funds, are failing to
implement their intention. But it is unlikely that players who do not want to give
anything away are absentminded enough to donate. Thus the three strategies AllC,
AllD and TFT are now given by e1 = (1 − ε, 1 − ε, 1 − ε), e2 = (kε, kε, kε) and
e3 = (1 − ε, 1 − ε, kε), respectively.

Applying expression (3.41) to these three strategies, we obtain a 3 × 3 payoff
matrix M which, at first glance, looks somewhat daunting. But it can be simplified
considerably, especially as the ρ values of the two unconditional strategies are 0
(i.e., p = q). Once more we use the fact that the replicator dynamics in S3 is un-
changed if we subtract, in each column of M , the diagonal from all elements. Up
to the multiplicative factor c(1 − (k + 1)ε), the normalized matrix of payoff values
per round is of the form

M =
⎛
⎝ 0 −1 δσ

1 0 −κσ

δ −κ 0

⎞
⎠ (3.42)

where we used

δ := wε, κ := 1 − w + wkε, σ := bθ − c

c − cθ
, and θ = w(1 − (k + 1)ε).

(3.43)
We note that P̄ = z(1 + σ)Pz. Using

Pz − P̄ = Pz[1 − (1 + σ)z], (3.44)

we see that in the interior of S3, ż = 0 holds whenever g := 1 − (1 + σ)z vanishes.
It is easy to see that g = 0 corresponds to an orbit connecting the fixed points
Fyz := (0, 1 − ẑ, ẑ) and Fxz := (1 − ẑ, 0, ẑ), where ẑ := (1 + σ)−1. On the edge
x = 0 defectors and reciprocators are engaged in a bi-stable competition, their basins
of attraction separated by Fyz. On the edge y = 0, reciprocators andAllC players are
stably coexisting at the point Fxz. On the edge z = 0 of unconditional players, the
defectors dominate the cooperators.

In the interior of S3 we obtain an invariant of motion

V := xAyBzC[1 − (1 + σ)z] (3.45)

with A = κ/θ , B = δ/θ , and C = − 1/θ (note that A+B +C + 1 = 0). The interior
rest point is

F = 1

1 + σ(κ + δ)
(κσ, δσ, 1). (3.46)

The dynamics is shown in figure 3.2. There is a horizontal orbit on the line z = ẑ,
connecting the fixed points Fxz and Fyz (the latter is a Nash equilibrium). Below
this line, all orbits converge to y = 1, the defectors win. The part above the line is
filled with periodic orbits surrounding the unique fixed point: they correspond to
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Figure 3.2 The good, the bad, and the reciprocator, with errors. If z is below a threshold,
defectors win; if z is above the threshold, all three strategies co-exist, their fre-
quencies oscillating periodically.

the constant level curves of the invariant of motion V given by expression (3.45).
The time averages correspond to the values at the rest point F . This rest point is
stable, but not asymptotically stable. We note that the amount of defectors at F can
be made arbitrarily small if the error rate ε is sufficiently reduced. On the other
hand, the basin of attraction of the AllD state (y = 1) can be arbitrarily small if w is
sufficiently close to 1.

3.10 LIMITING CASES

For w = 1 we obtain, up to the multiplicative factor c(1 − (k + 1)ε), the payoff
matrix

M =
⎛
⎝ 0 −1 β

1 0 −kβ

ε −kε 0

⎞
⎠ (3.47)

where

β := 1

c

(
b − c

1 + k
− εb

)
. (3.48)
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Figure 3.3 The infinitely iterated Donation game (w = 1), if there is a positive probability
that intended moves (donation or refusal) are mis-implemented.

If k > 0 (i.e., if there is a positive probability for a donation, even if a refusal is
intended), the dynamics is the same as in figure 3.2, the z coordinate of the separatrix
is given by

ẑ := c

(b − c)

(k + 1)ε

(1 − (k + 1)ε)
. (3.49)

If ε → 0 the separatrix merges with the edge z = 0 and we obtain a system whose
payoff matrix is

M =
⎛
⎝ 0 −c (b − c)/(1 + k)

c 0 −k(b − c)/(1 + k)

0 0 0

⎞
⎠. (3.50)

This is a Rock-Scissors-Paper game: AllD is out-competed by TFT, which is out-
competed by AllC, which is out-competed by AllD in turn. The unique rest point
in the interior of S3 is F = 1

b
(k(b − c)/(k + 1), (b − c)/(k + 1), c). The replicator

dynamics is as in figure 3.3.
If, on the other hand, we first consider the limiting case ε = 0 (with w < 1),

we obtain the dynamics shown in figure 3.1 If we then let w converge to 1, we
obtain fig. 3.4. We note that the limits w → 1 and ε → 0, therefore, do not com-
mute.
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Figure 3.4 The infinitely iterated Donation game (w = 1), in the absence of errors (i.e., ε = 0).

Suppose now that k = 0, i.e., that an intended refusal never fails. This is not
without plausibility. In the limiting case w = 1, the payoff matrix is given, up to the
factor c(1 − ε), by

M =
⎛
⎝ 0 −1 β

1 0 0
ε 0 0

⎞
⎠ (3.51)

with β = [(1−ε)b−c]/c. This yields a completely different picture. The edge x = 0
consists of fixed points. Intuitively, this is clear: errors between two TFT players will
eventually lead to mutual defection in each round, and this can never be redressed
by another error. Thus the TFT players’ average payoff per round will be 0. The rest
points with z ≤ z̄ are Nash equilibria, with

z̄ = c/[b(1 − ε)]. (3.52)

The dynamics looks as in figure 3.5, which is an intriguing mirror-image of fig-
ure 3.1.

3.11 ADAPTIVE DYNAMICS

The reactive strategies (f, p, q) form a continuum. A heterogeneous population
consisting of three or four such strategies can have a complex dynamics displaying
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Figure 3.5 The replicator dynamics of the infinitely iterated Donation game, if only donations
can be mis-implemented, but refusals are not. Cooperation vanishes in the long
run.

limit cycles, heteroclinic cycles, or chaotic oscillations. Rather than pursue this
point, let us ask how a homogeneous population evolves.

More precisely, we shall assume that the resident population is homogeneous, and
that from time to time, a small minority of another type enters. These dissidents can
do better or less well than the residents. Imitation will occur, and usually lead either
to the elimination or to the fixation of this new type. After this, another minority
can try its luck, etc. Such a limiting situation (with very rare innovations and strong
imitation, or in a biological framework with very rare mutations and strong selection)
can be described by a sequence of homogeneous populations. We shall describe an
adaptive dynamics pointing towards the most favorable direction of evolution.

Let us first consider the limiting case w = 1. If we denote with n := (p, q) the
reaction norm of the resident type and with n′ := (p′, q ′) that of the rare invading
minority, we have to check whether invaders or the resident population are doing
better. Individuals of both types are essentially interacting with the resident (since
the dissidents are rare). Let A(n′, n) be the average payoff of a player using the
strategy n′ against a player using n. Hence the type n′ can invade if and only if the
payoff difference A(n′, n) − A(n, n) is positive.

Let us denote, as in section 3.7, the asymptotic cooperation level of a (p, q)

player against another (p, q) player by s, and the asymptotic levels of cooperation
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(1,1)
ALL C

(0,1)

(0,0)

ALL D
(1,0)

TFT

Generous TFT

p

q

Figure 3.6 The cooperation-rewarding zone (shaded in grey) is a subset of the space of reac-
tion norms (p, q) for the infinitely iterated Donation game. The arrows point in
the direction of the most favorable adaptation. This direction is always orthogonal
to the line connecting the norm with (1, 0).

between a (p, q) player and a (p′, q ′) player by v resp. v′. From equation (3.34) we
see that

A(n, n) = bs − cs (3.53)

and

A(n′, n) = bv − cv′. (3.54)

Hence, using ρ = p − q, we obtain

A(n′, n) − A(n, n) = (v′ − s)(bρ − c). (3.55)

The line ρ = c/b, i.e., q = p − (c/b), divides the square [0, 1]2 of reaction norms
(p, q) into two regions (see figure 3.6), namely the southeast corner, (which includes
the TFT strategy (1, 0)) and the rest. As mentioned in section 3.7, the sign of v′ − s

is positive resp. negative depending on whether n′ = (p′, q ′) lies above or below the
line from n = (p, q) to (1, 0). It follows that if n lies in the southeast corner, then
precisely those strategies n′ that are more cooperative can invade: indeed, if s ′ > s,
then v′ > s and the invader’s payoff is larger than that of the resident. We denote this
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region as the cooperation-rewarding zone. Conversely, if the homogeneous popu-
lation adopts a strategy n = (p, q) that does not lie in this cooperation-rewarding
zone, then every less cooperative strategy can invade. If n lies on the boundary of
the cooperation-rewarding zone, i.e., satisfies ρ = c/b, then all strategies do exactly
as well, against n, as n does against itself.

If the invader’s strategy n′ is close to the resident’s strategy n, we can approximate
the invader’s payoff difference A(n′, n)−A(n, n) by its first-order Taylor expansion,
i.e., by

(p′ − p)
∂A

∂p′ (n
′, n) + (q ′ − q)

∂A

∂q ′ (n
′, n), (3.56)

where the partial derivatives of the function n′ �→ A(n′, n) are evaluated at n′ = n.
We accordingly define the adaptive dynamics in the space [0, 1]2 of reaction norms
(p, q) as

ṗ = ∂A

∂p′ (n
′, n) q̇ = ∂A

∂q ′ (n
′, n), (3.57)

where the derivatives are evaluated at n′ = n. This yields a vector field pointing,
for every homogeneous state n, into the direction that is most advantageous for the
invader.A straightforward computation yields the derivatives of A(n′, n) = bv−cv′.
One obtains

ṗ = q
bρ − c

(1 − ρ)(1 − ρ2)
, (3.58)

q̇ = (1 − p)
bρ − c

(1 − ρ)(1 − ρ2)
. (3.59)

Thus the vector (ṗ, q̇) at the point n = (p, q) is orthogonal to the line from n
to the TFT corner (1, 0). In the cooperation-rewarding zone, and only there, this
vector points upwards: if it pays to increase p (the gratitude), it pays to increase q

(forgiveness), and vice versa.
The same holds for the general Prisoner’s Dilemma case (if w = 1), except that the

cooperation-rewarding zone is of a different shape: in equations (3.58) and (3.59),
the term bρ − c is replaced by

(R − S − T + P)q

(
1 + ρ

1 − ρ

)
+ (T − P)ρ + S − P. (3.60)

There is no evolutionary tendency towards TFT: this strategy is a pivot, rather than
a target, of adaptation.

3.12 GENEROUS TIT FOR TAT

Any strategy n at the boundary of the cooperation-rewarding zone, where q = p −
(c/b), has the property that every strategy n′ yields the same payoff against n, namely
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Figure 3.7 The evolution of a finite population with randomly chosen (p, q) strategies. First,
“AllD” seems to win, then “TFT.” But in the end, “Generous TFT ” carries the
day. (After Nowak and Sigmund (1992).)

bq. The largest such value, namely b−c, is obtained for (1, 1−(c/b)). This strategy
is called Generous TFT (GTFT ). A Generous TFT player always cooperates after a
co-player’s C, but does not always defect after a co-player’s D. Rather, such a player
forgives with a well-specified probability, namely (b − c)/b.
Generous TFT shows up in individual based computer simulations, see figure

3.7. Let us consider a large fictitious population of players who are assigned strate-
gies chosen at random in the (p, q) square. Thus the initial population is not at
all homogeneous. It can consist of hundreds of different types. Let us assume that
players meet randomly and play a repeated Donation game against each other, with
a large number of rounds. Let us furthermore assume that they update their strat-
egy from time to time, by imitating more successful players. Quickly, most of the
strategies will be eliminated from the population. In general, only three out of the
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initial set of strategies will play a role: those closest to AllD, TFT, and GTFT. We
shall denote these approximations by “AllD”, “TFT ”, and “GTFT ”, respectively.
What one observes at first is a strong tendency towards “AllD.” The other strategies
seem hopelessly outclassed. But then, it frequently happens (for instance if “TFT ”
is below the line from “AllD” to TFT ) that “TFT ” experiences an upsurge, and
displaces “AllD.” But this is not the end of the story. The population has reached
the cooperation-rewarding zone, and strategies that have higher p and q values can
return. In particular, the more tolerant “GTFT ” supersedes the stern “TFT,” and
becomes fixed in the population. The striking point is that “GTFT ” on its own
can never beat “AllD.” It needs the catalytic action of “TFT.” It seems almost like
the succession of three social phases: first the “dog-eat-dog” world of AllD, then the
“law of the talion” represented by TFT and finally the age of the tolerant, but not
too tolerant GTFT.

Similar results hold for the adaptive dynamics of the Donation game if w < 1. In
this case, the probability f to cooperate in the initial round is an additional trait.
The adaptive dynamics at n = (f, p, q) is given by

ḟ = bwρ − c

1 − w2ρ2
. (3.61)

ṗ = ḟ

(
w

1 − w

) (
e

1 − wρ

)
(3.62)

q̇ = ḟ

(
w

1 − w

) (
1 − e

1 − wρ

)
. (3.63)

Here, e = (1−w)f +wq as in section 3.8. Once again, all the components have the
same sign (because 0 < e < 1 − wρ), so that we may again speak of a cooperation-
rewarding zone. A direct computation shows that we can display the adaptive dy-
namics in a suggestive way:

ḟ = 1 − w

1 − w2ρ2
[A(AllC, n) − A(AllD, n)] (3.64)

ṗ = w

1 − w2ρ2
[A(n, n) − A(AllD, n)] (3.65)

q̇ = w

1 − w2ρ2
[A(AllC, n) − A(n, n)]. (3.66)

3.13 MEMORY-ONE STRATEGIES

So far, we have considered reactive strategies that depend only on the co-player’s
previous move. But it seems reasonable to assume that players also take their own
move into account. It is probably easier to forgive a co-player’s defection if it was
matched by one’s own defection, rather than if it exploited one’s own coopera-
tiveness. Hence we shall consider stochastic strategies (f, qR, qS, qT , qP ) ∈ [0, 1]5
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where f , as before, is the propensity to play C in the initial round, and qR, qS, . . .

are the propensities to play C after having experienced an R, S, . . . in the previous
round.

Let us assume that player I using (f, qR, qS, qT , qP ) encounters a co-player II
using (f ′, q ′

R, q ′
S, q

′
T , q ′

P ). Again, we are dealing with a Markov chain; in every
round, the state is specified by the payoff obtained by player I . The transition
probabilities are given by the matrix

Q =

⎛
⎜⎜⎜⎝

qRq ′
R qR(1 − q ′

R) (1 − qR)q ′
R (1 − qR)(1 − q ′

R)

qSq
′
T qS(1 − q ′

T ) (1 − qS)q
′
T (1 − qS)(1 − q ′

T )

qT q ′
S qT (1 − q ′

S) (1 − qT )q ′
S (1 − qT )(1 − q ′

S)

qP q ′
P qP (1 − q ′

P ) (1 − qP )q ′
P (1 − qP )(1 − q ′

P )

⎞
⎟⎟⎟⎠ , (3.67)

(again one player’s S is the other player’s T ).
The initial probabilities for the four states are given by the vector

x(0) = (ff ′, f (1 − f ′), (1 − f )f ′, (1 − f )(1 − f ′)), (3.68)

which we denote by f . In the next round, the probabilities are given by fQ, and in
round n by fQn. For n ≥ 1, the probabilities need no longer be in linkage equilibrium
(the matrix Q satisfies qk1qk4 = qk2qk3 but not q1kq4k = q2kq3k). If we denote by g
the vector (R, S, T , P ), then the payoff for player I in round n is given by

A(n) = g · fQn. (3.69)

For w < 1 the average payoff per round, as shown in equation (3.8), is (1 − w)∑
wnA(n), i.e.,

(1 − w)g · f(Id − wQ)−1, (3.70)

where Id is the 4 × 4 identity matrix. For w = 1 we must proceed differently. If
the matrix Q is mixing, i.e., if there exists an m such that all entries of Qm are
strictly positive, then there exists a unique vector π ∈ S4 that is a left eigenvector of
Q for the eigenvalue 1, i.e., π = πQ. The components πR, πS, πT , and πP denote
the stationary probabilities of the four states, and we have

fQn → π (3.71)

for every initial state f . The average payoff per round, in this case, is g · π , which
for the Donation game reduces to

b(πR + πT ) − c(πR + πS). (3.72)

3.14 THE SPACE OF REACTION NORMS

For w = 1 we can neglect the initial probability to cooperate and concentrate on
the space of reaction norms (qR, qS, qT , qP ). This unit cube is spanned by its six-
teen corners, i.e., by the quadruples (uR, . . . , uP ) where ui is 1 or 0 depending on
whether the strategy prescribes to use C or D after outcome i ∈ {R, S, T , P }. We
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can number these strategies as Sj , where j ranges from 0 to 15 and is given, in
binary notation, by uRuSuT uP . Hence AllD= (0, 0, 0, 0) is S0, AllC= (1, 1, 1, 1)

is S15, TFT = (1, 0, 1, 0) is S10, etc. If we compute the transition matrix P for an
Si player meeting an Sj co-player, we find that in general it is not irreducible, let
alone mixing: there are too many zeros, only one entry in each row does not vanish.
Hence the stationary distributions are not uniquely determined.

This is different if we assume that every strategy is subject to errors in implemen-
tation: with a probability ε, the move is the opposite of what the strategy prescribes.
Then each 1 turns into 1 − ε and each 0 into ε. Strategy Sj turns into Sj (ε). For
instance, TFT, i.e., S10 = (1, 0, 1, 0), turns into S10(ε) = (1 − ε, ε, 1 − ε, ε), etc.

It is straightforward to compute the payoff for strategy Si(ε) against Sj (ε). The
corresponding transition matrix is Q(ε), its elements are quadratic polynomials in
ε. We can develop

Q(ε) = Q + εQ1 + ε2Q2, (3.73)

where Q is a stochastic matrix with exactly one 1 in each row and Q1 and Q2 have
row sums 0. We may view Q(ε) as a perturbation of the matrix Q and treat the
problem of finding the left eigenvector s(ε) of Q(ε) as a perturbation problem. Thus
we set

s(ε) = π + εx + ε2y + · · · , (3.74)

where the stochastic vector π is a solution of the unperturbed eigenvalue problem
πQ = π , whereas the components of the vectors x and y must sum up to 0. By
expanding s(ε)Q(ε) = s(ε) and comparing powers of ε, this yields not only the
limiting value π for the payoff (if ε → 0), but also the first order term x.

Let us consider, for example, S8 = (1, 0, 0, 0) against S11 = (1, 0, 1, 1). S8 is also
called Grim, because it is a grim variant of TFT, prescribing to defect except after
a round of mutual cooperation; whereas S11, also know as Firm But Fair (FBF) is
a tolerant brother of TFT, prescribing to play C if both players defected in the
previous round. In that case,

Q =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , (3.75)

which is a reducible matrix, and

Q1 =

⎛
⎜⎜⎝

−2 1 1 0
1 0 −2 1
0 1 1 −2
1 0 −2 1

⎞
⎟⎟⎠ . (3.76)

The equation πQ = π yields π2 = 0 and π3 = π4, i.e., π = (1 − 2a, 0, a, a) for un-
known a. The equation πQ1 + xQ = x yields a = 2/5, so that π = (1/5, 0, 2/5,

2/5). We note that in this case, we did not need the ε2 term, but sometimes we do.
In table 3.1 we display, for the Donation game, the resulting 16 × 16 matrix

A, with aij denoting the payoff for an Si(ε) player against a Sj (ε) player (or more
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precisely, its limit for ε → 0). We note an obvious symmetry: if aij = xb − yc, then
aji = yb − xc.

If the resident population is playing S0, i.e., AllD, then no strategy can invade
except S2 = (0, 0, 1, 0), the “Grim” strategy S8 = (1, 0, 0, 0), and the TFT strategy
S10 = (1, 0, 1, 0). Since S2 is dominated by S10 (in the absence of other strategies),
this means thatTFT can overcomeAllD. ButTFT can be superseded by more tolerant
strategies, such as S15, i.e.,AllC, and these can in turn be displaced byAllD. However,
this tendency to cycle can be broken up by S9. This strategy dominates S10, S2, and
(if b > 3c) also S8, and it cannot be invaded by AllD as long as b > 2c, i.e., the
cost-to-benefit ratio is less than 1/2.

We note that S9 is the only strategy that cannot be invaded by any other Si (for
b > 3c). Moreover, S9 is very good against itself: a population of S9 players earns
b − c, which is the best a homogeneous population can achieve. Only S14 and S15

do as well, but these are easy prey to S1 or S0.

3.15 WIN-STAY, LOSE-SHIFT

The strategy S9 = (1, 0, 0, 1), for reasons difficult to fathom, is called Pavlov. It has
the remarkable property of being error-correcting. If two players using Pavlov play
against each other, they will cooperate most of the time. If player II, say, defects
by mistake, then in the next round both players will play D, and thereafter resume
mutual cooperation, like an old couple after a row (see fig. 3.8). Moreover, if a
Pavlov player plays against AllC, it will shamelessly exploit the co-player. After
the first accidental D, it will continue playing D until a further error occurs. This is
an important property for safeguarding the population against eventual invasions by
defectors. ATFT population, for instance, will quickly be subverted byAllC players,
and these will be open to exploitation by AllD.

(a)

(b) TFT-player I

(c) ALL  C-player I

(d) ALL  C-player I

C  C  C ... C  C  D  C  C  ...

C  C  C ... C  D  D  C  C  ...

C  C  C ... C  C  D  C  D  ...

C  C  C ... C  D  C  D  C  ...

C  C  C ... C  C  C  C  ...

C  C  C ... C  D  D  D  ...

C  C  C ... C  C  C  C  ...

C  C  C ... C  D  C  C  ...

Pavlov-player II

Pavlov-player I

TFT-player II

Pavlov-player II

TFT-player II

Figure 3.8 The effect of an erroneous defection in the iterated Prisoner’s Dilemma game.
The arrow denotes the mis-implemented move in each run.
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Payoff for I

Next move for I

C C D D

C D C D

C D D C

R S T P

Player II

Pavlov-player I

Figure 3.9 Pavlov as a Win-Stay, Lose-Shift strategy. After obtaining the larger payoff values
T and R, a Pavlov player repeats the former, successful move. After obtaining the
smaller payoff values P and S, the Pavlov player switches to the other move.

