Effect of Environmental Changes on Greenhouse Gases from Water Bodies

Vishal Anand; Amit Singh; Sanjeev Kumar Prajapati*

Indian Institute of Technology Roorkee – 247667, India

*Email id - sanjukec@iitr.ac.in

Introduction

- Eutrophicated lakes are a considerable source of greenhouse gas (GHGs) emissions
- Algae-based treatment and regulation are suggested to combat eutrophication.
- Algae mediated treatment and harvesting as central dogma for circular bioeconomy.
- Anaerobic digestion facilitates energy and nutrient recovery from wastewater

Sustainable and economical approach for

Wastewater treatment technologies: GHGs mitigation perspective

Wastewater treatment technologies: GHGs mitigation perspective:

- Constructed wetlands
- Microbial bio-electrochemical systems
- Sewage biochar for carbon sequestration
- Microalgal technology for wastewater treatment

effective utilization

Meta Analysis

Wastewater treatment technologies for greenhouse gas mitigation (GHGs).

Technology	Purpose	Advantages	Disadvantages
Constructed wetlands (CW)	A system that employs plants	Economical,	Low productivity,
	to enhance water quality and collect GHGs in an integrated manner.	Easy to operate and maintain,	Sensitive to toxic chemicals,
		Environmentally friendly,	Large land required,
		Incorporate wetlands into landscape for organisms.	Uneven
		Salf mateining to the head and a large	treatment
Microbial electrosynthesis	Electricity generation and	Self-sustaining technology; a low	Low production rate,
(MES)	chemical manufacturing from chemical energy stored in	with renewable energy systems	Low selectivity
	biodegradable materials.	are some of the advantages of	
Microbial algotrolygic calls	Durify waste water by	this technology.	I In a som anni a sl
Microbial electrolysis cells	dissolving has minorals	because to the fellowing features:	Uneconomical,
(MECs)	while also capturing and	Efficient CO collection and	Low productivity,
	transforming CO ₂ and	utilisation	Partial nutrient removal efficiency
	producing H ₂		y
Microbial carbon capture	A system that cleanses	Effectual CO_2 sequester and	High-cost operating system.
	wastewater while	utilization,	Tauch to severate histories
(MCC)	simultaneously reducing CO ₂ emissions and generating	Variable product can be obtained	Tough to separate blomass,
			Sensitive to toxic elements
	electricity	Resource recovery	
Biochar	Sludge and other biomass are	Economical, High reusability,	Drying,
	pyrolyzed to produce a	Highly stable, Sustainability	Pre-treatment required
	carbon-rich product with		
	superior environmental		
Microalgae cultivation	Use as a treatment for	Easter growth than plants	Sensitive to contamination and other
Wherbaigae cultivation	wastewater, a means of capturing greenhouse gases, and an energy source.	effective nutrient removal, efficient reduction of GHG emissions, a source of energy and other useful things	variances in the system,
			Need for a large amount of land
			inced for a large amount of land;
			Costly culture system,
			Biomass collection may be necessary:

Meta analysis plot number of publications A (year), B (Country), C (Publication type) and D (articles wise)

Conclusions

- Wastewater is a silent source of GHGs emission.
- Eutrophicated lakes release CH₄, while freshwater waters release CO2.
- N₂O emission is not studied widely.
- Algae growth and harvesting if regulated can facilitate nutrient recovery and wastewater treatment.
- Utilization of harvested algal biomass for production bio-products such as, biofuel, biofertilizer Of advocates to circular bioeconomy.

