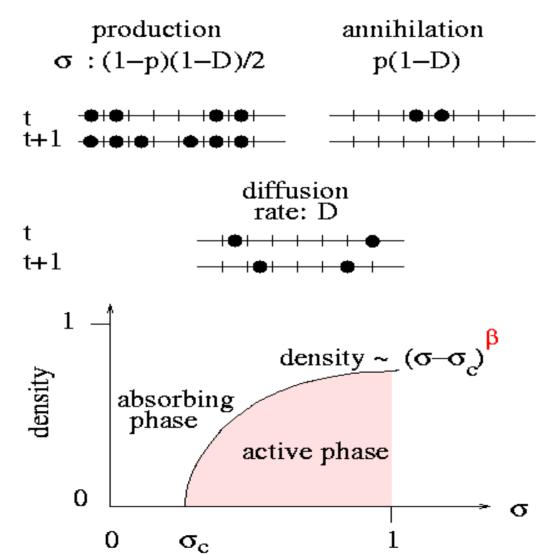

Novel critical behavior in binaryproduction, reaction-diffusion systems

Géza Ódor

Short overview of nonequilibium critical classes. Simulation results for a two dimensional, binary production reaction-diffusion model. Computational realization on Hungarian grid network

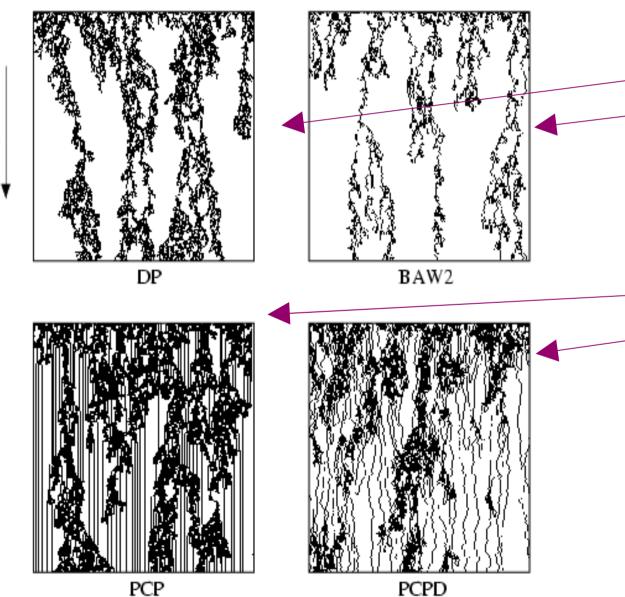
Universality in complex systems

- Among complex, interacting systems built up from: particles, galaxies, animals, cars, money, web nodes ... etc. power-laws, fractals are common
 -> Universality classes appear determined solely by the collective behavior of parts.
- Example at critical phase transitions, where the correlation length diverges.
- In equilibrium systems these classes are well understood: standard classes; role of symmetries, dimensions, boundary conds. are discovered)
- We hope to extend this scenario for nonequilibrium systems.


Overview of dynamical universality classes G. Ó.: cond-mat/0205644

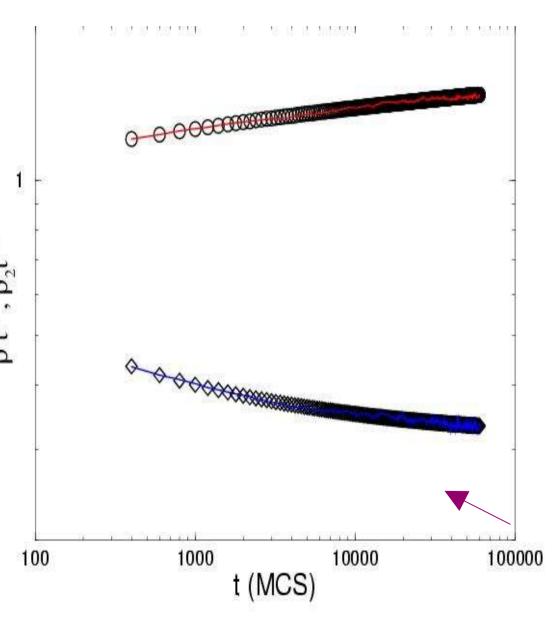
- Extension of static equilibrium classes (Ising, Potts, O(N)...) with different dynamics : Glauber, Kawasaki ...
- Mixture of the above dynamics to create out of equilibrium systems
- Genuine nonequilibrium classes appear by phase transitions to absorbing state, example in reaction-diffusion systems :

 a) Directed percolation class : A->2A, 2A->A, A->0, time reversal
 b) Dynamical percolation: As a) with long time memory
 c) Voter model class: Diffusion and annihilation at surfaces
 d) Branching with kA->0 (k>2) classes (mostly mean-field like)
 d) Parity conserving class: A->3A, 2A->0
- Multi-component reaction-diffusion model classes:
 e) DP with coupled diffusive or non-diffusive random walk
 f) The same as e) with global particle conservation...