The strategy S9 prescribes playing C if and only if, in the previous round, the
co-player did the same as the other player. There is a suggestive property behind
this mechanism, see figure 3.9. The strategy effectively repeats the previous move
if it obtained a positive payoff (a reward, such as b − c, or better still the temptation
b). It switches to the other move if the payoff was non-positive (payoff 0 if both
players defected, or the sucker’s payoff −c). This is the simplest conceivable learning
mechanism, well-known to animal trainers and parents alike. Win-Stay, Lose-Shift
is a wide-spread maxim of animal behavior.

The condition b > 2c implies that Pavlov is not dominated by AllD, but that the
two strategies are engaged in a bi-stable competition. The condition b > 3c implies
that Pavlov is risk-dominant.

It is interesting to consider finite populations in this context. Let us consider the
two cases (a) b = 5c/2 and (b) b = 4c, a population size M = 100 and selection
strength s = 1/10. Let us also assume the adiabatic case (very small innovation
rates µ, see section 2.17). A population consisting only of the types S0 =AllD and
S10 = TFT will be dominated by TFT. (In the numerical example, TFT occurs with
97 percent in the stationary distribution given by expression (2.90) in case (a), and
with 99 percent in case (b).) This reflects the fact that TFT dominates AllD. But
if AllC= S15 is also allowed in the population, then the stationary distribution is
dominated by AllD (64 percent in case (a) and 66 percent in case (b)). Now let
us consider a population with the strategies S9 =Pavlov, AllC, and AllD. If b > 3c,
Pavlov risk-dominatesAllD. This corresponds to example (b), and we see indeed that
the stationary distribution consists of 90 percent Pavlov. If 2c < b < 3c, AllD risk-
dominates Pavlov, and we find 80 percent of defectors in the stationary distribution.
This changes dramatically if we also include TFT: in that case, example (a) leads to
50 percent Pavlov (and example (b) to 95 percent). Thus TFT is not the winner, but
can act as a king-maker—decisive for the outcome of the contest between AllD and
Pavlov.

In the general Prisoner’s Dilemma game, Pavlov acts according to a threshold
separating the two better outcomes T and R from the two worse outcomes P and S.
A move yielding an outcome above the aspiration level is repeated, a move yielding
an outcome below the aspiration level is not. One can consider other aspiration lev-
els. If the aspiration level is more ambitious, content only with T, this leads to the
strategy S1 = (0, 0, 0, 1), a bully-like strategy that only cooperates after a mutual
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defection. It relentlessly defects whenever it can exploit a sucker, but switches as
soon as it meets a defection. This is an overly ambitious Win-Stay, Lose-Shift strat-
egy, and it fails. Similarly, a more modest aspiration level (between P and S) leads
to S8 = (1, 0, 0, 0), which is doing rather well, especially in a population of defec-
tors. Finally, one could also view S3 = (0, 0, 1, 1) and S12 = (1, 1, 0, 0) as extreme
forms of Win-Stay, Lose-Shift strategies. The former switches its move from one
round to the next, never satisfied by any outcome. The latter never switches except
by mistake, and always repeats itself, apparently content with every outcome. Obvi-
ously, it is important to have the “right” aspiration level. Pavlov is, in this sense, the
most balanced of all Win-Stay, Lose-Shift rules. It is also doing well in the iterated
Snowdrift game, which is described in matrix (3.4).

3.16 AUTOMATA

Memory-one strategies with deterministic reaction norms can easily be implemented
by finite state automata. For instance, Pavlov can be implemented by an automaton
with only two inner states, which we shall denote by Same andDiff . The automaton
is in state Same if in the previous round, the player experienced payoff R or P (i.e.,
both players cooperated, or both defected), and it is in state Diff otherwise. In each
state, the automaton prescribes the next move, i.e., C or D. The analysis of Pavlov
can then be performed very easily by means of a directed graph, see figure 3.10. The
nodes of the graph are the states Same andDiff of the player. Two directed arrows are
leaving from each node, one solid and the other dashed. The solid arrow describes
the transition if the player uses the move prescribed by Pavlov (i.e., C in Same and D
inDiff ). The dashed arrow describes the transition if the other move is used. In both
cases, the co-player is assumed to follow the Pavlov strategy. Along each arrow, one
can see the corresponding payoff of the player. Clearly, it is best always to follow
the solid arrow, if 2R > T +P (or, in the case w < 1, if R+wR > T +wP ). For the
Donation game, this reduces to the familiar condition b > 2c (resp. w(b−c) > c). If
this condition holds, it is always best, against a Pavlov player, to do what the Pavlov
rule prescribes. In a population of Pavlov players, it is best to follow suit. Similar
graphs can be studied for all memory-one strategies. In general, this will be more
complicated than for Pavlov, where the two players are always in the same state.
But the four states (C, C), (C, D), (D, C) and (D, D) will always be enough to

P

T

SR Same Diff

Figure 3.10 The Pavlov strategy described by a two-state automaton. The co-player is as-
sumed to play Pavlov. The solid and dashed arrows respectively describe the
transition if the player follows the Pavlov strategy or deviates from it. Pavlov is
a best reply to itself if 2R > T + P (in the Donation game, if b > 2c).
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Same

P

R

S

P

R

T

T

S

(C,D)

(C,C) (D,D)

(D,C)

Figure 3.11 The TFT strategy described by a finite automaton. It is not a best reply to itself
if 2R > T + S, a condition that always holds for the Donation game.

describe the automaton (the first entry describes the move of the player, the second
that of the co-player). In figure 3.11, we describe what happens when the co-player
uses the strategy TFT. The solid arrow leaving a node describes the transition if the
player, at that node, also uses the move prescribed by TFT, and the dashed arrow
the outcome of the alternative move.

We note that TFT is not the best answer against itself in the Donation game. In
state (C, D), the best move against a TFT player would be to cooperate (and to
reach state (C, C)). However, TFT calls for one to play D, and this locks two TFT
players into an endless cycle of unilateral defections. The payoff per round, then, is
(b − c)/2, which is less than the payoff per round b − c obtained if the node (C, C)

had been reached. Of course, two TFT players would start out at node (C, C), and in
that stateTFT prescribes the right move. But an error leading to node (C, D) displays
the fatal weakness of TFT. More generally, this strategy is not a best answer to itself
if 2R > T + S.

The method can be extended for all strategies where memory depends on the last
two, or the last N rounds. But we shall presently see that some very simple strategies
implemented by finite automata cannot be described as strategies conditioned on a
prescribed number of rounds.

3.17 CONTRITE TIT FOR TAT

An interesting example for this is CTFT (Contrite TFT ). Imagine that a TFT player
who mis-implemented a C move is aware of having done wrong, and accepts meekly
that the co-player, in the next round, defects in retaliation. In this case, the point-
less vendetta of alternating unilateral defection can be avoided and mutual coop-
eration resumed. To model this, let us introduce the standing of a player, which
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P

R

B A

T

S

T

C

R

(b,g) (g,g) or (b,b) (g,b)

Figure 3.12 The Contrite TFT strategy described by a 3-state automaton. It always is a best
reply to itself.

can be g or b (“good” or “bad”). Players start out in good standing and keep it
until they commit an unjustified defection (i.e., until they play D while the co-
player was in good standing). The good standing is regained by playing C. In any
given round, a player can cooperate, commit a justified defection or an unjustified
defection.
Contrite TFT is the strategy that calls for one to cooperate except when in good

standing while the other player is not. This means that the player defects when
provoked, but not otherwise. Thus if two Contrite TFT players engage in a repeated
Prisoner’s Dilemma game, they will always cooperate, except by mistake.After such
a mistake, they will resume cooperation, and accept the co-player’s retaliatory D
without feeling abused.

As before, we can describe the game with a graph, and check that if the other
player uses Contrite TFT, it is always best to also use the move prescribed by Con-
trite TFT, see figure 3.12. The nodes of the graph, i.e., the state of the game, will
be A, B, and C. A corresponds to (g, g) or (b, b), B to (b, g) (the player’s standing
is bad and the co-player’s good), and C to (g, b). We note that if one player is in
state A, so is the other, whereas if one player is in state B, the other is in state C and
vice versa. The rule for playing Contrite TFT calls for one to use C when in state
A or B, and to defect (i.e., use D) in state C only. The corresponding graph shows
immediately that it is best, against a Contrite TFT player, also to use the Contrite
TFT rule.

TheContrite TFT strategy cannot be described as a memory-one strategy. Neither
does it follow a rule that depends only on the outcome of a given number N of
preceding rounds. Indeed, suppose that we observe a string of mutual defections in
the previous N rounds. If we do not know what happened before these N rounds,
we cannot say who of the two players is in good, and who is in bad standing. Hence
we cannot specify what a Contrite TFT player ought to do in the next round.

It is interesting to compareContrite TFT and Pavlov for the Donation game.Con-
trite TFT is always a best response to itself, Pavlov only if b > 2c. Both strategies
cooperate with their like, and can easily return to mutual cooperation after an ac-
cidental error in implementation. Contrite TFT has the huge advantage that it is as
good as TFT at invading a population of AllD players; Pavlov, as we have seen, is
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hopeless at this task, and needs a retaliatory strategy to pave the way. On the other
hand, in a society dominated by Contrite TFT, indiscriminate altruists do just as
well and hence can spread by neutral drift, eventually allowing AllD to invade and
destroy the cooperative regime. By contrast, a society of Pavlov players will not
allow AllC players to spread. As soon as the first error of implementation occurs, an
AllC player will be exploited to the hilt.

If Pavlov does not fare well, i.e., if c < b < 2c, another strategy based on standing
fares as well as Contrite TFT: this is Remorse, a strategy where a player cooperates
only when in bad standing, or if both players had cooperated in the previous round.
After a unilateral error, two Remorse players defect twice. If a Remorse player
encounters a Pavlov player, both obtain an average payoff of 5(b − c)/7 per round.

3.18 ERRORS IN PERCEPTION

Contrite TFT has its Achilles heel, too. So far, we have only considered errors in
implementation. What about errors in perception? In that case, players can believe
themselves to be in good standing, whereas their co-player sees them in bad standing.
Two Contrite TFT players will, in such a situation, relentlessly inflict D upon each
other, both believing that their own moves are justified defections and that their
co-player’s moves are not. In contrast, if an error in perception occurs between
two Pavlov players, cooperation will be smoothly resumed after the usual mutual
punishment round.

In the realm of memory-one strategies, if there is a probability ε to mis-implement
a move, then the propensity qR to play C after a round with outcome R is replaced
by the propensity (1 − ε)qR + ε(1 − qR), etc., so that the “correction term”

ε(1 − 2qR, 1 − 2qS, 1 − 2qT , 1 − 2qP ) (3.77)

has to be added to the reaction norm (qR, qS, qT , qP ). If the error affects the per-
ception of the co-player’s move (i.e., if the player confuses an R with an S, or a T

with a P ) then qR turns into (1 − ν)qR + νqS etc., and the correction term is

ν(qS − qR, qR − qS, qP − qT , qT − qP ). (3.78)

If the error µ affects the perception of the player’s own move (i.e., a player confuses
an R with a T , or an S with a P ), then the correction term is

µ(qT − qR, qP − qS, qR − qT , qS − qP ). (3.79)

If both types of errors in perception are admitted, then the reaction norm of TFT,
i.e., (1, 0, 1, 0), turns into (1−ν, ν, 1−ν, ν), and Pavlov (1, 0, 0, 1) is modified into
(1 − (ν +µ), ν +µ, ν +µ, 1 − (ν +µ)), whereas the unconditional strategies AllD
and AllC are unaffected. For w = 1 and the limit ε → 0, errors in implementation
yield as payoff (2P +2S+T )/5 for an S8 player using theGrim strategy (1, 0, 0, 0)

against an S2 player using (0, 0, 1, 0), whereas errors in perceiving the opponent’s
move yield as payoff (S + T )/2, etc.

Thus it is important to consider different possibilities of errors. For instance, we
might make (as in section 3.10) the plausible assumption that errors occur only
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if one wants to implement a C, but not if one decides to play D. In this case, the
stationary distribution for an S8(ε) player against an S11(ε) player is (0, 0, 1/2, 1/2)

instead of (1/5, 0, 2/5, 2/5) (see section 3.14), and thus the payoff is b/2 instead
of (3b − c)/5 (up to terms in ε). The tolerant FirmButFair player tries vainly, every
second round, to resume cooperation. The payoff for TFT against itself is worse
now (namely 0), but the payoff in a Pavlov population remains unchanged. Again,
a Pavlov population cannot be invaded if b > 2c.

Even among automata with only three or four inner states, there exists a bewil-
dering number of strategies. It seems hard to figure out which one would be selected
by evolution. Individual based simulations display a lot of contingencies, and offer
few robust predictions. We run up against a complexity wall. On the other hand, it
seems tempting to interpret the “inner states” of automata with our emotions, such
as anger at being provoked, guilt at having deviated from the norm, etc.

3.19 TRIGGERS AND EQUALIZERS

The so-called folk theorem on repeated games is a collection of results. In the sim-
plest setup, for two players I and II engaged in an infinitely repeated Donation game,
it states that any pair (PI, PII) of payoff values (per round) with 0 ≤ PI, PII ≤ b − c

can be realized by a Nash equilibrium pair of strategies. The two players simply
have to follow so-called trigger strategies: this means playing a well-specified se-
quence of moves leading to (PI, PII), but switching to a relentless, infinite sequence
of D moves as soon as the co-player deviates. It is obvious, then, that the co-player
has no incentive to deviate: there is no better alternative than to follow the specified
sequence of moves. In fact, any pair of payoff values can be reached such that PI and
PII are positive and (PIPII) in the convex hull spanned by (0, 0), (b,−c), (−c, b),
and (b − c, b − c), see figure 3.13.

This result can be extended in many ways, by considering iterations of other
games (the lower bound 0 will then have to be replaced by the maximin payoff,
i.e., the highest payoff that players can guarantee themselves, irrespective of their
co-player’s strategy), by introducing a discount on future payoffs (or allowing the
iteration to stop with a positive probability), by admitting the possibility that players
mis-implement their moves, etc.

The concept of a trigger strategy is often criticized on the grounds that it is too
stern: it is hard to imagine that players will commit themselves forever to ruinous de-
fection, if their co-player made a mistake just once, possibly through force majeure.
Nevertheless, trigger strategies are an essential tool for analyzing games between
rational players. In evolutionary game theory, however, trigger strategies play a less
conspicuous role.

It turns out that a variant of the folk theorem can easily be displayed in the
context of memory-one strategies. Indeed, there exist strategies that act as equalizers,
in the sense that co-players always obtain the same payoff, irrespective of their
strategy.

For the infinitely repeated Prisoner’s Dilemma game, there exist, for every value
π between P and R, memory-one strategies q = (qR, qS, qT , qP ) such that every op-
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(b,–c)

(b–c,b–c)

(0,0)

(–c,b)

PI

PII

Figure 3.13 Any pair of payoff values (PI, PII) in the shaded region can be obtained if the
two players I and II use the corresponding equalizer strategy for the infinitely
repeated Prisoner’s Dilemma game.

ponent obtains the long-run average payoff π against a player using such a strategy.
The reaction norm q is given by

(1 − (R − π)a, 1 − (T − π)a, (π − S)a, (π − P)a), (3.80)

where a > 0 is any real number such that 1
a

≥ max{T − π, R − π, π − S, π − P }.
(The condition on a guarantees that the qi are probabilities.)

Indeed, let us denote by pi(n) the conditional probability that the player II uses
the move C in round n+1, given that the n-th round resulted in outcome i for player
I; and let si(n) be the probability of that outcome. By conditioning on round n,
we see that sR(n + 1) is given by

sR(n)pR(n)[1 − (R − π)a] + sS(n)pS(n)[1 − (T − π)a]
+ sT (n)pT (n)(π − S)a + sP (n)pP (n)(π − P)a. (3.81)

Similarly, sS(n + 1) is given by

sR(n)(1 − pR(n))[1 − (R − π)a] + sS(n)(1 − pS(n))[1 − (T − π)a]
+ sT (n)(1 − pT (n))(π − S)a + sP (n)(1 − pP (n))(π − P)a. (3.82)

Summing these equations yields the probability that player I chooses move C in
round n + 1, namely sR(n + 1) + sS(n + 1). It is given by

sR(n)[1−(R−π)a]+sS(n)[1−(T −π)a]+sT (n)(π−S)a+sP (n)(π−P)a. (3.83)

Hence

sR(n) + sS(n) − sR(n + 1) − sS(n + 1) (3.84)
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is given, up to the factor a, by

RsR(n)+SsT (n)+T sS(n)+PsP (n)−π [sR(n)+ sS(n)+ sT (n)+ sP (n)]. (3.85)

Since the si(n) sum up to 1, this is just A′(n) − π , where A′(n) is player II’s payoff
in the n-th round. (We must bear in mind that one player’s S is the other player’s
T .) Summing up for n = 0, . . . , N and dividing by N + 1, we obtain

sR(0) + sS(0) − sR(N) − sS(N)

a(N + 1)
= A′(0) + · · · + A′(N)

N + 1
− π, (3.86)

which yields

lim
N→∞

A′(0) + · · · + A′(N)

N + 1
= π. (3.87)

3.20 THE ALTERNATING PRISONER’S DILEMMA

In many real-life instances of direct reciprocity, the two players alternate in their
roles of donor and recipient, whereas in most of the literature, and in our treatment
so far, the two players decide simultaneously. Usually, this assumption is of small
effect. But in some situations, important differences can arise.

In an alternating Prisoner’s Dilemma (or the alternating Donation game), to co-
operate means to play C when it is one’s turn to do so. This can affect strategies and
payoffs. For instance, if two TFT players engage in an iterated Prisoner’s Dilemma
of the usual, simultaneous kind, and if one player defects by mistake, both players
will subsequently play C and D in turn. In the alternating Prisoner’s Dilemma game,
if a unilateral defection occurs by mistake, the result will be a sequence of mutual
defections: both players play D, see figure 3.14. The average payoff will be the same
as in the simultaneous case, and in fact, the interplay between TFT, AllC, and AllD
remains unchanged. But if two Pavlov players, for instance, are matched against
each other, the outcome is very different. A mistaken D is answered by a D, which
elicits a C, which is followed by a D in turn. Thus each player, after the erroneous
defection, keeps playing two D’s and one C periodically. With probability 2/3, the

(a)

(b)

TFT-player I C     C     C     C     D     D   ...

C     C     C     D     D     D   ...TFT-player II

C     C     C     C     D     D     C     D   ...

C     C     C     D     C     D     D   ...Pavlov-player II

Pavlov-player I

Figure 3.14 The effect of an erroneous defection in the alternating Prisoner’s Dilemma game,
(a) between twoTFT players, (b) between twoPavlov players. The arrow denotes
the mis-implemented move in each run.
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next mistake will not affect this regime. Only with probability 1/3 will it redress
the game to a run of mutual cooperation. The average payoff is (b − c)/2 in the
infinitely repeated case (w = 1).

If players alternate in being the potential donor, then two consecutive rounds of
the alternating game correspond to one round of the simultaneous game. Let us
assume that the memory of each player covers the previous two rounds (i.e., one
decision by each player on whether to donate or not). The outcomes will be denoted
in the obvious way by R, S, T , and P , and the strategies for the infinitely iterated
alternating game by the propensities qR , qS , etc., to cooperate after outcome R, S, etc.
The transition probabilities for a (qR, qS, qT , qP ) player against a (q ′

R, q ′
S, q

′
T , q ′

P )

player are given by the matrix

Q =

⎛
⎜⎜⎜⎝

qRq ′
R qR(1 − q ′

R) (1 − qR)q ′
S (1 − qR)(1 − q ′

S)

qSq
′
T qS(1 − q ′

T ) (1 − qS)q
′
P (1 − qS)(1 − q ′

P )

qT q ′
R qT (1 − q ′

R) (1 − qT )q ′
S (1 − qT )(1 − q ′

S)

qP q ′
T qP (1 − q ′

T ) (1 − qP )q ′
P (1 − qP )(1 − q ′

P )

⎞
⎟⎟⎟⎠ , (3.88)

which is quite different from matrix (3.67). The payoff can be computed as before.
It turns out that in the alternating Prisoner’s Dilemma, Pavlov loses much of its
appeal. As table 3.2 shows, its place is taken up by Firm But Fair, with reaction
norm S11 = (1, 0, 1, 1). This strategy is error-correcting and achieves the highest
payoff against itself, namely b − c, just as S14 and S15 do. But in contrast to these
latter two strategies, Firm But Fair cannot be invaded by other strategies, such as
AllD, as long as b > 2c. However, the strategy S14 can enter by neutral drift. On the
other hand, AllD= S0 can always be invaded by S8 and S10, which in turn can be
invaded by S11. If we consider only errors in implementing a cooperative move, we
see as in section 3.14 that AllD can be subverted by many strategies through neutral
drift, and that among these, S2, S6, S10, and S14 give way to Firm But Fair.

If we restrict attention to reactive strategies, for which qR = qT = p and qS =
qP = q, we find that the payoffs for the donation game are exactly as for the simul-
taneous game, although the sequence of moves can be quite different (as we have
seen in the instance of two TFT players). Again, Generous TFT emerges as the win-
ner. Within the realm of strategies given by finite automata, Contrite TFT is as good
in the alternating as in the simultaneous Prisoner’s Dilemma, and as vulnerable to
errors in perception.
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Chapter Four

Indirect Reciprocity: The Role of Reputation

4.1 INDIRECT RECIPROCITY

In the previous chapter, we have investigated strategies for playing the Donation
game repeatedly against the same co-player. In this chapter, we assume that the
same game is played repeatedly, but always against another co-player. Third parties
have to return the helpful action. This introduces major differences between direct
and indirect reciprocation, as we shall presently see.

The Tit for Tat strategy, which played such a basic role in the previous chapter,
discriminates according to the outcome of the previous round. In direct reciprocity,
what happens to a player is caused by what the co-player does. But in the context of
indirect reciprocity, this is no longer the case: the two players had different partners
in their previous rounds. Accordingly, there are two different ways of reciprocating.
Players can either base their decision (to donate or not) on what happened to them
in the previous round; or else, they can base their decision on what their co-player
did in the previous round.

Roughly speaking, players can either be affected by a diffuse feeling of
indebtedness—“Somebody helped me, I feel elated and therefore will help another
person,”—or else, they can be moved by a feeling of appreciation—“My co-player
acted graciously, not to me but to another person, and I will now help my co-player
in return.”

In one case, A gives to B and therefore B gives to C. We may view this as
misguided reciprocation: the return is addressed to C instead of A. In the other case,
A gives to B and therefore C gives to A, see figure 4.1. This may be termed vicarious
reciprocation: A receives the deserved return, not from B but from a third party C.
In one case, the reciprocator received a benefit, and in the next round expresses
gratitude to a person who did not help him. In the other case, the reciprocator
rewards a benefactor—but for an action that benefitted someone else. Vicarious and
misguided reciprocity are also called downstream and upstream reciprocity. In the
former case, players incur costs in the hope of recouping them later; in the other
case, they can afford the costs because of previous benefits.

Interestingly, both factors seem to show up in economic experiments. But in the
theoretical models considered so far, vicarious reciprocity, i.e., rewarding, works
fairly well, whereas misguided reciprocity, i.e., thanking, seems much more difficult
to explain.

Another difference between direct and indirect reciprocation is that two players
engaged in direct reciprocation experience the same number of rounds in parallel.
(They do so even if they alternate in the roles of the donor or the recipient.) By
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Vicarious

reciprocity

Misguided

reciprocity

C A B

BA C

Figure 4.1 Vicarious and misguided reciprocity. In the first case, C observes the interaction
between A and B and then decides whether or not to help A. In the other case,
whether B received some help from A determines whether B helps C in turn.

contrast, the histories of two players interacting via indirect reciprocity intersect
only once, and thus the players have a different numbering of their rounds: a donor
in the second round may be matched with a recipient who has reached the fifth round.
Some models assume that the players are synchronized, starting out at the same time,
experiencing their interactions in the same rhythm and updating their strategies at
the same signal, but this is a contrived feature and will therefore be omitted.

A high value for w, the probability of another round, is less plausible with in-
direct than with direct reciprocity, since in a realistically small population, players
experiencing many rounds would necessarily have to interact numerous times with
the same partner, and hence be engaged in direct reciprocity. But in the following
model of indirect reciprocity, the limiting case w = 1 does not alter the outcome.

4.2 THE GOOD, THE BAD, AND THE RECIPROCATOR

We will consider a continuous entry model: this means that players enter a large
population one by one, interact asynchronously with different players at random
times, update their strategy occasionally, and eventually exit. Since we assume that
the population is large, its composition will evolve so slowly that we may assume
it does not change from one round to the next. We could assume that in any given
interaction between two players, one is randomly assigned the role of donor, and
the other that of recipient; but in order to simplify the formulas, we shall assume
that in any given round, a player is both donor and recipient. The player’s donor and
recipient are different, but we can nevertheless describe the payoff, in each round,
by the matrix (3.1) of the Donation game.

We consider the case of vicarious reciprocation. With x and y we denote the
frequencies of the unconditional strategies AllC and AllD, and with z that of the
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reciprocators. We begin by considering the simplest type of reciprocator, the one
corresponding to Tit for Tat in direct reciprocity. Such players refuse to help if
they know that their current recipient refused to help in the previous round. With
q we denote the probability that a player knows (either through direct observation
or via gossip) what the randomly assigned recipient did in the previous round. To
begin with, we posit that reciprocators are trustful in the sense that if they have no
information, they assume that their recipient gave help previously.

As in the case of direct reciprocity, we allow for error, and denote by ε the
probability of not implementing an intended donation. This can be due to a mistake,
but it could also be due to external circumstances, for instance a momentary lack of
resources. We assume that an intended refusal will always be carried out.

Let h denote the frequency of players with a good reputation (i.e., having given
help in their previous round). Since the population is large, this frequency remains
unchanged between two consecutive rounds. Writing ε̄ := 1 − ε, we obtain

h = ε̄[x + z(1 − q + qh)]. (4.1)

Indeed, players intend to donate if they areAllC players (probability x) or if they are
reciprocators (probability z), who either know nothing of their co-player’s reputation
(probability 1−q) or know the reputation (probability q), which is good (probability
h). The probability for intending to donate (the term in square brackets) has to be
multiplied by ε̄ (the probability not to commit an error). Hence

h = ε̄(x + (1 − q)z)

1 − ε̄qz
. (4.2)

The payoff in round n (with n ≥ 1) for an AllC player is

Px(n) = −cε̄ + bε̄[x + z(1 − q + ε̄q)]. (4.3)

Indeed, such a player always intends to donate, at a cost −c (this succeeds with
probability ε̄). On the other hand, the player is the object of an intended donation if
the co-player in the role of the potential donor is either an unconditional cooperator
(probability x) or a reciprocator (probability z) who either does not know the player’s
reputation (probability 1 − q) or else knows the reputation (probability q), which
is good (probability ε̄). (This is clear because the reputation can only be bad if the
player, an AllC player, made a mistake in the previous round.) The benefit resulting
from an intended donation is bε̄, because the donation can fail with probability ε.

Similarly, the payoff for a defector is

Py(n) = bε̄[x + (1 − q)z], (4.4)

and for a reciprocator, whom we call A, it is

Pz(n) = −cε̄(1 − q + qh) + bε̄[x + z[1 − q + ε̄q(1 − q + qh)]]. (4.5)

The second term in the sum is (up to the expected benefit bε̄) the probability that the
co-player intends to make a donation to playerA. This happens either if the co-player
is an AllC player (probability x), or if the co-player is a reciprocator (probability
z) who either does not know the reputation of player A (probability 1 − q), or else
knows the reputation (probability q), and this reputation is good. The reputation
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ofA is good if in the previous round, playerA intended to donate (either becauseA did
not know the co-player’s reputation or else because that reputation was good, prob-
ability h), and if A, moreover, succeeded in the intended donation (probability ε̄).

A straightforward computation shows that

Pz(n) − Py(n) = [Px(n) − Py(n)](1 − q + qh). (4.6)

The same relation holds for the initial round (numbered 0), although the payoffs for
the initial round are slightly different: Px(0) = −cε̄+bε̄(x+z), Py(0) = bε̄(x+z),

and Pz(0) = − cε̄[1 − q + qh] + bε̄(x + z). Hence the payoff values per round Px ,
Py , and Pz, given as in section 3.2, also satisfy

Pz − Py = [Px − Py](1 − q + qh). (4.7)

Clearly Px(n) − Py(n) = ε̄(−c + bε̄qz) (for n ≥ 1) and Px(0) − Py(0) = − cε̄.
Thus the payoff values per round satisfy

Px − Py = ε̄(−c + wbε̄qz), (4.8)

which also holds if w = 1.

4.3 REPLICATOR DYNAMICS

In order to study the replicator equation ẋ = x(Px − P̄ ) etc., we can subtract Py

from each payoff and divide by the factor ε̄. By abuse of notation, the resulting
expressions will again be denoted by Px , Py , and Pz. Clearly,

Px = f, Py = 0, Pz = f (1 − q + qh), (4.9)

where

f = −c + wbε̄qz. (4.10)

Let us first consider the replicator equation obtained by omitting the common factor
f (i.e., by replacing f by 1). The term h is given by equation (4.2), i.e., a fraction
whose denominator 1− ε̄qz is always positive. We can multiply the right hand sides
of the replicator equation by this positive term without altering the orbits (only the
velocities of the solutions are changed, but not their paths). This yields a replicator
equation with

Px = 1 − ε̄qz, Py = 0, Pz = 1 − q + ε̄qx. (4.11)

If q < 1 and ε > 0, we have 0 = Py < Pz < Px and hence all orbits in S3 converge
to x = 1, with the exception of the edge x = 0, which leads to z = 1. An invariant of
motion is given by V = zxq−1y−εq , as can be seen by a straightforward computation.

If ε = 0 (no errors), the edge y = 0 consists of fixed points and the invariant of
motion is V = zxq−1. If q = 1 (full information about the co-players), the edge x = 0
consists of fixed points and the invariant of motion is V = zy−ε .
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z

x

Cooperators

Reciprocators

y

Defectors

Figure 4.2 Defectors always win if players do not have enough information about their co-
players.

Let us now consider the replicator dynamics given by equations (4.9) (i.e., in-
cluding the factor f ).

If q < c/wbε̄, then f is negative for all values of z between 0 and 1, and hence on
the whole state simplexS3. Multiplication withf corresponds thus to a time-reversal.
This means that the AllC players are dominated by both the reciprocators and the
defectors, while the reciprocators are dominated by the defectors. All orbits in the
interior of the simplex lead from x = 1 (AllC players only) to y = 1 (AllD players
only). Hence, if the probability q to know the co-players’ past is too small (i.e., if
there is not much scope for reputation), then cooperation cannot evolve, see figure
4.2. If q > c/wbε̄, then the line z = c/wbqε̄ intersects the interior of the simplex S3

and defines a segment of rest points. Indeed, on that line, 0 = Py = Px = Pz. These
rest points are all Nash equilibria. In the simplex S3, all orbits lie on the same curves
as when f is replaced by 1, so that zxq−1y−εq is constant, but in contrast to the
previous situation, the orientation has not changed in the region with z > c/wbqε̄,
see figure 4.3.

This means in particular that the mixture of AllC players and reciprocators given
by z = c/wbqε̄ and y = 0 corresponds to a rest point of the replicator dynamics.
A cooperative population consisting of these two types of altruists (some condi-
tional and some not) exists, if the average level of information within the population
is sufficiently high. We note that this equilibrium is stable. However, it is not asymp-
totically stable, since it belongs to a segment of rest points.
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Reciprocators

y

Defectors

Figure 4.3 If information is sufficiently large, defectors, cooperators, and reciprocators co-
exist. The horizontal line of fixed points includes a stable mixture of AllC and
reciprocators. But random shocks can lead, in the long run, to a population con-
sisting only of defectors. (Under plausible parameter values, the region of sta-
ble fixed points, corresponding to the filled circles, is much smaller than shown
here.)

The dynamic behavior in the vicinity of the horizontal line of Nash equilibria is
interesting. One part of the segment is transversely stable, in the sense that pertur-
bations away from the segment are counteracted by the dynamics. In the other part,
perturbations are amplified by the dynamics. A small deviation to higher z values
will lead, first to an increase and then to a decrease of reciprocators, and eventually
back to the stable part of the segment. By contrast, a small deviation to lower z values
leads, in the unstable part of the line of rest points, to the fixation of defectors.

In the limiting case ε = 0 (no errors), the edge y = 0 consists of rest points, of
which those with z ≥ c/wbq are Nash equilibria. The line with z = c/wbq consists
of rest points too. Below this line, all orbits converge to y = 1. Above the line, each
orbit converges to a Nash equilibrium on y = 0, see figure 4.4. In the limiting case
q = 1 (full information), the edge x = 0 consists of rest points, of which those with
z < c/wbε̄ are Nash equilibria. The line with z = c/wbε̄ consists of rest points that
are all stable. Hence the dynamics is as shown in figure 4.5.

If q = 1 and ε = 0 both hold, the edges x = 0 and y = 0 both consist of rest points.
In the interior of S3, all orbits remain on parallels to the z = 0 edge. Those with
z > c/wb point from left to right (the defectors vanish), while those with z < c/wb
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Figure 4.4 The replicator dynamics if the probability ε of errors in implementation is 0.
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Figure 4.5 The replicator dynamics if q, the probability to know the co-player’s reputation,
is 1.
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z
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Figure 4.6 The replicator dynamics if q = 1 and ε = 0.

point from right to left (the undiscriminating altruists vanish). Again, the hor-
izontal line z = c/wb consists of Nash equilibria. The dynamics is shown in
figure 4.6.

Finally, let us briefly consider the case of misguided reciprocity. In this case,
reciprocators decide to give help whenever they have received support in the previous
round. If we denote by h the probability that a player has received support in the
previous round, we see that h = ε̄(x + hz).

In round n the payoff values for AllC players, AllD players, and reciprocators
are Px(n) = −cε̄ + hb, Py(n) = hb, and Pz(n) = −chε̄ + hb. If we assume that a
reciprocator always donates in the first round, we get Pz(0) = − cε̄ + bh. Again
normalizing the total payoff values such that Py = 0, we obtain, up to the factor
(1 − w)−1,

Px = −cε̄, Pz = Px[1 − w(1 − h)]. (4.12)

The dynamics looks as in figure 4.2: the defector’s vertex, given by y = 1, is a
global attractor. This still holds if the error rates are modified, or if one assumes that
the reciprocators defect in the first round, etc. In particular, letting ε → 0 or w → 1
changes nothing. It is all the more surprising that some experiments (and, indeed,
everyday introspection) show that indirect reciprocation based on a misdirected
feeling of gratitude is not rare.
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4.4 TO TRUST OR NOT TO TRUST

So far, we have assumed that reciprocators are trustful in the sense that by default,
they assume that their co-player deserves to be helped. But the question what to
do with co-players about whom nothing is known has no obvious answer. Let us
therefore also introduce reciprocators who are suspicious and refuse to help co-
players about whose antecedents they know nothing.

We thus assume that in addition to the indiscriminate altruists and defectors (with
frequencies x and y) there are both trustful and suspicious reciprocators (with fre-
quencies z and ζ ). We again allow that with probability ε, an intended donation is not
carried out (whereas intended refusals always are). In equations (4.13) to (4.17), the
probability of an intended donation is always multiplied by the probability ε̄ = 1−ε.

The frequency of players with good reputation (those having given in their pre-
vious round) satisfies

h = ε̄[x + ζqh + z(1 − q + qh)]. (4.13)

(The term 1 − q − qh is the probability that z players, in their previous round, have
acquired a good reputation.) The payoffs in round n ≥ 1 are

Px(n) = −cε̄ + bε̄[x + z(1 − q + qε̄) + ζqε̄], (4.14)

Py(n) = bε̄[x + (1 − q)z], (4.15)

Pz(n) = −cε̄(1 − q + qh) + b ε̄[x + z(1 − q + qε̄(1 − q + qh))

+ ζqε̄(1 − q + qh)], (4.16)

Pζ (n) = −c ε̄qh + bε̄[x + z(1 − q + qε̄qh) + ζqε̄qh]. (4.17)

Hence

Px(n) − Py(n) = −cε̄ + b ε̄2q(z + ζ ), (4.18)

Pz(n) − Py(n) = (1 − q + qh)[Px(n) − Py(n)], (4.19)

and

Pζ (n) − Py(n) = qh[Px(n) − Py(n)]. (4.20)

It is easy to see that these last three relations also hold for the initial round, i.e., for
n = 0. Thus we obtain for the total payoffs per round:

Pz − Py = (Px − Py)(1 − q + qh) (4.21)

and

Pζ − Py = (Px − Py)qh. (4.22)

Moreover,

Px − Py = ε̄[−c + bwqε̄(z + ζ )] := f. (4.23)



−1
0
1

“Chapter4” — September 21, 2009— 15:45— page 91

INDIRECT RECIPROCITY 91

Let us consider the replicator equations ẋ = x(Px − P̄ ), etc. We subtract Py from
all payoff terms, and first analyze the equation obtained by replacing the common
factor f with 1. Thus we consider the replicator equation with

Px = 1, Py = 0, Pz = 1 − q + qh, Pζ = qh. (4.24)

By equation (4.13), we have

h = ε̄[x + z(1 − q)]
1 − qε̄(z + ζ )

. (4.25)

If we multiply all the right hand sides of equations (4.24) with the denominator of
h, i.e., the positive function 1−qε̄(z+ ζ ), then we obtain a replicator equation with
the same orbits. This is the replicator equation with Py = 0,

Px = 1 − qε̄(z + ζ ), (4.26)

Pζ = qε̄[x + z(1 − q)], (4.27)

and

Pz = (1 − q)[1 − qε̄(z + ζ )] + qε̄[x + z(1 − q)]. (4.28)

We note that

Pz = Pζ + (1 − q)Px = (1 − q)(1 − qε̄ζ ) + qε̄x. (4.29)

For the average payoff P̄ := xPx + yPy + zPz + ζPζ , we obtain

P̄ = x + z(1 − q). (4.30)

Hence Pζ = qε̄P̄ . Furthermore,

Px − Pz = q[1 − ε̄(qζ + x + z)]. (4.31)

There exists no fixed point in the interior of S4, since 0 = Py < Pζ < Pz < Px . The
edges of S4 are oriented as in figure 4.7: in particular, the edge x = z = 0 consists of
fixed points. We note that for ε = 0, the edge with y = ζ = 0 also consists of fixed
points. The function V = (y/x)1−q(z/ζ ) is an invariant of motion.

If we now consider the full replicator dynamics given by equations (4.21) through
(4.23), (i.e., including the factor f ), we see that z + ζ = c/bwqε̄ defines a plane
consisting of fixed points. This is the set where f vanishes. The plane intersects
the simplex if q > c/wbε̄. In the prism with z + ζ > c/bwqε̄, the orientation of the
orbits is preserved; in the complementary polyhedron, the orientation is reversed.
There is a set of stable fixed points on the plane: this is where all four strategies
stably coexist, see figure 4.8. If there are enough reciprocators, it pays to trust.

4.5 GROWING KNOWLEDGE

A population consisting only of reciprocators is unstable: it can be invaded by AllC
players, and thus be replaced by an equilibrium of AllC players and reciprocators.
This equilibrium is stable, but not asymptotically stable, as seen in figure 4.3. Indeed,
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Figure 4.7 The replicator dynamics given by equations (4.24) and (4.25).
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Trustful reciprocators

Figure 4.8 The replicator dynamics for AllC, AllD, trustful, and suspicious reciprocators, if
the average information q is sufficiently large. The planar set consists of stable
and unstable fixed points (the dark and the light area).
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it is the end-point of a segment of rest points in S3. It is easily conceivable that small
random perturbations move the state of the population, along this segment, into a
region where the rest points are no longer stable. From there, a small perturbation
could lead back to the stable part of the line of rest points, but it could also lead to
the basin of attraction of AllD, in which case cooperation breaks down.

It is instructive to compare this with the case of direct reciprocity, see figure
3.2. Here too, there exists a basin of attraction of AllD, and a sequence of random
perturbations can, in the long run, lead any population state into this region, and
thus destroy cooperation.

In the case of direct reciprocity, the simple model involving AllC, AllD, and
TFT is just a first step, and further steps (for instance, the introduction of Pavlov
or Contrite TFT ) lead to much better prospects for cooperation. We shall see that
the same holds in the case of indirect reciprocation. But before investigating other,
more sophisticated strategies for indirect reciprocity, we analyze a modification
of the initial model that turns the equilibrium of reciprocators and unconditional
cooperators into a stable attractor.

Indeed, let us make the plausible assumption that the social network of each
individual expands with time. This means that a player’s probability of knowing a
co-player’s score is not constant but grows with the experience of the player. Let
us assume that it is given by qn in round n. Let wn denote the probability that a
randomly chosen individual is in round n (with n = 0 as the initial round), and let q

denote the average (taken over the whole population) of the qn, i.e., q := ∑
wnqn.

If qn > qn−1 for all n, i.e., if players keep getting better and better informed about
their co-players, we have, setting q−1 = 0,

q > s :=
∑

wnqn−1. (4.32)

It is easy to see that instead of equation (4.5) we now have

Pz(n) = −cε̄(1 − qn + qnh) + bε̄[x + z(1 − q + qε̄(1 − qn−1 + qn−1h))], (4.33)

whereas the expressions for Px(n) and Py(n) remain unchanged, as in equations
(4.3) and (4.4). It follows that

Pz(n) − Px(n) = ε̄(1 − h)(cqn − zbε̄qqn−1). (4.34)

With zcr := c/bε̄s, we see that the total payoff values satisfy

Px(zcr ) = Pz(zcr ). (4.35)

Let us assume now that zcr < 1, a condition slightly stronger than our previous
condition q > c/bε̄. Since equations (4.3) and (4.4) imply that for n > 0, Px(n) −
Py(n) = − cε̄ + bε̄2qz, we see that if z = zcr , then

Px(n) − Py(n) = cε̄(q − s)/s > 0 (4.36)
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Figure 4.9 The replicator dynamics if each player’s social network grows with age (and
sufficiently many players experience more than one round).

holds for all n > 0. For the initial round, we have Px(0) − Py(0) = −cε̄, which is
negative. It follows that if w0 is sufficiently small, i.e., if sufficiently many players
experience several rounds, then

Px(zcr ) > Py(zcr ). (4.37)

Hence there exists a mixture consisting ofAllC players and reciprocators, Fxz = (1−
zcr , 0, zcr ), which cannot be invaded by defectors. The resulting replicator dynam-
ics is bi-stable: one attractor consists of defectors only, the other is a mixture of
reciprocators and unconditional altruists, see figure 4.9.

The previous result is somewhat spoiled by the fact that our standing assumption
that wn is proportional to wn (see section 3.2) has to be dropped here. Indeed, in
that case (q − s)/s = (1 − w)/w, and hence Px = Py if z = zcr . Too many players
are experiencing one round only, and hence expression (4.37) does not hold. But
many other choices for wn work well, for instance the assumption that every player
experiences N rounds.

4.6 JUSTIFIED REFUSAL

One aspect of the conditional strategy that we have considered so far seems para-
doxical, and almost inconsistent. Indeed, why should a reciprocator ever refuse to
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donate? This affects the reciprocator’s own image, and reduces the likelihood that
this player will be helped by other reciprocators. Discriminating players will there-
fore be discriminated against. They are effectively policing the community, and may
cause would-be defectors to change their mind, but they do so at a cost to themselves.
How can such a strategy be selected?

One solution is almost obvious. It distinguishes between justified and non-justified
defections. This distinction can be captured, for instance, in the notion of good and
bad standing, which is similar to what we met in section 3.17 in the context of direct
reciprocity. Players, accordingly, are born with a good standing, and keep it as long
as they help players who are in good standing. These players can therefore keep
their good standing even when they defect, as long as their defections are directed
at players who are in bad standing.

However, “standing” is a rather complex notion, and seems to require a constant
monitoring of the whole population, which may overtax the players. Indeed, suppose
that your recipient A has, in a previous round, refused help a recipient B. Was this
refusal justified? Certainly not if B had proved to be in good standing by giving help
to all deserving recipients. But what if B had refused help to some player C? Then
you would have to know whether B’s defection towards C was justified. This means
that you need to probe into the past of C, etc. With direct reciprocation, standing
is much easier to handle. You have only to keep track of your co-player’s previous
interactions with yourself. Even here, an error in perception can lead to a deadlock:
it may happen that both players believe that they are in good standing and keep pun-
ishing each other in good faith. With indirect reciprocation, the problem becomes
much more severe: players have to keep track, not only of the antecedents of the
current recipient, but also of the past actions of the recipient’s former recipients,
etc.