The binary production PCPD model

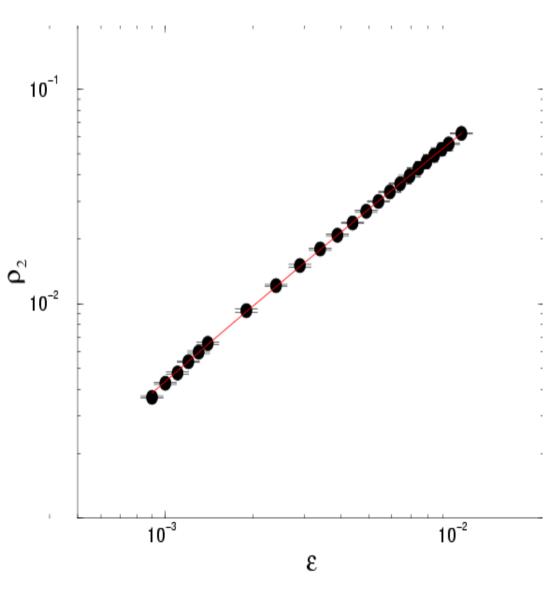
1D PCPD reaction-diffusion model

- Two absorbing states **without symmetry,** one of them is diffusive. Carlon, Henkel, Schollwock (PRE 2001).
- Bosonic field theory ('97) failed to describe critical behavior. In the bosonic model diverging active phase.
- Fermionic model shows different critical behavior but field theory is too hard. Numerical methods show new exponents.
 No extra symmetries or conservation laws found to explain.


Space-time evolution of universal nonequilibrium spreading models with absorbing states

- Unary production spreading without and with *parity conservation*:
 - $A \rightarrow (m+1)A, 2A \rightarrow 0$
- Binary production spreading coupled to slave modes
 without and with *diffusion*:

2A -> (m+2)A, 2A -> 0 Reactive and diffusive sectors, changing exponents by varying the diffusion rate: *G.Ódor, Phys. Rev. E 62 (2000) R3027.* **Two class** *?*


2D binary spreading

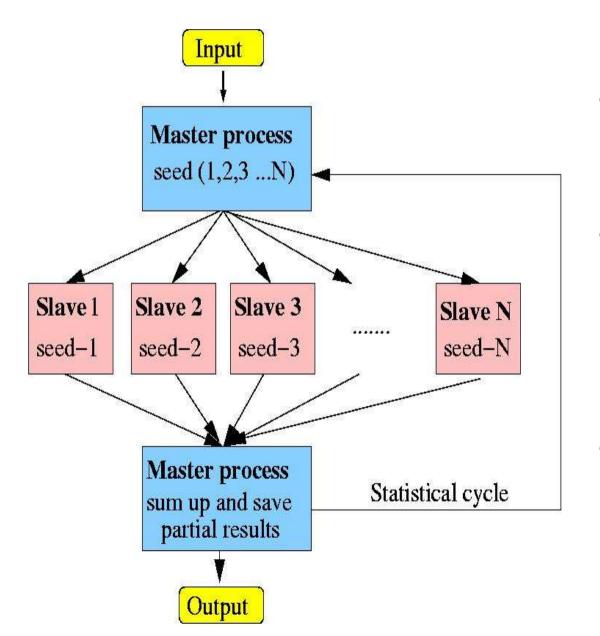
- [•] Fermionic RG predicts $d_c=1$, bosonic: $d_c=2$.
- G.Ódor, M.A.Santos, M.C. Marques: *Phys. Rev. E 65 (2002) 056113.*2A -> 4A, 2A -> 0, 0A <-> A0

Density decay simulations in L = 200-2000 systems: ρ , ρ_2 scales the same way except in the inactive phase. Mean-field scaling: $\rho \propto \rho_2 \propto t^{-0.5}$ with logarithmic corrections is supported.

2D binary spreading results

• Steady state behavior: Mean-field scaling with logarithmic correction.

	D=0.2	D=0.5	D=0.8
p _c	0.4124(1)	0.4394(1)	0.4751(1)
· · ·	0.507(10)	0.496(6)	0.497(10)
α_{2}	0.501(10)	0.501(5)	0.484(15)
ß	1.07(10)	1.01(10)	1.07(10)
ß.	1.03(8)	0.96(5)	0.95(5)
P 2			


d =2 upper critical dimension is supported.

• In the inactive phase: $\rho(t) \propto (\ln(t)/t)$

Open problems

- Field theoretical understanding
- Lack of symmetries and conservation laws
- Insensitivity to conservation laws ?
- In 1d two classes or non-universal scaling ?
- More complex: nA -> (n+m) A type reaction -diffusion models with n > 2 show similar new universal behavior in low dimensions ...

Parallel algorithm realizations

- Master-worker setup, Single Program Multiple Data (SPMD) algorithm.
- The slave processes are completely identical and sequential. Minimal communication losses, easy program development
- Portable MPI programs run on SUN E10000, and PC clusters connected by GRID.