A priori, it is not obvious how individuals should update the images, or scores, or
reputations, of their co-players. In fact, their standard of moral assessment, which
eventually can lead to a social norm, can also be subject to evolution.

In the following sections on indirect reciprocation, we shall assume that individ-
uals manage to keep track of the images of all players in their community (hence
q = 1), and that they decide, when in the role of the donor, whether to give help or
not, depending on their recipient’s image, and possibly based on their own image.
This can be viewed as an investigation of simple mechanisms for local information
processing. But it has farther-ranging implications for the evolution of social norms,
and hence of moral judgments. It concerns the issue of deciding when a defection
is justified, and when not. In other words, when is a player good or bad?

Let us first consider this question in a very limited context, by assuming that the
image, or score, can only take two values. Needless to say, one could also envisage
many other strategies, taking into account, for instance, the accumulated payoffs
for donor and recipient, or the prevalence of cooperation within the community, or
whether one has received help in the previous round, etc.
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Table 4.1 The Assessment Module

Situation/Strategy Scoring Standing Judging

good → good good good good
good → bad good good bad
bad → good good good good
bad → bad good good bad

good �→ good bad bad bad
good �→ bad, bad good good
bad �→ good bad bad bad
bad �→ bad bad good bad

Note: This module specifies which image to assign to the potential donor of an observed
interaction (good → bad means “a good player helps a bad player,” bad �→ good means “a
bad player refuses to help a good player,” etc).

4.7 BINARY MODELS: THE WORLD IN BLACK AND WHITE

We shall consider strategies specified by two modules, namely an assessment module
and an action module. The assessment module of player C operates whenever C
observes an interaction between two players A and B (see the diagram depicting
vicarious reciprocity in fig. 4.1). In the eyes of the observer C, the image of the
potential donor A may be affected by A’s decision. The image of the potential
recipient B, who is the passive party in the interaction, remains unchanged. The
action moduleprescribes whether a player in the position of a potential donor actually
provides help or not. This decision is based on the information obtained through
that player’s assessment module.

To start discussing the assessment module, we assume for simplicity that the
score acquired by individual A in the eyes of individual C depends only on how A
behaved when last observed by C in the role of a potential donor, i.e., on whether
A gave or refused help to some third party B. Thus C has a very limited memory,
and the score of A (in C’s eyes) can take only two values, good or bad. In every
interaction observed by C, there are two possible outcomes (A can give help or
not), two possible score values for A, and two for B. Thus there are eight possible
types of interaction, and hence, depending on whether they find C’s approval or not,
28 = 256 different assessment modules, or value systems.

As intuitively appealing examples of such assessment modules, let us consider
in table 4.1 three of these value systems—embryonic moral systems, so to speak.
We denote them as Scoring, Standing, and Judging, respectively. These assessment
modules differ on which of the observed interactions incur reprobation and count
as bad. Someone using the Scoring assessment rule will always frown upon any
potential donor who refuses to help a potential recipient. This assessment rule was
used by the reciprocator in the model discussed in sections 4.2 and 4.3: the assess-
ment does not take into account the score of the players engaged in the interaction.
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Table 4.2 The Action Module

Situation/Strategy Self Co And Or AllC AllD

good
?→ good no yes no yes yes no

good
?→ bad no no no no yes no

bad
?→ good yes yes yes yes yes no

bad
?→ bad yes no no yes yes no

Note: This module prescribes whether to help or not given the player’s own image, and the

image of the potential recipient (bad
?→ good prescribes whether a player using this action

module should give help when having a bad image and facing a good recipient, etc.).

By contrast, a player using the Standing assessment rule will condemn those who
refuse to help a recipient having a good score, but will condone players who refuse
to help a recipient having a bad score. Those using the Judging assessment system
will, in addition, extend their reprobation to players who help a co-player having
a bad score, and deem that bad players cannot improve their image by refusing to
help bad recipients.

Thus these three value systems are of different strictness towards wrong-doers.
Roughly speaking, someone who refuses to help is always bad in the eyes of a
Scoring assessor. Only those who fail to give help to a good player are bad in the
eyes of a Standing assessor. Someone who fails to give help to a good player, but
also someone who gives help to a bad player is bad in the eyes of a Judging assessor
(see Table 4.1).

We can classify assessment modules: they are said to be of fi st order if they
depend only on the action taken, of second order if in addition they depend on the
score of the recipient, and of third order if they depend, moreover, on the score of
the donor. Scoring is of first order, Standing of second, and Judging of third order.

Turning to the action module, we assume that a potential donor’s decision on
whether to help or not is based entirely on the scores of the two players involved,
namely the donor and the recipient. Since there are four situations (donor and re-
cipient can each be good or bad), there are 24 = 16 possible decision rules. Four
intuitively appealing examples would be Co, Self, And, and Or (see Table 4.2). The
Co player is uniquely affected by the score of the potential recipient, and gives if and
only if that recipient’s score is good. This is the action module of the reciprocator
in the model considered so far. The Self players worry exclusively about their own
score, and give help if and only if this score is bad. The And players give help if the
recipient’s score is good and their own score is bad, and the Or players give help
if the recipient’s score is good or their own score is bad. Of course the 16 decision
rules also include the two unconditional rules, always to give, and never to give,
AllC and AllD, which do not rely on scores at all.

A strategy, in this model for indirect reciprocity, is determined by a specific
combination of an action and an assessment module. This yields altogether 24 ×
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Table 4.3 The Leading Eight Strategies

Situation/Strategy L1 L2 L3 L4 L5 L6 L7 L8

good → good good good good good good good good good
good → bad good bad good good bad bad good bad
bad → good good good good good good good good good
bad → bad good good good bad good bad bad bad

good �→ good bad bad bad bad bad bad bad bad
good �→ bad good good good good good good good good
bad �→ good bad bad bad bad bad bad bad bad
bad �→ bad bad bad good good good good bad bad

good
?→ good yes yes yes yes yes yes yes yes

good
?→ bad no no no no no no no no

bad
?→ good yes yes yes yes yes yes yes yes

bad
?→ bad yes yes no no no no no no

Note: Each strategy is specified by an assessment module (the first 8 rows of the table) and
an action module (the last 4 rows). These strategies obtain the highest payoff values, and
are not invadable by defectors. Strategy L3 corresponds to Co-Standing, strategy L8 to Co-
Judging. No Scoring strategy occurs in the list. The open assessment issues correspond to the
situations good → bad , bad → bad, and bad �→ bad. Each of these eight assessment modules
corresponds to a unique action module, which can be Or or Co.

28 = 212 = 4096 strategies. They are not all different from each other: for instance,
all strategies with an AllD action module are effectively equal, irrespective of their
assessment module.

4.8 THE LEADING EIGHT

There nevertheless remains a plethora of strategies. Let us simplify their investigation
by assuming, from now on, that each player’s score is public knowledge. This implies
that there exists only one assessment rule in the population. It also implies that
q = 1: everybody knows the co-players’ images. In that case, it turns out that only
eight reciprocating strategies are reasonable, in the following sense:

(a) In a population consisting entirely of players using that strategy, a rare dissident
using a different action module (but keeping the same assessment rule) cannot
invade, provided the inequality wb > c is satisfied.

(b) The average fitness per round in such a homogeneous population is equal to
the theoretical maximum b − c (or differs at most by a term of order ε, the
probability of mis-implementing an intended donation).

The list of these strategies, named the leading eight, is given in Table 4.3.
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Only the Co and the Or action modules occur among the leading eight. Such
players always give help to a good player, and always defect, when good, against
a bad player. The assessment modules of the leading eight are consistent with this
prescription: they all assess players as good or bad if the players provide or refuse
help to a good recipient, irrespective of their own score, and they all allow good
players to refuse help to bad players without losing their reputation.

This leaves it open how to judge the action of a good player giving help to a bad
player, of a bad player giving help to a bad player, and of a bad player refusing
help to a bad player. These are precisely the 23 alternatives making up the leading
eight. If the assessment module requires a bad player to give to a bad player, the
corresponding action module is Or; in all other cases it is Co. We note that strategies
with the Standing and the Judging assessment module can belong to the leading
eight, but not those with the Scoring module. In particular, the simple reciprocating
strategy considered in the first sections of this chapter, namely Co-Scoring, does not
belong to the leading eight.

4.9 EXPLAINING THE LEADING EIGHT

Let us first neglect the possibility of errors. The two requirements (a) and (b) imply
that within the homogeneous population of residents, players always cooperate, and
cannot be invaded by AllD or AllC players. (It then will follow that no other action
rule can invade either.)

Clearly, the success of a player is entirely defined by that player’s actions towards
the residents. Since an AllD player defects against a resident, and thus economizes
the cost c, without obtaining a higher overall payoff (for otherwise, AllD could
invade), this implies that the residents, who by requirement (a) always help other
residents, must be compensated. This can only occur if they are more likely to
receive help in the next round, i.e., if the defector receives no help (payoff 0). Since
the next round occurs with probability w, the residents have an expected benefit wb.
For compensating the residents, the condition c < wb must therefore be satisfied.

Defectors can only be distinguished from the residents who helped other residents
if they acquire another image; by convention, the defector will be labeled bad and
the resident discriminator who helped another resident, good. This implies the two

action rules good ?→ good : yes and good ?→ bad : no (rows 9 and 10 in table
4.3). Moreover, an action rule prescribing to help can only be advantageous if, by
following it, one obtains a good image, while by not following it, one obtains a
bad image. Hence row 9 implies rows 1 and 5 in table 4.3. Similarly, an action rule
prescribing not to help can only be advantageous if by deviating from it, one cannot
gain a better image. In particular, then, row 10 implies that either (i) good �→ bad
is good (row 6), or (ii) both good �→ bad and good → bad are viewed as bad. But
alternative (ii) implies that bad is infectious: good players meeting bad recipients
become bad, no matter what they are doing. We shall presently see that we can
discard this alternative.

Indeed, now let us admit the possibility of errors in implementing an intended
donation. A player committing such a mistake will be branded as bad, and not
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helped in the next round by the residents. If being bad is infectious, the number
of bad players cannot decrease; worse, since any round entails the probability of a
mistake, this number will actually increase.

If there is no way to redress a bad image, a resident who defected erroneously will
obtain no benefit in future rounds. If there are many rounds, this means that most
players, eventually, will not benefit from any help. Hence there must be an action
of a bad donor to redress the image. This must be an action performed towards a
resident with a good image, since all other encounters are rare, and it can only be

bad ?→ good : yes, since the other decision is indistinguishable from that of anAllD
player. This in turn implies that bad → good is viewed as good, and bad �→ good
is bad, i.e., row 11 implies rows 3 and 7.

We have now specified the action module in three positions (rows 9,10,11) and
the assessment module in five positions (rows 1,3,5,6,7). The three rows 2, 4, and
8 of the assessment module remain open, and can be filled in 23 different ways. It
is easy to see that for each of the eight resulting assessment modules, there exists
exactly one action module yielding a strategy satisfying the requirements (a) and
(b) from the previous section.

For instance, consider the L1 assessment module. Since bad → bad is good, and
bad �→ bad is bad, it is clear that the optimal action rule requires that bad gives
to bad, which yields the Or rule. The same holds for L2. Since good never gives to
bad, the corresponding assessment rule is irrelevant. Conversely, Or is better than
Co only for the assessment modules in the first two columns of table 4.3. Indeed,

bad ?→ bad : yes requires that it pays to help, i.e., that the image becomes good
while by refusing to help, it stays bad. This does not hold for the other columns.

In order to better understand the common characteristics of the leading eight, we
note that they satisfy the following properties:

(A) Maintenance of cooperation. This means that good players cooperate with
good players and that this is seen as good (rows 9 and 1).

(B) Identification of defectors. If a good or a bad player refuses help to a good
player, this is viewed as bad (rows 5 and 7).

(C) Justified punishment. A good player meeting a bad player should refuse help
without being branded as bad (rows 10 and 6). This excludes first order as-
sessment modules, and in particular Scoring.

(D) Apologies accepted. A mistaken defection should not lead to eternal damna-
tion. Hence bad players can redeem themselves by cooperating with good
players (rows 11 and 3).

It seems obvious that in a resident population of cooperating reciprocators, as-
sessment rules and action rules should correspond. This requirement does not hold
for Co-Scoring, as we have seen, since good players have to refrain from helping
bad players although this makes them lose their good score. Interestingly, however,
there are exceptions to this requirement among the leading eight: for the two strate-
gies L7 and L8 of table 4.3, bad players meeting bad co-players cannot redress their
score one way or the other. However, in a homogeneous population playing such a
strategy, encounters between two bad players are exceedingly rare.
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In a population consisting of only one of the leading eight and the unconditional
strategyAllC, everyone cooperates. Both types of players are equally likely to defect
by mistake, and hence to lose their good image. But against a player with a bad
image, the reciprocators will defect, and hence spare themselves the cost c, without
losing their good image. Therefore, they are better off, by a factor proportional
to ε.

4.10 SECOND-ORDER ASSESSMENT

In second-order assessment, actions are judged according to whether help is given or
not, and whether the recipient is good or bad, whereas the donor’s score is not taken
into account. This yields 16 different assessment modules. Two of them belong to
the leading eight, namely L3 and L6 (see table 4.3). Strategy L3 has the Standing
assessment rule (every action is good except defecting against a good recipient).
According to the assessment module of L6, both defecting against a good recipient
and helping a bad recipient are judged as bad, whereas everything else is good. Both
strategies use Co as their action module.

Let us first consider the reciprocating strategy L6, together with AllC, and AllD
(with frequencies z, x, and y, as usual) and perform the same analysis as in sections
4.2 and 4.3. We denote by h the frequency of players having a good image. These
consist of (a) AllC players who have met a good player and committed no mistake,
or who have met a bad player and committed a mistake (the probability for this is
h(1 − 2ε)+ ε); (b) AllD players who have met a bad player (probability 1 −h); and
(c) reciprocators who have met a good player in the previous round and committed
no mistake, or who have met a bad player (probability 1 − hε). Hence

h = 1 − ε̄x

2y + z + ε(2x + z)
. (4.38)

For the payoffs in round n ≥ 1, one obtains

Px(n) = −cε̄ + bε̄[x + z(h(1 − 2ε) + ε)], (4.39)

Py(n) = bε̄[x + z(1 − h)], (4.40)

and

Pz(n) = −cε̄h + bε̄[x + z(1 − hε)]. (4.41)

A similar result holds for the payoff in the first round. Hence, up to the common
factor ε̄(1 − w),

Px − Py = −c + wbε̄z(2h − 1), (4.42)

Pz − Py = −ch + wbε̄hz, (4.43)

and

Pz − Px = (1 − h)(c + wbε̄z) > 0. (4.44)
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Figure 4.10 The replicator dynamics for the second-order assessment rules belonging to the
leading eight.

Since the last expression is positive in intS3, all orbits converge to the face x = 0.
On this face, we have the usual bi-stability, with ẑ = c/wε̄b as unstable equilibrium,
see figure 4.10.

Much the same holds for the second order strategy L3. AllC players have a good
image if they have met a good player and committed no mistake, or if they have
met a bad player: the probability is 1 − hε. The same holds for the reciprocators.
The AllD players are only good if they have met a bad player in the previous round,
which has probability 1 − h. This yields

h = 1

1 + y + ε(x + z)
. (4.45)

Clearly,

Px(n) = −cε̄ + bε̄[x + z(1 − hε)], (4.46)

Py(n) = bε̄[x + z(1 − h)], (4.47)

and

Pz(n) = −cε̄h + bε̄[x + z(1 − hε)]. (4.48)

Again, Pz −Px = ε̄c(1 −h) > 0 implies that x → 0, and on that edge of the simplex
S3, there is an unstable equilibrium with ẑ = c/bwε̄.
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If mistakes in perception are included (in the sense that the majority knows the
right reputation, but an ε minority gets it wrong), the attractor consisting of re-
ciprocators is replaced by an attractor consisting of a mixture of reciprocators and
unconditional cooperators. This assumption holds for the so-called “indirect obser-
vation model,” which postulates that an interaction between A and B is observed
by one player only, for instance C, and that all other members of the population
adopt C’s assessment. The situation becomes much more complex for a “direct ob-
servation model.” In that model, all players keep their own private score of their
co-players. Ultimately, it would seem that the evolution of assessment modules will
have to be addressed in this context. It has been argued that thanks to language, all
members of a population should agree on their scores, and that gossip is powerful
enough to furnish all individuals with information about all past interactions. But it
is common experience that even if two people witness the same interaction directly,
they can differ in their assessment of that interaction. This suggests private scores.
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Chapter Five

Fairness and Trust: The Power of Incentives

5.1 ULTIMATE OFFERS

In the Ultimatum game (see section 1.11), two players are randomly assigned the
role of Proposer and Responder. The experimenter then allocates a certain sum to the
Proposer. The Proposer offers part of it to the Responder. If the Responder accepts,
the sum is split accordingly, and the game is over. If the Responder declines, the
whole sum returns to the experimenter, and again, the game is over: but now, both
players receive nothing. It is important to stress that the two players know the rules
in advance, and that they know that they will never meet again.

We shall normalize the sum to 1, and denote the size of the offer by p. The
Proposer’s strategy, then, is simply specified by p ∈ [0, 1]. The Responder’s strategy
is specified by the set of acceptable offers. It is plausible to assume that this set is an
interval of the form [q, 1]. Hence the Responder’s strategy is given by an aspiration
level q ∈ [0, 1]. If p ≥ q, then the Responder accepts the offer and obtains payoff
p, whereas the Proposer’s payoff is 1 − p. If p < q, the offer is rejected and both
players have payoff zero.

In most experiments, the Proposer offers between 40 and 50 percent, and this
is accepted. The few offers below 20 percent are usually rejected. Most Proposers
seem to anticipate this, and this prompts them to make a decent offer. But a selfishly
motivated Responder should accept any positive offer, since it is better than nothing.
Why then are aspiration levels usually well above 20 percent?

Proposer and Responder are in two distinct roles, which we denote by I and II. Each
player’s set of strategies is (in principle) the continuum of the unit interval [0, 1].
In practice, the set is finite, of course, due to the discrete nature of the monetary
denomination. We shall simplify even further, and assume that the Proposer has only
the choice between offering h or l, with 0 < l < h < 1. For instance, the high offer
h could be 40 percent and the low offer l, 15 percent of the total. The Responder
could, in principle, accept both offers, one of them, or none. Again, we simplify
by assuming that the Responder has to choose between two strategies only: the
strategy that consists in accepting the high offer only, and the strategy that consists
in accepting both possible offers.

Thus we are facing a reduced version. For role I, the two strategies e1 and e2 are
given by the offers h and l; for role II, the two strategies f1 and f2 are again denoted
by h and l, for convenience: these are now the Responder’s aspiration levels. The
payoff matrix is given by
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f1 f2

e1 (1 − h, h) (1 − h, h)

e2 (0, 0) (1 − l, l)

. (5.1)

Two obvious Nash equilibrium pairs for this two-role game are (h, h) and
(l, l).

Before analyzing the corresponding population dynamics, let us note that the Ul-
timatum game is, in fact, a symmetric game. It is only after a coin toss that the
roles of Proposer and Responder are assigned to the two players. A strategy for the
Ultimatum game is thus a pair (p, q)∈ [0, 1]2. For the reduced Ultimatum game, it
is a pair (ei , fj ).

5.2 A MINI-COURSE ON MINI-GAMES

Before turning to the reduced Ultimatum in its symmetrized version, it is advisable
to analyze the population dynamics of two-role games in greater generality. Let us
consider a game with two roles I and II, with two strategies for each role, which we
denote by ei for role I and fj for role II (with i, j ∈ {1, 2}). The payoff matrix is

f1 f2

e1 (A, a) (B, b)

e2 (C, c) (D, d)

. (5.2)

As in section 2.5, we consider the symmetrized version (where a coin toss decides
which role to assign to which player).The strategies for the resulting symmetric game
will be denoted by G1 = e1f1, G2 = e2f1, G3 = e2f2 and G4 = e1f2. The payoff for a
player using Gi against a player using Gj is given, up to the factor 1/2 that we shall
henceforth omit, by the (i, j) entry of the matrix

M =

⎛
⎜⎜⎝

A + a A + c B + c B + a

C + a C + c D + c D + a

C + b C + d D + d D + b

A + b A + d B + d B + b

⎞
⎟⎟⎠ . (5.3)

This corresponds to equation (2.14). For instance, a G1 player meeting a G3 opponent
is in role I with probability 1/2, plays e1 against the co-player’s f2, and obtains B.
The G1 player is in role II with probability 1/2, plays f1 against the co-players’ e2,
and obtains c.

The replicator dynamics

ẋi = xi[(Mx)i − x · Mx] (5.4)

describes the evolution of the state x = (x1, x2, x3, x4) ∈ S4. Since the dynamics is
unaffected if each mij is replaced by mij − m1j (for i, j ∈ {1, 2, 3, 4}), we can use
the matrix



−1
0
1

“Chapter5” — September 21, 2009— 15:46— page 106

106 CHAPTER 5

⎛
⎜⎜⎝

0 0 0 0
R R S S

R + r R + s S + s S + r

r s s r

⎞
⎟⎟⎠ , (5.5)

with R := C − A, r := b − a, S := D − B, and s := d − c. We shall denote this
matrix again by M . It has the property that

m1j + m3j = m2j + m4j (5.6)

for j = 1, 2, 3, 4. Hence

(Mx)1 + (Mx)3 = (Mx)2 + (Mx)4 (5.7)

holds for all x. From this and equation (2.32) it follows that the function V =
x1x3/x2x4 satisfies

V̇ = V [(Mx)1 + (Mx)3 − (Mx)2 − (Mx)4] = 0 (5.8)

in the interior of S4, and hence that V is an invariant of motion for the replicator
dynamics: its value remains unchanged along every orbit.

Therefore, the interior of the state simplex S4 is foliated by the surfaces

WK := {x ∈ S4 : x1x3 = Kx2x4}, (5.9)

with 0 < K < ∞. These are saddle-like surfaces that are spanned by the quadrangle
of edges G1G2, G2G3, G3G4, and G4G1 joining the vertices of the simplex S4,
see figure 5.1.

The orientation of the flow on the edges can easily be obtained from the previous
matrix. For instance, if R = 0, then the edge G1G2 consists of fixed points. If R > 0,
the flow along the edge points from G1 towards G2, (which means that in the absence
of the strategies G3 and G4, the strategy G2 dominates G1), and conversely, if R < 0,
the flow points from G2 to G1.

Generically, the parameters R, S, r and s are non-zero. This corresponds to 16
orientations of the quadrangle G1G2G3G4, which by symmetry can be reduced to
4, see figure 5.2. Since (Mx)1 trivially vanishes, the fixed points in the interior of
the simplex S4 must satisfy (Mx)i = 0 for i = 2, 3, 4. This implies for S �= R

x1 + x2 = S

S − R
, (5.10)

and for s �= r

x1 + x4 = s

s − r
. (5.11)

Such solutions lie in the simplex if and only if RS < 0 and rs < 0, which corresponds
to the orientations (c) and (d) of the quadrangle spanning the surfaces WK . If this
is the case, one obtains a line of fixed points that intersects each WK in exactly one
point (see fig. 5.1). The solutions can be written as

xi = mi + ξ (5.12)
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G4

G3

G2

G1

Figure 5.1 The simplex S4 (a tetrahedron) is foliated by the saddle-like surfaces WK = {x ∈
S4 : x1x3 = Kx2x4}, spanned by the edges G1–G2–G3–G4–G1. The surfaces are
invariant for the replicator dynamics of the symmetrized game with two roles
admitting two strategies each.

(a) (b) (c) (d)

Figure 5.2 The four generic orientations of the cycle of the edges G1–G2–G3–G4 (up to
symmetries). In cases (a) and (b), there is no fixed point in the interior of the
square, and hence of the surfaces WK . In cases (c) and (d), there exists such a
fixed point.
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for i = 1, 3, and

xi = mi − ξ (5.13)

for i = 2, 4, with ξ as parameter and

m = 1

(S − R)(s − r)
(Ss, −Sr, Rr,−Rs) ∈ W1. (5.14)

5.3 BACK TO THE REDUCED ULTIMATUM

Let us return to the reduced form of the Ultimatum game. The strategy G1 corre-
sponds to (h, h): high offers, and a high aspiration level. We may view it as the
fair or pro-social strategy. By contrast, G3 = (l, l) epitomizes the asocial strategy.
It enjoins acceptance of any positive offer, and parts with as little as possible. The
strategy G2 = (l, h) is paradoxical: it offers little, but insists on a high offer, in
blatant contradiction to Kant’s categorical imperative. Finally, G4 makes a good
offer, but accepts a low offer. For want of a better term, we call it the mild strat-
egy. The payoff parameters are A = B = 1 − h, C = c = 0, D = 1 − l, a = b = h,
and d = l. Hence, R = h − 1 < 0, r = 0, S = h − l > 0, and s = l > 0. The asocial
strategy dominates both the mild and the paradoxical strategy; the paradoxical strat-
egy is dominated by both the pro-social and the asocial strategy; but the mild and
the pro-social strategy are equivalent, in the absence of the other two strategies:
indeed, all offers are fair. There exist no fixed points in the interior of S4. Indeed,
whenever x2 > 0 or x3 > 0, we have (Mx)4 > (Mx)1 and hence both ratios x4/x1

and x3/x2 are always increasing. On each surface WK , the flow is as shown in
figure 5.3.

Pro-social  G1

Mild  G4 G3  Asocial

G2  Paradoxical

Figure 5.3 The replicator dynamics on surface WK for the reduced Ultimatum game. The
edge G1G4 consists of fixed points. In the long run, the evolution always leads to
the asocial state G3.



−1
0
1

“Chapter5” — September 21, 2009— 15:46— page 109

FAIRNESS AND TRUST 109

0

q

p

1

1

Figure 5.4 A schematic view of the evolution of offers and aspiration levels in individual-
based simulations of the Ultimatum game, under conditions of strict anonymity.
Both p and q converge to minimal values.

On the edge x2 = x3 = 0, all points are fixed points. If x1 < h−l
1−l

, then both (Mx)2

and (Mx)3 are larger than M̄ = x · Mx = 0. Let us denote by Q the point ( h−l
1−l

, 0, 0,
1−h
1−l

). Then the symmetric Nash equilibria of the game are the points on the segment
G1Q, and the vertex G3. We note that on the edge x2 = x4 = 0, there exists another
fixed point P, with coordinates (h, 0, 1 −h, 0). In a population with only pro-social
and asocial players, we have a bi-stable competition. The pro-social strategy is
risk-dominant (it has the larger basin of attraction) if h < 1/2.

The orbits in the interior of S4 either converge to G3, or else to the segment of Nash
equilibria. If we assume that random shocks occasionally perturb the state of the
population, we will expect that they induce neutral drift along the edge x2 = x3 = 0.
If x1 < h−l

1−l
, a random perturbation introducing the asocial strategy G3 will cause

the fixation of G3. This implies that eventually, the population will consist of only
asocial players. Thus evolutionary game theory leads to the same prediction as
classical game theory; both are in contrast to experimental evidence.

It is interesting to return to the full Ultimatum game, with its continuum of strate-
gies. We can perform an individual-based simulation, starting out with a population
of 1000 individuals whose strategies (p, q) are randomly scattered over the strategy
square [0, 1]2. Let us assume that each individual plays 50 rounds of the Ultimatum
game against 50 randomly chosen co-players. Then, players can update their strat-
egy by imitating models chosen from the population with a probability proportional
to their total payoff. Moreover, we assume that from time to time, an individual ran-
domly choses a near-by strategy. This scenario based on imitation and innovation
leads to a strategy very close to (0, 0) (see fig. 5.4), i.e., to an asocial population
offering little and accepting anything—a far cry from human populations with their
prevalent fairness norms.
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5.4 BIFURCATION THROUGH REPUTATION

So far, we have considered conditions of strict anonymity. Let us now assume that
with some (possibly small) probability, players may know their co-player by rep-
utation, and in particular may know about the offers previously accepted by that
co-player. Let us furthermore assume that occasionally, players offer less than they
usually would, if they have reason to believe that they can get away with it, or more
precisely, if they know that their co-player has previously accepted low offers. The
two assumptions seem reasonable enough: they only require some information about
other players in the group, and a touch of opportunistic self-interest. In that case,
players accepting low offers face the risk that later offers proposed to them will tend
to be low.

In order to analyze this situation, let us return again to the reduced Ultimatum,
with two offers only, h and l. We assume that µ > 0 is the probability that a fair
(h, h) Proposer encountering a mild (h, l) Responder knows that this player is apt
to accept a low offer, and consequently offers l instead of h. This yields the payoff
matrix

f1 f2

e1 (1 − h, h) (1 − h + µ(h − l), h − µ(h − l))

e2 (0, 0) (1 − l, l)

(5.15)

that differs from matrix (5.1) in the (e1, f2) position only. The term µ(h − l), which
may be arbitrarily small, can be viewed as a perturbation of the previous game.

The corresponding symmetrized game (5.5) is now given by R = h − 1, r =
−µ(h − l), S = (h − l)(1 − µ), and s = l. For µ < 1, we have R < 0, S > 0, s > 0
(as before), and r > 0 (whereas we had r = 0 in the unperturbed case). This now
yields a generic case, corresponding to case (c) in fig. 5.2. There exists a line of
fixed points in the interior of the state space S4. Each of the surfaces WK (for K > 0)
intersects this line in a saddle point. In particular, the fixed point on W1 (where
we have linkage equilibrium in the sense that x1x3 = x2x4, cf. section 3.6) is given
according to equation (5.14) by

m = 1

k
(l(h − l)(1 − µ), (h − l)2µ(1 − µ), (h − l)(1 − h)µ, l(1 − h)) (5.16)

with k = (1 − l − µ(h − l))(l + µ(h − l)). For µ→ 0, the point m, and with it all
interior fixed points, converge to the point Q on the edge G1G4.

The dynamics on each surface WK is bi-stable, the vertices e1 and e3 are the attrac-
tors, see figure 5.5. Hence, depending on the initial condition, the population will
either converge to the pro-social or to the asocial strategy. On the edge x2 = x4 = 0,
the pro-social strategy G1 is risk-dominant if and only if h + µ(h − l) < 1/2.

This shows that with reputation (and a small amount of selfishness), a population
using the fair strategy cannot be invaded. The reason is that the “mild” strategy
is now at a disadvantage. Again, we can perform individual-based simulations in
the full Ultimatum game. This time we assume that a player’s previous games can
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Pro-social  G1

Mild  G4 G3  Asocial

G2  Paradoxical

Q

Figure 5.5 The replicator dynamics on the surfaces WK for the reduced Ultimatum game, if
Proposers know the offers accepted by their Responders in previous games. The
dynamics is bi-stable, both the asocial and the pro-social state are attractors.

0

q

p

1

1

Figure 5.6 A schematic view of the evolution of offers and aspiration levels in individual-
based simulations of the Ultimatum game, if players know each other’s an-
tecedents with a certain probability, and reduce their offer if they can get away
with it. Both p and q converge to values slightly below 50 percent.

become known, and that Proposers offer whatever is smaller: either their p value, or
the lowest amount known to have been accepted by the Responder during a previous
game. The evolution leads first to very small (p, q) values, which then slowly creep
up along the diagonal p = q. For a large range of parameter values, the offer tends
toward some value between 40 and 50 percent, see figure 5.6.
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5.5 DONATION AND DETERRENCE

Let us now return to the Donation game introduced in section 3.1. Two players must
decide simultaneously whether or not to send a gift b to the other player, at a cost c

to themselves. We know that the dominant solution is to defect, i.e., not to donate.
But let us now add a second stage to this game. In this stage, players can harm
their co-players. We shall assume that the harmful act consists of imposing a fine
of size β. This fine is collected by the experimenter, not by the player imposing
the fine. On the contrary, that player has to pay a fee, at a cost γ . The first stage
of this game thus offers the possibility of altruism (helping another player at a
cost to oneself ), and the second stage the possibility of spite (harming the other
player at a cost to oneself ). Obviously, in both stages, the dominating solution is
to avoid the cost. A self-regarding player should neither help nor harm the other
player.

We assume that players impose their fine conditionally, fining only those who
have failed to help them. This means that defectors can be punished. It is easy to see
that the long-term outcome will still be the same as before: no pro-social behavior
emerges. Indeed, let us label with e1 those players who cooperate by sending a gift
to their co-player, and with e2 those who don’t, i.e., who defect; similarly, let f1

denote those who punish defectors, and f2 those who don’t. The payoff matrix is
given by

f1 f2

e1 (−c, b) (−c, b)

e2 (−β, −γ ) (0, 0)

. (5.17)

We have used the same notation as for two-role games, although the situation is
completely symmetric: instead of two roles, we now have two stages. Despite this
difference, we can apply the same method as before. Indeed, each strategy for
the two-stage game must specify what to do in the first stage, and what to do in
the second. Hence, it is given by a pair eifj (with i, j ∈ {1, 2}). As in section 5.2,
we denote the resulting four strategies with G1 = e1f1, G2 = e2f1, G3 = e2f2 and
G4 = e1f2. The strategy G1 corresponds to the pro-social behavior: to give help, and
to punish those who do not. G3 is the asocial strategy that avoids any costs: it neither
helps the co-player, nor expects any help. G2 can again be viewed as paradoxical:
a G2 player defects, but punishes co-players who defect. Finally, G4 can again be
viewed as a mild strategy: a G4 player sends a gift to the co-player but does not react
if nothing is returned.

We can follow the same approach as in section 5.2, and obtain a matrix of the form
(5.5), with R = c − β, S = c, r = 0, and s = γ . Again, the manifolds WK = {x ∈ S4 :
x1x3 = Kx2x4} are invariant (for K > 0) and the dynamics is as in figure 5.3. In
fact, the reduced Ultimatum game is a special case, with l = γ , β = 1 − l, and
b = c = h − l. Intuitively, this simply means that in the reduced Ultimatum game,
the donation consists of making the high offer instead of the low offer. The benefit
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h − l to the Recipient (i.e., the Responder) is equal to the cost to the Donor (i.e.,
the Proposer). The punishment is in refusing the offer. This costs the Responder the
amount l, and punishes the Proposer by the amount 1 − l. This fine can be large if
the offer has been dismal.

In the interior of S4 (more precisely, whenever x2 > 0 or x3 > 0) we have (Mx)4 >

(Mx)1 and hence x4/x1 is increasing. Similarly x3/x2 is increasing. Therefore there
is no fixed point in the interior of S4. Thus the fixed points in WK are the vertices Gi

and the points on the edge G1G4. G3 is a Nash equilibrium, G2 is not. On the edge
G1G4, M̄ = x1(Mx)1 + (1−x1)(Mx)4 vanishes (since (Mx)4 = (Mx)1 = 0). Hence
a point x on that edge is saturated whenever (Mx)3 ≤ 0, i.e., whenever x1 ≥ c/β.
(The condition (Mx)2 ≤ M̄ reduces to the same inequality.) Thus if c > β, G3 is the
only Nash equilibrium. This case is of little interest.

From now on, we restrict our attention to the case c < β: the fine costs more than
the donation. We denote the point (c/β, 0, 0, (β − c)/β) with Q and see that the
closed segment QG1 consists of Nash equilibria.

On the edge G2G4, there exists a further fixed point (0, c/(β + γ ), 0, (β + γ −
c)/(β + γ )). It is attracting on the edge, and in the face x3 = 0, but repelling on the
face x1 = 0. Finally, there is also a fixed point on the edge G1G3, namely the point
P = ((c + γ )/(β + γ ), 0, (β − c)/(β + γ ), 0). It is attracting in the face x4 = 0, but
repelling in the face x2 = 0. In the absence of the other strategies, the strategies G1

and G3 are bi-stable. The strategy G1 is risk-dominant (i.e., it has the larger basin
of attraction) if, and only if 2c < β − γ . We note that in the special case of the
Ultimatum mini-game, this reduces to the condition h < 1/2.

Apart from G3 and the segment QG1 there are no other Nash equilibria. Depending
on the initial condition, orbits in the interior of S4 converge either to G3 or to a Nash
equilibrium on QG1. In a population consisting of G1 and G4 only, no strategy has
an advantage. We may assume that the state x fluctuates along that edge by neutral
drift (reflecting random shocks of the system). Occasionally random shocks will
also introduce a minority of the missing strategy G2 or G3. If this happens while x
is in QG1, selection will send the state back to the edge, but a bit closer to Q (since
x4/x1 increases). Once the state has reached the segment QG4 and a minority of G3

is introduced by chance, this minority will be favored by selection and eventually
become fixed in the population. The asocial state G3 gets established in the long
run.

5.6 DETERRENCE WORKS THROUGH REPUTATION

Let us assume that with a probability µ, cooperators (i.e., e1 players) defect against
non-punishers, i.e., f2 players. (Hence µ is the probability that (1) the f2 type becomes
known, and (2) the e1 type decides to defect.) Let us similarly assume that with a
small probability ν, defectors (i.e., e2 players) cooperate against punishers. (Hence
ν is the probability that (1) the f1 type becomes known, and (2) the e2 type decides
to donate.) The payoff matrix becomes
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f1 f2

e1 (−c, b) (−c(1 − µ), b(1 − µ))

e2 (−(1 − ν)β − νc, −(1 − ν)γ + νb) (0, 0).

. (5.18)

We obtain R = (1 − ν)(c − β) < 0, S = c(1 − µ) > 0, s = γ − ν(b + γ ), and r =
−bµ < 0. Thus the edge G1G4 no longer consists of fixed points, but of an orbit
converging to G1. The dynamics is as in figure 5.5. The important parameter is µ

(the probability that pro-social players defect if they know that they can get away
with it). By contrast, as long as ν is small, it will not affect the dynamics. Therefore,
we set ν = 0 in this section.

There now exists a line of fixed points x in the interior of S4, namely xi = mi + ξ

for i = 1, 3, and xi = mi − ξ for i = 2, 4, with ξ as parameter and

m = 1

(γ + bµ)(β − cµ)
(cγ (1 − µ), bcµ(1 − µ), bµ(β − c), γ (β − c)). (5.19)

As with the reduced Ultimatum game, this line passes through the quadrangle
G1G2G3G4 and hence intersects every surface WK in exactly one point. Because
Rr > 0, this point is a saddle point for the replicator dynamics on the corresponding
surface WK , see figure 5.5. On each surface, and therefore also in the interior of
S4, the dynamics is bi-stable, with attractors G1 and G3. Depending on the initial
condition, every orbit, with the exception of a set of measure zero, converges to one
of these two states.

Again, for µ → 0 the point m, and consequently all interior fixed points, converge
to the point Q.At µ = 0 we observe a highly degenerate bifurcation. The (very short)
segment of fixed points is suddenly replaced by a transversal line of fixed points,
namely the edge G1G4, of which one segment, namely QG1, consists of Nash
equilibria.

Thus, introducing an arbitrarily small perturbation µ changes the long term be-
havior of the population. Instead of converging in the long run to the asocial regime
G3 (defect, don’t punish), the dynamics now has two attractors, namely G3 and the
pro-social regime G1 (cooperate, punish defectors). We note that µ is proportional
to the probability of having information about the co-player’s type.

Let us briefly consider the case µ = 1, which implies full knowledge about the
type of the co-player. In this case, S = 0. This yields in some way the mirror image
of the case µ = 0. G3G4 is now the fixed point edge, the points on Q̂G3 are Nash,
with Q̂ = (0, 0, b/(b + γ ), γ /(b + γ )), and fluctuations send the state ultimately to
the unique other Nash equilibrium, namely G1. With perfect information, pro-social
players gain the upper hand, if they are ready to defect whenever they can get away
with it.

5.7 REVEALING ERRORS

The previous model is, in a certain sense, incomplete. It crucially relies on the fact
that introducing reputation alters the dynamics on the edge G1G4. But on that edge,
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the population consists of two types only, both cooperating in the donation stage of
the game. How should players learn whether the co-player is of type f1 or f2, i.e.,
willing to punish a defector, or not? Even if each player plays many rounds of the
game, no defection ever arises.

There are several ways to deal with this question. One possibility consists of
assuming that players learn about their co-players’ propensity to punish from other
sources. Indeed, it seems not unlikely that we can get a good idea about the irascibility
or meekness of our co-players by watching their interactions with noisy children or
their comments on the daily news, rather than merely from observing how they act
in the Donation game.

But the simplest approach is to introduce errors. Let us assume that each player
plays the game repeatedly (never against the same co-player twice, of course), and
that players intending to donate will, with a certain probability ε, fail to implement
their intention. (This could be due to a mistake, or to a momentary lack of resources.)
In the absence of reputation, this yields the following payoff structure:

f1 f2

e1 (−(1 − ε)c − εβ, (1 − ε)b − εγ ) (−(1 − ε)c, (1 − ε)b)

e2 (−β, −γ ) (0, 0)

. (5.20)

Compared with the situation in section 5.5, s remains unchanged, whereas R and S

are multiplied by (1 − ε), which does not affect the sign, and hence conserves the
dynamics on the corresponding edge. But r is now equal to εγ , and hence positive.
This means that on the edge G1G4, the flow points towards G4: punishment is
dominated. As a result, we obtain a dynamics as in case (a) of figure 5.2. All orbits
in the interior of the simplex S4 converge to the vertex G3. The asocial type wins.

Now let us introduce reputation. For simplicity, we will assume that a player who
knows that the co-player is not of the punishing type never donates, i.e., always
defects. (It would suffice to assume that the player defects with a small probability.)
The parameter µ, then, is simply the probability to learn that the co-player has, on
some past occasion, failed to punish a defection. If we assume perfect information,
this occurs only if the co-player is of type f2 and has encountered a defection at least
once. On the edge with x2 = x3 = 0, all players are willing to donate, and a defection
only occurs by mistake. The probability that a co-player who experienced k rounds
never faced a mistaken defection is (1 − ε)k . If the number of rounds is distributed
geometrically, with a constant probability w < 1 for a further round, then wk(1−w)

is the probability that the co-player has experienced k rounds. This means that

µ = wε

1 − w(1 − ε)
. (5.21)

If we assume that an e1 player defects by mistake or when knowing that the co-
player is of type f2, this yields

f1 f2

e1 (−(1 − ε)c − εβ, (1 − ε)b − εγ ) (−(1 − ε)(1 − µ)c, (1 − ε)(1 − µ)b)

e2 (−β, −γ ) (0, 0)

.

(5.22)
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We see that r = εγ − µ(1 − ε)b is negative if

γ <
w(1 − ε)b

1 − w(1 − ε)
, (5.23)

i.e., if the fee for punishing the defector is not too high. In that case, the dynamics
is as in figure 5.5, and the pro-social strategy G1 is an attractor.

Of course this can also be applied to the Ultimatum game. In that case, r = εγ −
µ(1 − ε)b is negative if

l < w(1 − ε)h, (5.24)

i.e., if the low offer is sufficiently smaller than the high offer.

5.8 THE TRUST GAME

The Trust game is a two-player game that forms an intriguing counterpart to the
Ultimatum game. First, a coin toss decides who of the two players is the Proposer,
or Investor. This Investor can then donate a certain sum c to the Responder, or
Trustee, knowing that it will be multiplied by a factor r > 1. Next, the Trustee has
the option to return some part β of this sum to the Investor (the returned amount
will not be multiplied). This concludes the game.

It is obvious that a selfish Trustee ought to return nothing. Knowing this, the In-
vestor should offer nothing. In real experiments, Investors often donate, and Trustees
often return enough to make the exchange profitable to both.

In a reduced variant of the Trust game, we assume that the amounts c and β are
fixed. The Investor has only to decide whether or not to send c to the Trustee. Thus
an Investor has the choice between only two alternatives, namely e1 (donate) and
e2 (defect). Similarly, a Trustee who receives a donation (i.e., the sum b = rc), has
the choice between two alternatives, namely to return an amount β or not: these
two alternatives will be denoted by f1 and f2. To make the game interesting, we will
assume that c < β < b. In this case, if both players cooperate, they can both make a
profit. The payoff matrix is

f1 f2

e1 (β − c, b − β) (−c, b)

e2 (0, 0) (0, 0)

. (5.25)

Since the two players are in the role of Investor and Trustee with equal probability,
they are effectively engaged in a symmetric game. Before analyzing it, we turn to
another game that is only slightly more general, and exhibits an interesting comple-
mentarity to the Donation game with the option of punishing the defectors, studied
in section 5.5. Indeed, let us consider a Donation game with the option of rewarding
the donor. This is again a two-stage game. The first stage is simply the Donation
game, as described in section 3.1. In the following stage, recipients have the option
to return a part of their gift to the donor. We shall assume that this costs them γ , and
yields β to the rewarded co-player (if β = γ , this is simply a payback). We assume
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Pro-social  G1

G4 G3  Asocial

G2

Figure 5.7 The replicator dynamics for the reduced Trust game. The edge G2G3 consists of
fixed points. In the long run, nobody trusts the co-player.

0 < c < β and 0 < γ < b. If e1 and e2 are the two options for the first stage (to donate
or to defect) and f1 and f2 for the second stage (to reward the donor or not), then the
payoff structure is given by

f1 f2

e1 (β − c, b − γ ) (−c, b)

e2 (0, 0) (0, 0)

. (5.26)

The reduced variant of the Trust game can be viewed as a special case of this (if we
draw the usual parallel between two-role games and two-stage games). There exist
four strategies, namely (a) the pro-social strategy G1 = e1f1 (donate, reward); (b) the
distrustful strategy G2 = e2f1 (defect, but reward a donor); (c) the asocial strategy
G3 = e2f2 (no donation, no reward); and finally, the strategy G4 = e1f2 (donation,
but no reward). For the corresponding payoff matrix (5.5), we obtain R = c−β < 0,
r = γ > 0, S = c > 0, and s = 0, see figure 5.7.

If x3 = x4 = 0, i.e., if everyone in the population is willing to reward a donation,
then it is best to donate, i.e, G1 dominates G2. If x2 = x3 = 0, i.e., if donations can be
taken for granted, then it is best not to reward, i.e., G4 dominates G1. If x1 = x2 = 0,
i.e., if no one ever rewards a donation, then G3 dominates G4, i.e., it is best not to
donate. Finally, if x1 = x4 = 0, so that nobody ever donates, then it does not matter
whether one is prepared to reward a donation or not. In this case, every state of the
population is a fixed point. Neither G2 nor G3 has an advantage.

It is easy to see that the segment QG3, with

Q =
(

0,
c

β
,
β − c

β
, 0

)
, (5.27)

consists of saturated fixed points, i.e., of Nash equilibria. Indeed, for x1 = x4 = 0,
both (Mx)1 (which is normalized to 0) and (Mx)4 are smaller than the average
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payoff M̄ = (Mx)2 = (Mx)3 = c − βx2. In contrast to the situation in the reduced
Ultimatum game, the flow along the edges leads from G2 to G1, from there to G4,
and then to G3. All orbits in the interior converge to the segment QG3 for t → +∞
and to the segment QG2 for t → − ∞. Thus the population will, in the long run,
consist only of players who always defect (and consequently never reward). In
particular, the reduced version of the Trust game will never get off the ground: no
donations, no paybacks.

5.9 REWARD AND REPUTATION

Let us now introduce reputation effects. We shall assume that with some likelihood
µ, cooperators (i.e., players of type e1) defect if they know that their co-player is
not going to reward them (i.e., is of type f2). Hence µ is the probability that (1) the
f2 type becomes known, and (2) the e1 type decides to defect. Similarly, we denote
by ν the likelihood that defectors (i.e., players of type e2) cooperate if they know
that they will be rewarded. Hence ν is the probability that (1) the f1 type becomes
known, and (2) the e2-type reacts accordingly, and donates. This yields the payoff
structure

f1 f2

e1 (β − c, b − γ ) (−c(1 − µ), b(1 − µ))

e2 ((β − c)ν, (b − γ )ν) (0, 0)

. (5.28)

Now R = (c−β)(1−ν) < 0, S = c(1−µ) > 0, r = γ −bµ, which is positive if µ is
small, and s = (γ − b)ν, which is negative. It is this last condition that differs from
the unperturbed system studied in the previous section. The edge G2G3 no longer
consists of fixed points. Instead, G3 is dominated by G2. The essential parameter,
therefore, is ν, and we shall set µ = 0 for most of the following discussion.

For ν > 0, the flow on the edge G2G3 leads towards G3, so that the frame spanning
the saddle-type surfaces WK is cyclically oriented, see figure 5.8. As in section 5.6,
there exists a line of fixed points in the interior of S4. It can be shown that the surface
W1 consists of periodic orbits. If � := (β−γ )(1−ν)−(b−c)ν is negative, all non-
equilibrium orbits on WK , with 0 < K < 1, (as well as the orbits on the faces x1 = 0
and x3 = 0) spiral away from this line of fixed points and towards the heteroclinic
cycle G1G4G3G2. All non-equilibrium orbits in WK , with K > 1, (as well as the
orbits on the faces x2 = 0 and x4 = 0) spiral away from that heteroclinic cycle and
towards the line of fixed points. If � is positive, the converse holds.

We stress the highly unpredictable dynamics if ν > 0 and � �= 0. The saddle-
like surface W1 divides the state space S4 into two parts of equal size. For one-half
of the initial conditions, the replicator dynamics sends the state towards the line
of fixed points. But there, random fluctuations will eventually lead to the other
half of the simplex, where the replicator dynamics leads towards the heteroclinic
cycle G1G4G3G2. The population seems glued for a long time to one strategy, then
suddenly switches to the next, remains there for a still longer time, etc. However, an
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Pro-social  G1
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Figure 5.8 The replicator dynamics for the reduced Trust game, if receivers can gain a rep-
utation for rewarding their donors. Depending on the initial value of the ratio
x1x3/x2x4, the orbits either spiral towards the interior fixed point, or towards the
cycle consisting of the four edges. If the ratio is 1, the orbits are closed.

arbitrarily small random shock can send the state back into the half-simplex where
the dynamics drives it again towards the line of fixed points, etc. Not even the time
averages of the frequencies of strategies converge. One can only say that the most
probable state of the population is either monomorphic (i.e., close to one corner of
S4), or else close to the attracting part of the line of fixed points (with all four types
present, and—if the value ν is small—a frequency of rewarders close to c/β, and a
frequency of donations that is small).

Positive incentives thus appear to be considerably less efficient than negative
incentives in furthering economic behavior. It needs to be stressed that this holds for
models based on random pairing. If players can actively choose between partners, it
seems likely that a reputation for rewarding helpful partners is more attractive than
a reputation for punishing defectors.

Let us note that we encounter the same problem as for the Ultimatum game in
section 5.7. If x1 = x4 = 0, then nobody ever donates. In this case, how should the
trait of rewarding donations ever reveal itself ? The assumption that occasionally
players commit errors is not as plausible as in the previous case, since it is much
less likely that an individual donates inadvertently than that a player fails in the
intention to donate.

Finally, let us briefly consider what happens when the fact that a player does not
reward is likely to become publicly known. In that case, such a player is not likely
to receive a donation. This means that µ is close to 1, and hence that the parameter
r = γ − bµ is negative. In that case, all orbits in the interior converge to G1, the
pro-social state, see figure 5.9. This applies, in particular, to the Trust game played
with banks and funds. As soon as it is safe to assume that a funds manager who fails
to return the investment becomes known, the pro-social strategy (for the clients to
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Pro-social  G1

G4 G3  Asocial

G2

Figure 5.9 The replicator dynamics for the reduced Trust game, if players who do not return
the investment are likely to become notorious. The pro-social state G1 attracts all
orbits.

invest, and for the manager to return more than the invested sum to the clients) is a
global attractor.

5.10 SNOWDRIFT ASYMMETRIES

In sections 2.5 and 5.2, we have seen how an asymmetric game can be transformed
into a symmetric game. Occasionally, it can be useful to consider an opposite sce-
nario, and allow asymmetries to creep into a symmetric game.

In particular, let us return to the Snowdrift game described in sections 1.4 and
3.1, but suppose that the two players are in distinct roles I and II. (For instance,
one of them could be older than the other; or they could be of different sex.) The
game is still a symmetric game (i.e., ei = fi for i = 1, 2, and the payoff structure
given by (5.2) satisfies A = a, D = d, B = c, and C = b), but the players can play
conditional strategies of the type: if in role I, use e1, if in role II, use f2. Although
the difference of the roles does not influence the payoff, it can be used as a cue.
With the notation introduced in section 5.2, we see that R = r and S = s. In the
context of the Snowdrift game, R = c/2 > 0 and S = c − b < 0. The phase portrait
on each manifold WK is symmetric with respect to the diagonal, and bi-stable. The
strategies G2 and G4 are attractors. They prescribe different moves in different roles.
For almost all initial conditions, the state converges to one or the other of these two
conditional strategies, which lead to conditional cooperation: players are ready to
pay the fee or not, depending on the role they are in (see figure 5.10).

This means that an a priori irrelevant cue can settle the outcome. It could be
age, for instance, or first arrival. The conditional strategy could be of the form: “If
you arrived first on the spot, pay the fee; if you arrived second, do not.” It could
just as well be: “If you arrived second, pay the fee; if you arrived first, do not.”
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G1

G4 G3

G2

Figure 5.10 The replicator dynamics for the Snowdrift game, if the two players can be dis-
tinguished by some cue.

The symmetry between the two outcomes first has to be broken, one way or the
other, through some exterior effect. Once the asymmetry is established, it is stable.
A second asymmetry (for instance, in sex or size) will not supersede it.

For two-strategy games, this “desymmetrization” is only relevant in the case
of stable co-existence. If the symmetric game leads to dominance or bi-stability,
then the introduction of two roles does not affect the outcome: the corresponding
asymmetric game still leads to dominance or bi-stability. But if the symmetric game
leads to stable co-existence, then the introduction of two roles changes the outcome
completely: the corresponding asymmetric game is bi-stable.

In particular, we have seen that in the repeated Snowdrift game, two players do
equally well, on average, if they both cooperate in each round, than if they alternate
in cooperating and defecting. But this second alternative appears unlikely. It seems
more plausible that once a player has defected and the other has not, this asymmetry
will be taken as a cue in the following rounds. In that case, one player will always
cooperate and the other will always defect. Their joint payoff is still as good as if they
fairly shared the cost of cooperation, round for round. But one player is consistently
exploited by the other.
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Chapter Six

Public Goods and Joint Efforts: Between Freedom
and Enforcement

6.1 PUBLIC GOODS GAMES

So far, we have considered pairwise interactions only. But many collaborative in-
teractions take place in larger teams. This introduces new aspects. In particular,
reciprocation becomes more difficult. If you interact repeatedly in a group, and if
one of your co-players defects whereas another cooperates, with whom do you
reciprocate?

On the other hand, in groups of more than two, majorities can form, and this
may facilitate the enforcement of collaboration. As W. D. Hamilton wrote in his
essay on Innate Social Aptitudes of Man: “There may be reason to be glad that
human life is a many-person game and not just a disjoined collection of two-person
games.”

The team efforts that we shall consider will be modeled by so-called Public Goods
games. Typical examples are group hunting or raiding, joint efforts in constructing
shelters or preserving common resources, collaborations to ensure security from
internal or external threats.

Such Public Goods games display a social dilemma: defectors do better than co-
operators. The introduction of sanctions does not help to overcome that dilemma,
because the sanctions are themselves a public good. But we shall see that if partici-
pation in the joint enterprise is voluntary, rather than compulsory, then cooperation
based on the punishment of defectors can emerge.

6.2 MODELING PUBLIC GOODS GAMES

Let us assume that N ≥ 2 individuals participate in a Public Goods game. Each
has to decide whether to contribute towards the public good or not, i.e., whether to
cooperate or to defect. We shall consider two models.

In the first case, which we denote by SR (for self-return), we assume that the
contributions of all Nc cooperators are multiplied by r > 1 and then divided among
all N players participating in the game. Thus every player receives the benefit

rcNc

N
(6.1)
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from the public good. In addition, the cooperators have to pay a fixed cost c. We note
that a fraction r/N of their own investment returns to the contributors. The game
can only qualify as a social dilemma if r < N .

In the second case, denoted by OO (for others-only), each contribution is mul-
tiplied by r and then divided among the N − 1 other players. Thus contributors
receive no return from their own investment. The payoff for a defector is

rcNc

N − 1
. (6.2)

A cooperator obtains

rc(Nc − 1)

N − 1
(6.3)

from the public good, and has moreover to pay a cost c.
If a player would switch from defection to cooperation, this would entail a cost,

namely c(1 − r
N

) in the self-returning case, and c in the others-only case. If all
players cooperate, they obtain (r − 1)c in both cases alike.

We note that if there are only two participants, i.e., if N = 2, the OO Public Goods
game yields the Donation game from section 3.1. The issue is simply whether or
not to confer a benefit b := rc to the co-player at a cost c to oneself. The SR Public
Goods game also yields a Donation game, if 1 < r < 2. In that case, the benefit is
rc/2 and the cost is c(1 − r

2 ).
Let us now consider the limiting case of an infinitely large population, and assume

that from time to time, a random sample of N players engages in a Public Goods
game. If x denotes the frequency of cooperators and y that of defectors, the expected
payoff for a cooperator is given, in the OO case, by Px = c(rx − 1), and that for a
defector is given by Py = crx. Multiplying these expressions by (N − 1)/N yields
the corresponding payoff values in the SR case. In each case, Py is larger than Px ,
so that defectors will take over.

Can this social dilemma be overcome through positive or negative incentives
specifically directed at individual players? We shall only investigate the effect of
punishment here.

6.3 PUBLIC GOODS WITH PUNISHMENT

The Public Goods game with punishment has been studied in chapter 5 for the case
of pairwise interactions, i.e., for N = 2. It is easy to extend this analysis to larger
N . The game consists of two stages. In the first stage, players have to choose be-
tween the alternatives e1 (to contribute to the public good), and e2 (to defect). In
the second stage, players have to choose between f1 (to punish those who defected),
and f2 (not to punish the defectors). As in section 5.5, we assume that each act of
punishment reduces the payoff of the punished player by the amount β, and the
payoff of the punishing player by an amount γ (with β, γ > 0). Thus, punishing is
a costly activity: a selfish player should refrain from it. In the resulting two-stage
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game (first, contribute or not; then, punish or not), there are four distinct strate-
gies. The pro-social strategy G1 = e1f1 contributes and punishes. The paradoxical
strategy G2 = e2f1 prescribes to defect, and to punish all co-players who defect. The
asocial strategy G3 = e2f2 consists in neither contributing nor punishing. Finally, the
strategy G4 = e1f2 prescribes to contribute, but not to punish defectors. Players with
this strategy can be viewed as second-order exploiters, free-riding on the sanctions
provided by others.

We shall restrict attention in this section to the self-returning case SR. All players
receive as a result of the contributions of their (N −1) co-players an average payoff

B = rc

N
(N − 1)(x1 + x4). (6.4)

The costs arising from their own contribution (if any) and the punishing activities
in their group yield a net average payoff Pi for type Gi , with

P1 = B − c
(

1 − r

N

)
− (N − 1)γ (x2 + x3), (6.5)

P2 = B − (N − 1)β(x1 + x2) − (N − 1)γ (x2 + x3), (6.6)

P3 = B − (N − 1)β(x1 + x2), (6.7)

P4 = B − c
(

1 − r

N

)
. (6.8)

We consider the replicator equation ẋi = xi(Pi − P̄ ), where P̄ = ∑
xiPi is the

average payoff. Since P1+P3 = P2+P4, the quotient x1x3/x2x4 denotes an invariant
of motion and hence the sets

WK = {x ∈ S4 : x1x3 = Kx2x4} (6.9)

(with K > 0) provide a foliation of the state space S4 into invariant manifolds, just
as in figure 5.1. It is thus sufficient to study the dynamics on these two-dimensional
manifolds, which are saddle-like surfaces spanned by the edges G1 − G2 − G3 −
G4 − G1.

Just as in section 5.5, there is no rest point in the interior of these surfaces.
The flow on the edge G1G2 points towards G1, and on the edges G2G3 as well as
G4G3 it points towards G3. The edge G1G4 consists of fixed points. To make things
interesting we shall always assume

(N − 1)β > c
(

1 − r

N

)
. (6.10)

This condition states that the total fine imposed on a defector, if all co-players
punish, is higher than the net cost of contributing to the public good. In this case, the
point

Q :=
(

(N − r)c

βN(N − 1)
, 0, 0, 1 − (N − r)c

βN(N − 1)

)
(6.11)

lies in the segment G1G4. The growth rates Pi − P̄ of the missing strategies 2 and
4 on the segment G1Q are negative, and hence these points are saturated, i.e., Nash
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equilibria. The points between Q and G4 are not. This yields a phase portrait as in
figure 5.3. It follows that all initial conditions lead either to G3 or to the segment
G1Q. If we assume that random shocks occasionally perturb the system, we see that
in the long run, the asocial equilibrium G3 always gets established.

6.4 REPUTATION

Let us now assume that with a small probability µ, (i) players occasionally learn
about the type of their co-players, and (ii) players who normally are contributors
may change their mind and decide not to contribute, if this entails no risk of being
punished, i.e., if all co-players are of the non-punishing types G3 or G4. This alters
the payoff values. Players with strategy Gi now have an expected payoff Pi(µ), with

P1(µ) = B − c
(

1 − r

N

)
[1 − µ(x3 + x4)

N−1] − (N − 1)γ (x2 + x3) (6.12)

P2(µ) = B − (N − 1)β(x1 + x2) − (N − 1)γ (x2 + x3) (6.13)

P3(µ) = B − (N − 1)
rc

N
µ(x1 + x4)(x3 + x4)

N−2 − (N − 1)β(x1 + x2) (6.14)

P4(µ) = B − (N − 1)
rc

N
µ(x1 + x4)(x3 + x4)

N−2

− c
(

1 − r

N

)
[1 − µ(x3 + x4)

N−1] (6.15)

where B remains unchanged, see equation (6.4). Indeed, the terms P3 and P4 for
non-punishers are modified by the loss due to the change of mind of contributors: for
each of the N −1 co-players, this happens if (a) the co-player is a contributor, and (b)
all other N − 2 co-players are non-punishers. The terms P1 and P4 for contributors
are modified whenever all N − 1 co-players are non-punishers.

Again, P1(µ)+P3(µ) = P2(µ)+P4(µ) and hence the WK are invariant manifolds.
For small µ > 0, the orientation of the flow on the edges G1G2, G2G3 and G3G4

remains unchanged, but the edge G1G4 no longer consists of rest points: the flow
on this edge now points towards G1. The vertices G1 and G3 are sinks within each
WK , and G2 and G4 are sources, as can be seen by linearization. Thus there exists
at least one rest point in the interior of each WK . Moreover, there is only one such
point, (which accordingly must be a saddle point, see fig. 5.5). Indeed, at the rest
point, P1(µ) = P2(µ) must hold. Setting y = x3 + x4 (the frequency of punishers)
and

f (y) := P1(µ) − P2(µ), (6.16)

we see that

f (y) = µ
(N − r)c

N
yN−1 − β(N − 1)y +

[
β(N − 1) − (N − r)c

N

]
. (6.17)
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The equation f (y) = 0 has a unique solution y = ŷ in ]0, 1[ because f is strictly con-
vex, f (1) < 0, and f (0) > 0. In addition, the rest point must satisfy P2(µ) = P3(µ)

and hence,

γ z = rcµ

N
(1 − z)ŷN−2 (6.18)

where z = x2 + x3 is the frequency of defectors. This specifies z. We note that for
µ → 0 the interior rest point in WK converges to Q.

In the state space S4, we therefore have a bi-stable situation: apart from a set
of measure zero, all initial conditions lead to the pro-social or to the asocial state.
Numerical simulations show that even for very small µ the basin of attraction of the
social equilibrium G1 can be substantial.

The problem with this, and several other models is that they do not explain the
emergence of social punishment. If all players are ready to punish, i.e., if the state is
in the social equilibrium G1, then defectors obviously have no chance to invade. But
in the asocial state G3, it is the pro-social trait that cannot gain a foothold. A player
bent on punishing all defectors would have to punish left and right. This behavior
would be very costly, and hence unlikely to be imitated.

6.5 FINITE POPULATIONS

In order to gain another perspective on the problem of the emergence of a sanctioning
system, let us consider a finite population of size M . From time to time, a sample of
N players is chosen at random and plays a Public Goods game. We consider three
strategies only, which we denote by X, Y , and Z. The X players always contribute,
but do not punish; the Y players neither contribute nor punish; and the Z players
contribute and punish. In the previous model, this corresponds to G4 (the second-
order exploiters), to G3 (the asocial players who neither contribute nor punish),
and to G1 (the pro-social players, who contribute and punish the defectors). For
simplicity, we do not include the paradoxical strategy G2 of defecting, but punishing
defectors.

We shall now assume a particularly simple imitation mechanism. From time to
time, two players are chosen at random and compare their payoffs. Whoever has
the lower payoff adopts the strategy of the other player. If both players have the
same payoff, a coin toss decides who imitates the other. If these updating events
occur rarely enough, the payoff values, (which depend on the random sampling
of the groups playing the Public Goods game), are very close to the expected
values.

The corresponding stochastic process is given by a Markov chain whose absorbing
states correspond to the homogeneous states (M , 0, 0), (0, M 0), and (0, 0, M), which
we denote by AllX, AllY, and AllZ. Imitation cannot lead away from these states.
But we shall assume that in addition, players can occasionally switch to another
strategy at random, without imitating another player. This “innovation” leads from
a homogeneous state to a state with one dissident. Next, the imitation process takes
over again. Either the dissident switches back to the resident strategy, or the rest of
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the population will eventually adopt the new strategy. The population then remains
homogeneous again until the next random switch occurs, etc.

By assuming that these random switches are very rare, we effectively perform a
separation of time scales: imitation works much faster than innovation. This “adi-
abatic” case has been described in section 2.17. The transitions from one homoge-
neous state to another can be described by a Markov chain with the three statesAllX,
AllY, and AllZ, given by

⎛
⎜⎝

1
2 − 1

2M
1
2

1
2M

0 1 0
1

2M
0 1 − 1

2M

⎞
⎟⎠ . (6.19)

For instance, let us assume that the population is in state AllX and an individual
switches randomly to another strategy. This is with probability 1/2 the defector’s
strategy Y . Since Y players always do better than X players, the population will
end up in AllY. With the same probability 1/2, the random switch can introduce
the pro-social strategy Z. In a population of X and Z players only, all do equally
well, and the probability that eventually all individuals adopt the Z strategy (through
neutral drift) is 1/M . The transition probability from AllX to AllX is such that the
row sum is 1. Now to the second row: in an AllY population, a single X individual
will be exploited, and fare less well than the residents. Hence, nobody will imitate
this individual, who will revert to Y on the next opportunity. Similarly, a single Z

individual will do less well than the resident, provided that

c
(

1 − r

N

)
+ γ (N − 1) >

N − 1

M − 1

(
β − rc

N

)
, (6.20)

in the self-returning case, and

c + γ (N − 1) >
N − 1

M − 1

(
β − cr

N − 1

)
(6.21)

in the others-only case. Both conditions are trivially satisfied if the total population
size M is sufficiently large. Finally, an individual switching away from theAllZ state
switches with equal probability to strategy X, or to strategy Y . In the former case,
we have neutral drift again, and the fixation probability is 1/M . In the latter case,
the fixation probability is 0, provided we assume that a single defector does less
well than the resident punishers. This is just condition

(N − 1)β >
N − 1

M − 1
γ + c

(
1 − r

N

) (
M − N

M − 1

)
(6.22)

in the self-returning case, and

c

(
1 + r

M − 1

)
< (N − 1)

(
β − γ

M − 1

)
(6.23)
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in the others-only case. In the limit of a large population, i.e., for M → ∞, inequal-
ity (6.22) reduces to (N − 1)β > (1 − r

N
)c (as in equation (6.10)), and (6.23) to

(N − 1)β > c.
It is easy to see that the Markov chain given by matrix (6.19) has a unique

stationary distribution, namely (0, 1, 0). This shows that AllY, the pure defector
state, is the inevitable outcome.

6.6 VOLUNTEERS STEPPING FORWARD

Now let us assume that there exists another strategy, denoted by W, which consists
in not participating in the Public Goods game. Such players will obtain a payoff σ

that does not depend on the other players. We shall assume that

0 < σ < (r − 1)c. (6.24)

This means that the payoff for a self-sufficient player who does not participate in the
joint effort is lower than that obtained in a Public Goods game in which all members
contribute, but higher than that in a Public Goods game among defectors only. We
shall furthermore assume that single players cannot play a Public Goods game all
by themselves. They need at least one more player willing to participate.

The Markov chain describing the transitions between the four homogeneous states
AllX, AllY, AllZ, and AllW is given by

⎛
⎜⎜⎜⎜⎜⎝

2
3 − 1

3M
1
3

1
3M

0

0 2
3 0 1

3

1
3M

0 1 − 1
3M

0

1
6 0 1

6
2
3

⎞
⎟⎟⎟⎟⎟⎠

. (6.25)

We only have to check the last row and column. (The other elements are obtained as
in matrix (6.19), except that a random switch to another strategy now leads with equal
probability 1/3 to one of three alternatives.) It is clear that a single W player will
do less well than the X residents, or the Z residents, but better than the Y residents.
In a population of W players, a single individual switching to another strategy will
do exactly as well as the residents, since that player cannot participate in any Public
Goods game. Hence, if the lone dissident and one of the residents compare payoffs,
the dissident is as likely to adopt the resident’s strategy as vice versa. But if, as
happens with probability 1/2, a second individual adopts the dissident’s strategy,
then this strategy will fare less well than the W residents if it is the Y strategy,
whereas it will fare better if it is the X or the Z strategy.

It is easy to see that the Markov chain (6.25) has a unique stationary distribution,
given by

(p, p, 1 − 3p, p), (6.26)
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with

p = 2

M + 8
. (6.27)

For M = 100, this means that for almost 95 percent of the time, the population
consists of the pro-social type only. Defectors are down to less than 2 percent,
whereas they completely dominate the compulsory Public Goods game, as we have
seen in the previous section.

6.7 THE OPTION TO ABSTAIN

In order to better understand the effect of voluntary participation, let us consider
what happens if sanctioning is impossible, i.e., if only the strategies X, Y , and W

are available, but not Z. The transition matrix then is
⎛
⎜⎝

1
2

1
2 0

0 1
2

1
2

1
4 0 3

4

⎞
⎟⎠, (6.28)

and the stationary distribution is
(

1

4
,

1

4
,

1

2

)
. (6.29)

This means that in the long run, half of the time all the players participate in the
game, either all contributing or all defecting, and half of the time none participate.
The matrix (6.28) displays a Rock-Paper-Scissors structure: AllX can only mutate
to AllY, which can only mutate to AllW, which can only mutate to AllX. It is this
cycle that avoids the dead-lock of an all-defector state.

Let us analyze this cycle by turning to the replicator dynamics for an infinitely
large population consisting of cooperators (who contribute, but do not punish),
defectors, and non-participants. (Punishers are excluded.) We denote by x, y, and
w the relative frequencies of the three strategies, and we calculate their expected
payoff values Px, Py , and Pw. Clearly,

Pw = σ. (6.30)

The probability that a given player has h co-players willing to participate is
(

N − 1

h

)
(1 − w)hwN−1−h (6.31)

for h = 0, . . . , N − 1. The probability that m of these are contributing is

(
h

m

) (
x

1 − w

)m (
y

1 − w

)h−m

(6.32)
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for m = 0, . . . , h (if h > 0). If h = 0, the player is reduced to the non-participating
strategy, and thus to the payoff σ .

Let us consider the OO case first. The expected benefit stemming from h co-
participants is

h∑
m=0

rcm

h

(
h

m

) (
x

1 − w

)m (
y

1 − w

)h−m

= rcx

1 − w
, (6.33)

which is independent of h (for h = 1, . . . , N − 1). Hence the payoff obtained from
the public good by a defector is

Py = σwN−1 + rcx(1 − wN−1)

1 − w
. (6.34)

Cooperators obtain the same term, reduced by c(1 − wN−1). Hence

Py − Px = c(1 − wN−1). (6.35)

This expression is always positive.
In the SR case, when part of a contribution is returned to the donor, the expression

is slightly more complicated. A defector in a group with h co-participants obtains
rcm/(h+1), if m is the number of cooperators. Hence the defector’s expected payoff
is (

rch

h + 1

) (
x

1 − w

)
. (6.36)

Thus,

Py = σwN−1 + rc
x

1 − w

N−1∑
h=0

(
N − 1

h

)
(1 − w)hwN−h−1

(
h

h + 1

)
(6.37)

(the h = 0 term contributes nothing to the sum). The equality
(

N − 1

h

)
=

(
N

h + 1

)
h + 1

N
(6.38)

yields

Py = σwN−1 + rc
x

1 − w

(
1 − 1 − wN

N(1 − w)

)
. (6.39)

In a group with h co-players participating in the self-returning Public Goods game,
switching from cooperation to defection yields c(1 − r/(h + 1)). Hence,

Py − Px =
N−1∑
h=1

c

(
1 − r

h + 1

) (
N − 1

h

)
(1 − w)hwN−h−1. (6.40)
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r < 2

r = 2

r > 2
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Figure 6.1 The graph of the function w �→ (1 − w)FN(w), with FN given by expression
(6.42), for N = 5.

Using equation (6.38) as before, we obtain

Py − Px = cFN(w), (6.41)

with

FN(w) := 1 + (r − 1)wN−1 −
( r

N

) (
1 − wN

1 − w

)
. (6.42)

The advantage of defectors over cooperators depends only on the fraction of non-
participants w.

The sign of Py − Px , determines whether it pays to switch from cooperation to
defection or not, FN(w) = 0 being the equilibrium condition. We claim that for
r ≤ 2, FN has no root, and for r > 2 exactly one root ŵ in the interval ]0, 1[. In order
to show this, we consider the function G(w) = FN(w)(1 − w) that has the same
roots as FN(w) in ]0, 1[, and note that G(0) = 1− r/N > 0 and G(1) = 0. For r > 2,
the function G has a local maximum at w = 1. Indeed, G′(1) = 0 and G′′(1) = (2 −
r)(N − 1). Moreover, G

′′
(w) = wN−3(N − 1)[(N − 2)(r − 1) − w(Nr − N − r)]

changes sign at most once in ]0, 1[. Thus, for r > 2 there exists a threshold value
ŵ of the frequency of non-participants above which cooperators fare better than
defectors, see figure 6.1.

The average payoff in the population, P̄ = xPx + yPy + wPw, can be rewritten
using y = 1 − x − w:

P̄ = x(Px −Py)+w(σ −Py)+Py = −x(Py −Px)+(1−w)(Py −σ)+σ. (6.43)

This yields

P̄ = σ + [(r − 1)xc − (1 − w)σ ](1 − wN−1) (6.44)

both for the self-returning and the others-only case.
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x

y

Defectors

Cooperators

w

Non-participants

Figure 6.2 The replicator dynamics for the OO case, or for the SR case with 1 < r ≤ 2. All
orbits in the interior of S3 tend to w = 1, for t → ± ∞.

6.8 A ROCK-PAPER-SCISSOR DYNAMICS

Let us now analyze the replicator dynamics for the three strategies X, Y , and W ,
i.e., the cooperators, the defectors, and the non-participants. The behavior on the
boundary of S3 is the same for the SR and the OO scenario. The corners of the
simplex S3 = {(x, y, w) : x, y, w ≥ 0, x + y + w = 1}, i.e., the homogeneous states
AllX, AllY, and AllW, are obviously fixed points. There are no other fixed points
on the boundary of S3. In fact, an orbit leads from AllX (cooperators only) to AllY
(defectors only), an orbit from AllY to AllW (non-participants), and an orbit from
AllW to AllX. Thus the boundary of S3 consists of a heteroclinic cycle.

In the OO case, we always have Px < Py . In the interior of the state space S3,
there is no fixed point: all orbits converge to AllW, for t → ±∞ (see fig. 6.2).

For the rest of this section we only consider the SR case. For r ≤ 2, the function
FN defined in expression (6.42) has no root in ]0, 1[, and hence Px < Py in intS3:
this leads to the same dynamics as in the OO case, see figure 6.2. Thus let us now
assume r > 2.

In that case, FN has a root ŵ ∈ ]0, 1[. Using Py = Pw = σ , we see that there exists
a unique rest point Q = (x̂, ŷ, ŵ) in intS3, with

x̂ = σ

c(r − 1)
(1 − ŵ), (6.45)
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as well as

ŷ =
(

1 − σ

c(r − 1)

)
(1 − ŵ). (6.46)

In order to analyze the dynamics in the interior of S3, it is useful to show that the
replicator equation can be rewritten in the form of a Hamiltonian system, and thus
admits an invariant of motion. Indeed, defining f = x/(x + y) as a new variable,
we obtain

ḟ = xy

(x + y)2
(Px − Py). (6.47)

This yields

ḟ = −f (1 − f )cFN(w). (6.48)

Using equation (6.44), we see that

ẇ = [σ − cf (r − 1)] w(1 − w)(1 − wN−1). (6.49)

Dividing the right hand sides of equations (6.47) and (6.48) by the function f (1 −
f )w(1 − w)(1 − wN−1), which is positive for all values of f and w between 0 and
1, corresponds to a change in velocity and does not affect the orbits. This yields

ḟ = −cFN(w)

w(1 − w)(1 − wN−1)
=: −g(w) (6.50)

ẇ = σ − cf (r − 1)

f (1 − f )
=: l(f ). (6.51)

Introducing H := G + L, where G(w) and L(f ) are primitives of g(w) and l(f ),
we thus obtain the Hamiltonian system

ḟ = −∂H

∂w
, (6.52)

ẇ = ∂H

∂f
. (6.53)

This system is conservative, and the Hamiltonian H attains a strict global maximum
at ( σ

c(r−1)
, ŵ). Thus the change in variables from (x, y, w) ∈ S3 to (f, w)∈ ]0, 1[2

shows that the unique interior equilibrium Q of the replicator dynamics is a stable
point surrounded by closed orbits, see figure 6.3.

Variations of the three parameters N, r , and σ allow for Q to be in any interior
point of the simplex (see fig. 6.4). The fixed point Q lies on the line

x = σ

c(r − 1) − σ
y, (6.54)
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Figure 6.3 The replicator dynamics for the SR case, with r > 2. The rest point Q is surrounded
by periodic orbits.
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Q
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r

Figure 6.4 The dependence of Q on the parameters N , σ , and r .



−1
0
1

“Chapter6” — September 21, 2009— 15:46— page 136

136 CHAPTER 6

which is independent of the sample size N . For increasing N , Q moves towards the
vertex AllW. The limit N → ∞ yields homoclinic orbits issuing from and leading
to AllW.

6.9 TIME AVERAGES

Let us consider the replicator dynamics for the optional, self-returning Public Goods
game. The time average of a function v : S3 → R over an orbit of period T is defined
as v̄ = 1

T

∫ T

0 v(x(t), y(t), w(t))dt . It depends, in general, on the initial condition,
but the time average of the fraction of cooperators among individuals participating
in the game corresponds to its value at the equilibrium point Q:

x̄

x̄ + ȳ
= σ

c(r − 1)
. (6.55)

Moreover, the time average of the fraction of cooperators among all participants in
Public Goods games, i.e., f̄ , corresponds to the fraction of the averages:

f̄ = σ

c(r − 1)
. (6.56)

Interestingly, an increase in r , the profitability of the public good, always favors
defection, since it decreases the fraction f of cooperators among those actually
participating in the Public Goods game.

In order to derive equation (6.55), we use the relation x = f (1 − w). Dividing
both sides of the equation (6.49) by w(1 − wN−1), we get:

∫ T

0
[σ(1 − w) − c(r − 1)x] dt =

∫ T

0

ẇdt

w(1 − wN−1)
= p(w)

∣∣∣∣
w(T )

w(0)

, (6.57)

with p(w) being a primitive of [w(1 − wN−1)]−1. Since the orbits are closed, the
last term vanishes and the proportionality between x̄ and 1 − w̄ = x̄ + ȳ follows.
Equation (6.56) is obtained in the same way, if equation (6.49) is divided by w(1 −
w)(1 − wN−1).

Due to the properties of the replicator equation, the time averages of the payoffs for
the three different strategies are equal and reduce to the payoff of non-participants,
i.e., σ :

P̄x = P̄y = P̄w = σ. (6.58)

Thus, in the long run, no one does better or worse than the non-participants.

6.10 ENTER THE PUNISHERS

Let us now assume, as in section 6.3, that participants in the game can also pun-
ish the cheaters in their group. Thus we consider four types of players: (1) the
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non-participants; (2) the cooperators, who participate and contribute, but do not
punish; (3) the defectors, who participate, but neither contribute nor punish; and (4)
the punishers, who participate, contribute, and punish the defectors in their group.
We denote the relative frequencies of cooperators, defectors, punishers, and non-
participants in the infinite population by x, y, z, and w. Their frequencies in a given
random sample of size N are denoted by Nx, Ny, Nz, and Nw respectively (with
Nx + Ny + Nz + Nw = N , and S = Nx + Ny + Nz as the number of participants in
the Public Goods game). In contrast to section 6.4, we do not allow for reputation
effects.

Up to now, we have assumed that after each round of the Public Goods game,
each punisher punishes each defector, and that each act of punishment costs γ to the
punisher and β to the punished player, so that punishers have to pay γNy and defec-
tors βNz. This is the so-called “peer-punishment” or “private punishment” case, and
will be denoted by PP. Alternatively, we may consider the so-called “sanctioning
institution” treatment. In this case, denoted by SI, each of the Nz punishers pays a
fee γ before the Public Goods game is actually played; then, a fine of size βNz is
imposed on the group of defectors. (If there is no defector, no one will be fined and
the fee for the punishment is lost; otherwise, the defectors share the fine equally, so
that each defector pays βNz/Ny .)

The total payoff is the sum of a Public Goods term and a punishment term, (which
is 0 for non-participants and cooperators). In the PP case, the expected punishment
terms are easily seen to be

−βz(N − 1) (6.59)

for the defectors and

−γy(N − 1) (6.60)

for the punishers. For the SI case, the corresponding terms are

−β
z

y
[1 − (1 − y)N−1] (6.61)

for the defectors and

−γ (1 − wN−1) (6.62)

for the punishers. The latter is clear: a punisher pays the fine γ , except if no one else
in the sample wants to participate in the game. Now considering a defector, we see
that if there are m other defectors in the sample, there remain N − m − 1 players,
who are punishers with a probability z/(1 − y) each. The probability that exactly k

of them are punishers is

(
N − m − 1

k

) (
z

1 − y

)k (
1 − z

1 − y

)N−m−1−k

, (6.63)

in which case the fine is kβ/(m + 1). If there are m other defectors, this yields a
conditional expectation of
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− β

m + 1

(
z

1 − y

)
(N − m − 1). (6.64)

Altogether, the punishment term is

−
N−1∑
m=0

(
βz

1 − y

)
N − m − 1

m + 1

(
N − 1

m

)
ym(1 − y)N−m−1. (6.65)

Since the last term in the sum is 0, and since(
N − 1

m

)
N − m − 1

m + 1
=

(
N − 1

m + 1

)
, (6.66)

the punishment term is

−βz

y

N−2∑
m=0

(
N − 1

m + 1

)
ym+1(1 − y)N−1−(m+1), (6.67)

which yields (6.61).

6.11 REPLICATOR DYNAMICS WITH PEER-PUNISHMENT

The payoff values are the sum of a Public Goods term and a punishment term. The
punishment terms have been computed in the previous section.

In the SR case, the payoff stemming from the public good is given by σ for the
non-participants, by

σwN−1 + rc(x + z)HN(w) (6.68)

for the defectors, see equation (6.39), and

σwN−1 + c(r − 1)(1 − wN−1) − rcyHN(w) (6.69)

for the cooperators and for the punishers, see equation (6.41), with

HN(w) = 1

1 − w

(
1 − 1 − wN

N(1 − w)

)
. (6.70)

In the OO case, the payoff obtained from the public good is given by

σwN−1 + rc(x + z)(1 − wN−1)

1 − w
(6.71)

for a defector. Cooperators and punishers obtain the same term from the public good,
reduced by c(1 − wN−1).

Let us now consider the replicator dynamics for the OO-PP case. After removing
the common term σwN−1 from all payoffs, we obtain for the expected payoff values
of non-participants, defectors, cooperators, and punishers
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Pw = (1 − wN−1)σ, (6.72)

Py = (1 − wN−1)

(
rc

x + z

1 − w

)
− βz(N − 1), (6.73)

Px = (1 − wN−1)

(
rc

x + z

1 − w
− c

)
, (6.74)

and

Pz = (1 − wN−1)

(
rc

x + z

1 − w
− c

)
− γy(N − 1). (6.75)

In the interior of the simplex S4 there is no fixed point since Pz < Px . Hence all orbits
converge to the boundary. On the face z = 0, we find a Rock-Paper-Scissors game:
non-participants are dominated by cooperators, who are dominated by defectors,
who are dominated by non-participants. In the interior of this face, all orbits are
homoclinic orbits, converging to the non-participant state if time converges to ±∞
(see fig. 6.2).

It is easy to see that punishers dominate non-participants, and that punishers and
defectors form a bi-stable system if c < β(N − 1). The edge of cooperators and
punishers (y = w = 0) consists of fixed points, those with

z >
c

β(N − 1)
(6.76)

are saturated and hence are Nash-equilibria.
Let us now turn to the SR-PP case. We compute the payoffs as Pw = σ ,

Py = σwN−1 + rc(x + z)HN(w) − βz(N − 1), (6.77)

Px = σwN−1 + (r − 1)c(1 − wN−1) − rcyHN(w), (6.78)

and

Pz = σwN−1 + (r − 1)c(1 − wN−1) − rcyHN(w) − γy(N − 1). (6.79)

The y = w = 0 edge consists of fixed points, and all those with

z >
c

β(N − 1)

(
1 − r

N

)
(6.80)

are Nash equilibria. On the face z = 0, the edges form a heteroclinic cycle. If r ≤ 2,
the dynamics looks just as in the OO-PP case. But for r > 2, the face w = 0 contains
a fixed point Q that is surrounded by periodic orbits, as seen in fig. 6.3. This point
Q is saturated, and hence is a Nash equilibrium. Indeed, at Q one has Px = (r − 1)

c(1 − wN−1) + σwN−1 − rcyHN(w) = P̄ = Pw = σ , and hence Pz − P̄ = Pz −
Px = − γ (N − 1)y < 0. Moreover, any closed orbit o with period T in the face
z = 0 attracts neighboring orbits from the interior of S4, in the sense that the time
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average of the “transversal growth rate,” i.e., of Pz − P̄ , is negative. This can be
shown as before, by noting that the time-averages along o satisfy the equalities

P̂x = P̂y = P̂w = ˆ̄P = σ , so that

P̂z − ˆ̄P = P̂z − P̂x = −γ (N − 1)
1

T

∫ T

0
ydt < 0. (6.81)

The periodic orbit o is thus saturated in this sense, i.e., transversally stable, and even
attracting. We note that for very large orbits the state spends most of the time close
to AllW. The transversal eigenvalue at that point is 0.

Since Pz < Px in the interior of the state space, all orbits converge to the boundary.
There are two sets on the boundary that attract interior orbits: on one hand the seg-
ment on the cooperator-punisher edge satisfying inequality (6.76), and on the other
hand the face z = 0 filled with periodic orbits. Due to the degenerate dynamics (with
continua of rest points and periodic orbits), the replicator dynamics is structurally
unstable: the slightest perturbation can yield a different outcome. Hence, it has little
predictive value. In such a situation, it is preferable to turn to stochastic processes
in finite populations for an answer.

6.12 FINITE POPULATIONS

Let us consider a finite population of size M . By X, Y , Z, and W , we denote the
number of cooperators, defectors, punishers, and non-participants (with X+Y +Z+
W = M). The probability that a random sample of size N contains Nx cooperators,
Ny defectors, Nw punishers, and Nz non-participants is given by the hypergeometric
distribution (

X

Nx

)(
Y

Ny

)(
Z

Nz

)(
W

Nw

)
(
M

N

) . (6.82)

(Since we consider a finite population, we have to assume sampling without replace-
ment.)

It is straightforward, if somewhat laborious, to compute the expected payoff values
for each of these types. For instance, in the SR-PP case, these are given by Pw = σ ,

Py = WN−1

(M − 1)N−1
σ + H − Z

M − 1
(N − 1)β, (6.83)

Px = WN−1

(M − 1)N−1
σ + H − F(W)c, (6.84)

Pz = WN−1

(M − 1)N−1
σ + H − F(W)c − Y

M − 1
(N − 1)γ, (6.85)

where we used the expressions

WN = W(W − 1) · · · (W − N + 1) (6.86)
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etc., as well as

H = rc
X + Z

M − W − 1

[
1 − 1

N(M − W)

(
M − (W − N − 1)

WN−1

(M − 1)N−1

)]

(6.87)

and

F(W) = 1 − r

N

M − N

M − W − 1
+ WN−1

(M − 1)N−1

(
r

N

W + 1

M − W − 1
+ r

M − W − 2

M − W − 1
− 1

)
.

(6.88)

Using this, we can compute the transition probabilities for each learning process:
since the population consists of 4 types, they yield a Markov chain with

(
M+3

3

)
states (X, Y, Z, W). For reasonable values of M such as M = 100 or M = 1000,
this is a rather large number. If there is no mutation, the population will end up in
a homogeneous state, with all individuals being cooperators (X = M), or defectors
(Y = M), etc. If we add a very small “innovation term” to the imitation process,
as described in section 2.17, these states are no longer absorbing, and we can per-
form a separation of time scales. This “adiabatic” approach reduces the process to
a Markov chain describing the transitions between the four homogeneous states
AllX, AllY, AllZ, and AllW. The corresponding left eigenvector (πx, πy, πz, πw)

yields the stationary distribution of the four homogeneous states.
We have used this approach in section 6.4, by considering a very simple imitation

process. In this section, we test the robustness of the result by using the Moran
process as a learning rule (see sections 2.15 to 2.17).

According to equation (2.78), the fixation probabilities can be derived by formulas
of the type

ρxy = 1

1 + ∑M−1
k=1

∏k
X=1

1−s+sPXY

1−s+sPYX

, (6.89)

where PXY denotes the payoff obtained by a cooperator in a population consisting
of X cooperators and Y = M − X defectors. Hence all that remains is to compute
these expressions.

6.13 PAYOFF VALUES IN A FINITE POPULATION

The payoff consist of two terms: the term G from the Public Goods game, and the
term S from the sanctioning. We consider only the case of a self-returning Public
Goods game with peer-punishment.

In the PP case, punishment affects only punishers and defectors. If there are Z

punishers and Y defectors (with Z + Y = M), the former must pay

SZY = γY (N − 1)

M − 1
, (6.90)

and the latter

SYZ = βZ(N − 1)

M − 1
. (6.91)
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All other S terms are 0 in the PP case.
If the population consists only of X cooperators and Y defectors (X + Y = M),

the payoff obtained from the Public Goods interaction is

GXY =
N−1∑
k=0

H(k, N − 1, X − 1, M − 1)

(
k + 1

N
r − 1

)
c, (6.92)

where

H(k, N − 1, X − 1, M − 1) =
(
X−1

k

)(
M−X

N−k−1

)
(
M−1
N−1

) (6.93)

denotes the probability that a cooperator lands in a sample with k other cooperators
and N − 1 − k defectors, cf. expression (6.81). Thus

GXY = rc
N

[
1 + (X − 1)

N − 1

M − 1

]
− c. (6.94)

Similarly,

GYX =
( rc
N

) N − 1

M − 1
X, (6.95)

GXZ = GZX = (r − 1)c, (6.96)

GWX = GWY = GWZ = σ, (6.97)

GXW = GZW = (r − 1)c − WN−1

(M − 1)N−1
((r − 1)c − σ), (6.98)

GYW = WN−1

(M − 1)N−1
σ, (6.99)

GYZ = Z(N − 1)

M − 1

( rc

N

)
, (6.100)

and

GZY = rc
N

[
(Z − 1)(N − 1)

M − 1
+ 1

]
− c. (6.101)

It is now possible to compute the stationary distribution for the Markov chain, both in
the case when participation is voluntary, and when it is compulsory. We see that in the
former case, punishers dominate, see figure 6.5, whereas in the latter case, defectors
win, see figure 6.6. Individual based simulations illustrate this point. Cooperation
based on sanctioning is much easier to achieve if participation in the joint effort is
voluntary, rather than compulsory, see figure 6.7. Similar results also hold for the
other cases (i.e., a Public Goods game of “others-only” type, or a punishment term
provided by a “sanctioning institution”).
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Figure 6.5 The stationary distribution of punishers, cooperators, defectors, and non-
participants (in that order, from top to bottom) for various values of the selection
strength s. Parameter values M = 100, N = 5, r = 3, σ = 1, β = 1, γ = 0.3, and
c = 1.
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Figure 6.6 The stationary distribution for the compulsory game (all players must participate),
for the same parameter values. The ordering is now (from top to bottom, right
edge): defectors, punishers, and cooperators.
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Figure 6.7 A sketch of a typical evolution of (a) the voluntary Public Goods game with
punishment, and (b) the compulsory Public Goods game with punishment. For
corresponding individual-based computer simulations, see Hauert et al. (2007).
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Chapter Seven

Cooperation in Structured Populations

7.1 STRUCTURED POPULATIONS

Up to now, we have always assumed that populations are well-mixed: just as popula-
tion genetics often postulates random mating, so did we assume random meeting. It
need hardly be stressed that this is often unrealistic. Human populations are, in gen-
eral, highly structured, and individuals interact preferentially within their families,
neighborhoods, or other types of groups and networks. Obviously, these structures
play a major role in the evolution of cooperation.

So far, we have concentrated exclusively on an analysis based on the strategic point
of view, and totally neglected social networks, despite their obvious importance. In
this last chapter, we briefly discuss some relevant aspects, not to make belated
amends for an oversight, but to point out some of the main directions.

7.2 KIN SELECTION

A huge part of cooperation occurs within families. This is an immediate corollary
of the Darwinian struggle for survival. Genes that promote their own spreading (by
enhancing the survival and the fecundity of their carriers) become necessarily more
frequent than those that do not. Just as parents programmed to help their children
have an obvious advantage in passing along their genetic material, so siblings pro-
grammed to help each other will also have an advantage. More precisely, a gene
causing me to help my brother will help to spread itself: for it is, with a high proba-
bility, carried by my brother too. This “selfish gene” view, elaborated as the theory of
kin selection, has been developed to a considerable extent, within the last fifty years.
Here, we just derive an elementary instance of that theory’s basic result, which is
known as Hamilton’s rule.

In the following, we shall interpret “payoff” in the sense of genetic fitness, i.e.,
reproductive success. Letρ denote the coefficien of relatednessbetween two players.
This can be defined in various ways. Here, we simply assume that it measures
relatedness by descent: this is the probability that a recently mutated gene (or allele,
to use the correct term) carried by one player is also carried by the other. Of course,
any two humans are related, if we go back to primordial Eve. But we do not share all
our genes. A mutation occurring in the body of your grandfather produces an allele
that will be found with probability 1/2 in his children, and with probability 1/4 in
his grandchildren. Under usual circumstances (e.g., no inbreeding), the coefficient
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Figure 7.1 Relatedness in a small family. A and B are the parents, C and D their offspring,
E and F their grandchildren. Individuals have two copies (alleles) of each gene,
one inherited from the mother, the other from the father. The probability that a
specific allele of A is passed to C is 1/2. The probability that a specific allele
of C comes from A is 1/2. The degree of relatedness between A and C is 1/2.
The siblings C and D can both have inherited a newly mutated allele, either from
A (probability 1/2 × 1/2 = 1/4) or from B, hence their degree of relatedness is
1/4 + 1/4 = 1/2. The degree of relatedness between F and C (nephew and uncle)
is 1/2 × 1/2 × 1/2 + 1/2 × 1/2 × 1/2 = 1/4, the degree of relatedness between
E and F (two cousins) is 1/8.

of relatedness between two siblings is 1/2; between you and your nephew it is 1/4,
etc., see figure 7.1.

From the gene’s point of view, this means that the reproductive success of a
relative also counts towards your own reproductive success, but weighted by the
factor ρ < 1, as it contributes to your indirect fitness. Assume that you are engaged
in a Donation game, with matrix (

b − c −c

b 0

)
. (7.1)

Clearly, the second strategy dominates the first (see section 3.1). But if the payoff
of your co-player, multiplied by the factor ρ, is added to your own, then the payoff
matrix turns into (

(1 + ρ)(b − c) −c + bρ

b − cρ 0

)
. (7.2)

It is easy to see that ρb > c implies that it is now the first strategy (i.e., cooperation)
that dominates: no matter whether your co-player defects or cooperates, it will be
better for you to cooperate. For full siblings, for instance, this condition means that
the benefit has to be larger than twice the cost. The relation

ρ >
c

b
(7.3)

is known as Hamilton’s rule. If it is satisfied, then it pays to cooperate. Hamilton
derived this rule in the context of population genetics. But clearly, it holds whenever it
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can be assumed that the utility of your co-player (properly weighted by some factor
ρ) counts toward your own utility. This need not be restricted to games between
relatives. It may well hold simply because you like your co-player. (Of course, a
proper Darwinian would then require an explanation for the genetic basis of your
sympathy.)

We have encountered inequalities similar to Hamilton’s rule before. In particular,
in the theory of direct reciprocity (section 3.4) we have met the important inequality

w > c/b (7.4)

(where w is the probability for a further round), and in the theory of indirect reci-
procity (section 4.3) the inequality

q > c/b (7.5)

(where q is the probability to know the co-player’s previous move).

7.3 GAMES ON GRIDS

Let us now consider another scenario. Assume that players are not randomly milling
around, but sedentary. They interact only with their neighbors. In the simplest case,
let us assume that they are living on a huge chessboard, each on his or her own site.
Then each player has eight neighbors, and interacts only with those. We shall assume
that the players have to engage in the Donation game, with the payoff matrix (7.1),
and that they always use the same strategy, i.e., always play C or always D, with
each of their eight neighbors. The payoff for a defector is Ncb, where 0 ≤ Nc ≤ 8
is the number of cooperating neighbors. The payoff for a cooperator is Ncb − 8c.
Suppose that players play one round of the Donation game with each of the eight
neighbors, and then update strategy, by adopting the strategy of the neighbor with
the highest payoff, or by sticking to their own strategy, if it worked best. In the case
of a tie, we assume some random decision.

It is easy to see that a single cooperator in a sea of defectors will vanish, whereas
a single defector will infect all eight neighbors. But for larger clusters, the outcome
may depend on the precise geometry, see figure 7.2. For instance, when a straight line
separates cooperators from defectors, then front-line cooperators earn 5b − 8c and
front-line defectors earn 3b. Thus cooperators do better than defectors if b/c > 4.
Their front will advance if this condition is met. A cooperator in the second row
earns 8b − 8c, and the defectors’ front will advance if b/c < 8/5. On the other
hand, a cooperator sitting at the corner of a block of cooperators earns 3b − 8c,
while some defecting neighbors obtain 3b, which is always more. But a defector
sitting at the corner of a block of defectors earns 5b, and this is less than the payoff
7b−8c obtained by the cooperator who sits in the diagonally opposite site, provided
b > 4c.

Of course, the distribution of defectors and cooperators is unlikely to be given by
a simple geometric configuration. More generally, we cannot realistically assume
that the players sit on a regular lattice, such as an infinite chessboard. The neigh-
borhood relations will usually be more random, and given by an irregular graph.
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Figure 7.2 Games on grids: (a) describes the neighborhood of an individual on a specific site;
(b) depicts a straight front-line between cooperators and defectors; (c) describes
the corner of a rectangular block of cooperators in a sea of defectors.

Furthermore, there are many alternative ways of modeling how strategies spread,
through imitation or otherwise. Players can update asynchronously, they can use
some stochastic learning rules, etc. But as long as the interaction network is not too
irregular, and players imitate their neighbors with a probability proportional to their
fitness, and this fitness depends only weakly on the payoff, then a rule of thumb
states that cooperation wins whenever

k <
b

c
, (7.6)

where k is the average number of neighbors. Intuitively, this makes sense. The
more neighbors, the less special they are, and the closer the population is to being
well-mixed.

7.4 THE PRICE EQUATION

Whenever a population is subdivided into subpopulations, the Price equation offers a
useful tool for computing evolutionary change. Let us assume, as sketched in figure
7.3, that the subpopulation i (for 1 ≤ i ≤ m) has size Ni , and that it displays a certain
trait pi (for instance, the frequency of cooperators in the subpopulation, or the total
body mass of its members). The total population size then, is N = ∑

Ni and the
average trait value is E(p) = ∑

Nipi/N .
Let us assume that the individuals multiply, so that in the next generation, the

subpopulations’ sizes have become N ′
i and their trait values p′

i . The average trait
value is now E′(p′) = ∑

N ′
ip

′
i/N

′. (The symbol E′ emphasizes that the average is
taken with respect to the weights of the subpopulations in the new generation.) The
fractions N ′

i /Ni can be viewed as the per capita reproduction, or average fitness in
group i, and will be denoted by fi . The Price equation establishes a relation between
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Figure 7.3 The frequency of cooperators if groups are randomly reformed every generation.

�p = E′(p′)−E(p), the increase of the average trait value in the whole population,
and the increases δpi = p′

i −pi of these traits in each subpopulation. In general, the
difference of the averages is distinct from the average of the differences. But the
two expressions can be related, using the covariance of the two functions p : i �→ pi

and f : i �→ fi , i.e.,

cov(f, p) = E(fp) − E(f )E(p). (7.7)

Here, E denotes the mean, as before, i.e.,

E(f ) = 1

N

∑
Nifi, (7.8)

and

E(fp) = 1

N

∑
Nifipi. (7.9)

Clearly,

E(f ) = N ′

N
(7.10)

and

E(f δp) = 1

N

∑
Nifiδpi = E(fp′) − E(fp). (7.11)
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Since

E(fp′) = 1

N

∑
fip

′
iNi = 1

N

∑ N ′
i

Ni

p′
iNi = N ′

N

∑ N ′
ip

′
i

N ′ = E(f )E′(p′),

(7.12)
the expression (7.7) for the covariance yields the Price equation

E(f )[E′(p′) − E(p)] = cov(f, p) + E(f δp) (7.13)

or, if N ′ > 0, i.e., if E(f ) �= 0,

�p = cov(f, p)

E(f )
+ E(f δp)

E(f )
. (7.14)

The term cov(f, p)/E(f ) may be interpreted as

E(fp)

E(f )
− E(f )E(p)

E(f )
=

∑
Nifipi/N

N ′/N
− E(p)

=
∑

N ′
ipi/N

′ − E(p) = E′(p) − E(p). (7.15)

Here, E′(p) can be understood as the average value of the pi (the trait values in the
initial generation), if the groups had the sizes attained in the following generation.

7.5 ADVANCE OF ALTRUISTS

Let us apply this to the Public Goods game, and assume that group i contains Xi

cooperators and Yi defectors, with Xi + Yi = Ni . The frequency of cooperators is
pi = Xi/Ni . Let us suppose that within each group, a Public Goods game is played.
If we assume that it is of the self-returning type (see section 6.2), then we obtain as
payoffs Pd and Pc for the defectors and the cooperators:

Pd(i) = rcXi/Ni = rcpi (7.16)

(with r > 1), and

Pc(i) = rcpi − c. (7.17)

Let the fitness function be a convex combination of a baseline term B > 0 (the same
for all), and the payoff from the game. Then the fitness values for the defectors
and cooperators in group i are given by (1 − s)B + sPd(i) and (1 − s)B + sPc(i),
for some “selection coefficient” s ∈ [0, 1]. (The main use of s is to make sure that
the fitness terms are positive. This can always be guaranteed by choosing s small
enough.) The average fitness in group i is

fi = (1 − s)B + s[rcpi(pi + (1 − pi)) − cpi] = (1 − s)B + sc(r − 1)pi. (7.18)

The right hand side of the Price equation (7.13) is the sum of two terms. The second
term can never be positive. Indeed, within each group, the defectors do better than
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the cooperators, and hence the expected frequencies of the cooperators will drop:
δpi ≤ 0 for all i. But the first term is non-negative. Indeed,

cov(f, p) = sc(r − 1)cov(p, p) = sc(r − 1)var(p) ≥ 0. (7.19)

Hence, if the variance of p is sufficiently large, i.e., if the subgroups differ suffi-
ciently in their composition, then the average frequency of cooperators in the whole
population can increase from one generation to the next. (This also holds, inciden-
tally, for the others-only case of the Public Goods game.) While defectors spread
within each group, those groups having few defectors grow faster and thus can
compensate.

It must be stressed that this is a fleeting effect only. Over the generations, groups
will become more and more homogeneous (since each one will be more and more
dominated by defectors), hence the variance will decrease and ultimately no longer
suffice to deliver a net increase in cooperators, see figure 7.3.

However, this can be overcome in various ways: for instance, by an appropriate
migration between the groups. Another way would be to randomly regroup the
population every few generations: if the number of generations is chosen judiciously
within a certain range, the variance can rebound again and again, see figure 7.4. We
can also assume that cooperators will preferentially unite with other cooperators.
Defectors would also prefer to join with cooperators, of course, but as long as the
others have a say, defectors can be kept away.

Another, more drastic but not entirely unrealistic approach would be to eliminate
those groups with many defectors, and to replace them with groups obtained by
randomly splitting groups with many cooperators. We can assume, for instance, that
groups with many defectors are vanquished in warfare by groups containing more
altruists ready to risk their own lives in battle. This approach can trace its roots back
to Darwin, who wrote: “There can be no doubt that a tribe including many members
who . . . were always ready to give aid to each other and to sacrifice themselves for
the common good, would be victorious over other tribes; and this would be natural
selection.”

7.6 ANOTHER VERSION OF HAMILTON’S RULE

A related interpretation of the role of the variance in p can be obtained by looking for
a necessary and sufficient condition for an increase in the frequency of cooperators.
Let us denote by x ′

i and y ′
i the expected values of X′

i and Y ′
i , the frequencies of

cooperators and defectors in the next generation. Since

x ′
i = Xi[(1 − s)B + sPc(i)] (7.20)

and

y ′
i = Yi[(1 − s)B + sPd(i)], (7.21)

(and using x ′ = ∑
x ′

i and y ′ = ∑
y ′

i as well as n′ = x ′ + y ′), the condition

x ′/n′ > X/N (7.22)
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Figure 7.4 The frequency of cooperators if groups are randomly reformed every second,
fourth, or tenth generation (after Pflügl (2007), based on Fletcher and Zwick
(2004)). The length of the period g between the new arrangements plays a crucial
role for the evolution of cooperation.

translates into

(1 − s)BX + s
∑

XiPc(i)

(1 − s)BN + s(
∑

XiPc(i) + ∑
YiPd(i))

>
X

N
. (7.23)

This in turn is equivalent to

N
∑

XiPc(i) > X
(∑

XiPc(i) +
∑

YiPd(i)
)
. (7.24)

Using equations (7.16) and (7.17), and collecting the terms in r on the left hand
side, we obtain

r
[
N

∑
Xipi − X

∑
Nipi

]
> X(N − X). (7.25)

After division by N2, this gives

r

[∑
pi

Xi

N
− E(p)

∑
pi

Ni

N

]
> E(p)(1 − E(p)). (7.26)

The factor of r can be written as

1

N

∑
p2

i Ni − E(p)
1

N

∑
Nipi = E(p2) − (E(p))2 = var(p). (7.27)
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Hence the proportion of cooperators increases if and only if,

r[var(p)] > E(p)(1 − E(p)). (7.28)

Let us denote the right hand side by Var(p). It is the variance of the random vari-
able obtained by sampling one individual at random in the whole population, and
checking whether it cooperates (value 1) or defects (value 0). If we recall that c is
the cost of an individual contribution to the public good, and rc =: b the benefit
accruing to the whole subpopulation, we obtain

var(p)

Var(p)
>

c

b
, (7.29)

which is another inequality of Hamiltonian type. It highlights the importance of the
variance of p. If the proportions of cooperators in the different subpopulations are
too similar, the proportion of cooperators in the whole population decreases.

7.7 REFERENCES

A unifying approach to cooperation in structured und unstructured populations has been proposed by
Nowak (2006b). The founding father of the theory of kin selection was W. D. Hamilton, see Hamilton
(1996) for a reprint of his seminal papers and Grafen (1984) for a lucid presentation. For modern presen-
tations, we refer to Frank (1998), Taylor and Frank (1996), Pepper (2000), Taylor, Day, and Wild (2007),
Skyrms and Pemantle (2000), West, Pen, and Griffin (2002), Rousset (2004), and Lehmann and Keller
(2006). Games on grids were introduced by Nowak and May (1992), see also Nowak, Bonhoeffer, and
May (1994), Lindgren and Nordahl (1994), and Hauert and Szabó (2003). The importance of spatial rela-
tions has been stressed by Schelling (1971) and Durrett and Levin (1994). Reaction-diffusion equations
for the Prisoner’s Dilemma game were studied in Hutson and Vickers (1995) and Ferrière and Michod
(1996). For cooperative games on irregular networks and graphs, we refer to Liebermann, Hauert, and
Nowak (2005), Szabó and Fáth (2007), Santos, Pacheco, and Lenaerts (2006), and Pacheco et al. (2008).
For the spatial Ultimatum game see Page, Nowak, and Sigmund (2000); for spatial indirect reciprocity see
Brandt et al. (2007); for the spatial Snowdrift game, Hauert and Doebeli (2004) and Doebeli, Hauert, and
Killingback (2004); for the spatial Public Goods game, Brandt, Hauert, and Sigmund (2003), Nakamaru
and Iwasa (2005 and 2006); for the effect of volunteering, Szabó and Hauert (2002) and Szabó and Vukov
(2004). The Price equation was introduced in Price (1970), see also Grafen (2000) and, for an intriguing
relation with the replicator equation, Page and Nowak (2002). The Price equation has been the main
basis of a large body of work; see for instance Frank (1998), Sober and Wilson (1998), or Gintis (2000).
The presentation in sections 7.5 and 7.6, as well as figure 7.3 are based on Fletcher and Zwick (2004
and 2007). Different approaches to group selection can be found in Cohen and Eshel (1976), Bergstrom
(2002), or Killingback Bieri, and Flatt (2006). Lehmann and Keller (2006) and Lehmann et al. (2007)
argue that group selection is kin selection, see also West, Griffin, and Gardner (2007).
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